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Summary. This paper contains theorems which describe the correspon-
dence between topological properties of real numbers subsets introduced in [40]
and introduced in [38], [16]. We also show the homeomorphism between the car-
tesian product of two R

1 and E2

T. The compactness of the bounded closed subset
of E2

T is proven.

MML Identifier: TOPREAL6.

The articles [41], [48], [12], [49], [10], [11], [6], [47], [7], [18], [24], [43], [1], [39],

[35], [8], [14], [28], [27], [26], [45], [25], [23], [3], [9], [13], [29], [2], [46], [40], [38],

[50], [17], [36], [37], [16], [42], [5], [19], [4], [20], [21], [22], [51], [33], [32], [15],

[31], [30], [44], and [34] provide the notation and terminology for this paper.

1. Real Numbers

For simplicity, we use the following convention: a, b are real numbers, r is a

real number, i, j, n are natural numbers, M is a non empty metric space, p, q,

s are points of E2
T, e is a point of E2, w is a point of En, z is a point of M , A,

B are subsets of En
T, P is a subset of E2

T, and D is a non empty subset of E2
T.

One can prove the following propositions:

(2)2 a− 2 · a = −a.

(3) −a + 2 · a = a.

1This paper was written while the author visited Shinshu University, winter 1999.
2The proposition (1) has been removed.
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(4) a− a
2 = a

2 .

(5) If a 6= 0 and b 6= 0, then a
a
b

= b.

(6) For all real numbers a, b such that 0 ¬ a and 0 ¬ b holds
√

a + b ¬√
a +
√

b.

(7) If 0 ¬ a and a ¬ b, then |a| ¬ |b|.
(8) If b ¬ a and a ¬ 0, then |a| ¬ |b|.
(9)

∏
(0 7→ r) = 1.

(10)
∏

(1 7→ r) = r.

(11)
∏

(2 7→ r) = r · r.
(12)

∏
((n + 1) 7→ r) =

∏
(n 7→ r) · r.

(13) j 6= 0 and r = 0 iff
∏

(j 7→ r) = 0.

(14) If r 6= 0 and j ¬ i, then
∏

((i−′ j) 7→ r) =
∏

(i7→r)∏
(j 7→r) .

(15) If r 6= 0 and j ¬ i, then ri−′j = ri

rj .

In the sequel a, b denote real numbers.

The following propositions are true:

(16) 2〈a, b〉 = 〈a2, b2〉.
(17) For every finite sequence F of elements of R such that i ∈ dom|F | and

a = F (i) holds |F |(i) = |a|.
(18) |〈a, b〉| = 〈|a|, |b|〉.
(19) For all real numbers a, b, c, d such that a ¬ b and c ¬ d holds |b− a|+
|d− c| = (b− a) + (d− c).

(20) If r > 0, then a ∈ ]a− r, a + r[.

(21) If r ­ 0, then a ∈ [a− r, a + r].

(22) If a < b, then inf]a, b[ = a and sup]a, b[ = b.

(23) ]a, b[ ⊆ [a, b].

(24) For every bounded subset A of R holds A ⊆ [inf A, supA].

2. Topological Preliminaries

Let T be a topological structure and let A be a finite subset of the carrier

of T . One can verify that T ↾A is finite.

Let us observe that there exists a topological space which is finite, non empty,

and strict.

Let T be a topological structure. Note that every subset of T which is empty

is also connected.

Let T be a topological space. Observe that every subset of T which is finite

is also compact.
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Let T be T2 non empty topological space. Observe that every subset of T

which is compact is also closed.

The following two propositions are true:

(25) For all topological spaces S, T such that S and T are homeomorphic

and S is connected holds T is connected.

(26) Let T be a topological space and F be a finite family of subsets of T .

Suppose that for every subsetX of T such thatX ∈ F holdsX is compact.

Then
⋃

F is compact.

3. Points and Subsets in E2
T

The following propositions are true:

(27) For every non empty set X and for every set Y such that X ⊆ Y holds

X meets Y .

(28) For all sets A, B, C, D, X such that A ∪ B = X and C ∪D = X and

A ∩B = ∅ and C ∩D = ∅ and B = D holds A = C.

(29) For all sets A, B, C, D, a, b such that A ⊆ B and C ⊆ D holds∏
[a 7−→ A, b 7−→ C] ⊆∏

[a 7−→ B, b 7−→ D].

(30) For all subsets A, B of R holds
∏

[1 7−→ A, 2 7−→ B] is a subset of E2
T.

(31) |[0, a]| = |a| and |[a, 0]| = |a|.
(32) For every point p of E2 and for every point q of E2

T such that p = 0E2
T

and p = q holds q = 〈0, 0〉 and q1 = 0 and q2 = 0.

(33) For all points p, q of E2 and for every point z of E2
T such that p = 0E2

T

and q = z holds ρ(p, q) = |z|.
(34) r · p = [r · p1, r · p2].
(35) If s = (1− r) · p + r · q and s 6= p and 0 ¬ r, then 0 < r.

(36) If s = (1− r) · p + r · q and s 6= q and r ¬ 1, then r < 1.

(37) If s ∈ L(p, q) and s 6= p and s 6= q and p1 < q1, then p1 < s1 and

s1 < q1.

(38) If s ∈ L(p, q) and s 6= p and s 6= q and p2 < q2, then p2 < s2 and

s2 < q2.

(39) For every point p of E2
T there exists a point q of E2

T such that q1 <

W-boundD and p 6= q.

(40) For every point p of E2
T there exists a point q of E2

T such that q1 >

E-boundD and p 6= q.

(41) For every point p of E2
T there exists a point q of E2

T such that q2 >

N-boundD and p 6= q.
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(42) For every point p of E2
T there exists a point q of E2

T such that q2 <

S-boundD and p 6= q.

One can verify the following observations:

∗ every subset of E2
T which is convex and non empty is also connected,

∗ every subset of E2
T which is non horizontal is also non empty,

∗ every subset of E2
T which is non vertical is also non empty,

∗ every subset of E2
T which is region is also open and connected, and

∗ every subset of E2
T which is open and connected is also region.

Let us observe that every subset of E2
T which is empty is also horizontal and

every subset of E2
T which is empty is also vertical.

Let us mention that there exists a subset of E2
T which is non empty and

convex.

Let a, b be points of E2
T. Observe that L(a, b) is convex and connected.

Let us mention that ¤E2 is connected.

Let us observe that every subset of E2
T which is simple closed curve is also

connected and compact.

One can prove the following propositions:

(43) L(NE-cornerP,SE-cornerP ) ⊆ L̃(SpStSeqP ).

(44) L(SW-cornerP,SE-cornerP ) ⊆ L̃(SpStSeqP ).

(45) L(SW-cornerP,NW-cornerP ) ⊆ L̃(SpStSeqP ).

(46) For every subset C of E2
T holds {p; p ranges over points of E2

T: p1 <

W-boundC} is a non empty convex connected subset of E2
T.

4. Balls as subsets of En
T

We now state a number of propositions:

(47) If e = q and p ∈ Ball(e, r), then q1 − r < p1 and p1 < q1 + r.

(48) If e = q and p ∈ Ball(e, r), then q2 − r < p2 and p2 < q2 + r.

(49) If p = e, then
∏

[1 7−→ ]p1 − r√
2
, p1 + r√

2
[, 2 7−→ ]p2 − r√

2
, p2 + r√

2
[] ⊆

Ball(e, r).

(50) If p = e, then Ball(e, r) ⊆∏
[1 7−→ ]p1− r, p1+ r[, 2 7−→ ]p2− r, p2+ r[].

(51) If P = Ball(e, r) and p = e, then (proj1)◦P = ]p1 − r, p1 + r[.

(52) If P = Ball(e, r) and p = e, then (proj2)◦P = ]p2 − r, p2 + r[.

(53) If D = Ball(e, r) and p = e, then W-boundD = p1 − r.

(54) If D = Ball(e, r) and p = e, then E-boundD = p1 + r.

(55) If D = Ball(e, r) and p = e, then S-boundD = p2 − r.

(56) If D = Ball(e, r) and p = e, then N-boundD = p2 + r.
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(57) If D = Ball(e, r), then D is non horizontal.

(58) If D = Ball(e, r), then D is non vertical.

(59) For every point f of E2 and for every point x of E2
T such that x ∈

Ball(f, a) holds [x1 − 2 · a, x2] /∈ Ball(f, a).

(60) Let X be a non empty compact subset of E2
T and p be a point of E2.

If p = 0E2
T

and a > 0, then X ⊆ Ball(p, |E-boundX| + |N-boundX| +
|W-boundX|+ |S-boundX|+ a).

(61) Let M be a Reflexive symmetric triangle non empty metric structure

and z be a point of M . If r < 0, then Sphere(z, r) = ∅.
(62) For every Reflexive discernible non empty metric structure M and for

every point z of M holds Sphere(z, 0) = {z}.
(63) Let M be a Reflexive symmetric triangle non empty metric structure

and z be a point of M . If r < 0, then Ball(z, r) = ∅.
(64) Ball(z, 0) = {z}.
(65) For every subset A of Mtop such that A = Ball(z, r) holds A is closed.

(66) If A = Ball(w, r), then A is closed.

(67) Ball(z, r) is bounded.

(68) For every subset A ofMtop such that A = Sphere(z, r) holds A is closed.

(69) If A = Sphere(w, r), then A is closed.

(70) Sphere(z, r) is bounded.

(71) If A is Bounded, then A is Bounded.

(72) For every non empty metric structure M holds M is bounded iff every

subset of the carrier of M is bounded.

(73) LetM be a Reflexive symmetric triangle non empty metric structure and

X, Y be subsets of the carrier of M . Suppose the carrier of M = X ∪ Y

and M is non bounded and X is bounded. Then Y is non bounded.

(74) For all subsets X, Y of En
T such that n ­ 1 and the carrier of En

T = X∪Y

and X is Bounded holds Y is non Bounded.

(76)3 If A is Bounded and B is Bounded, then A ∪B is Bounded.

5. Topological Properties of Real Numbers Subsets

Let X be a non empty subset of R. Observe that X is non empty.

Let D be a lower bounded subset of R. One can verify that D is lower

bounded.

3The proposition (75) has been removed.
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Let D be an upper bounded subset of R. One can verify that D is upper

bounded.

We now state two propositions:

(77) For every non empty lower bounded subset D of R holds infD = infD.

(78) For every non empty upper bounded subsetD of R holds supD = supD.

Let us observe that R
1 is T2.

The following three propositions are true:

(79) For every subset A of R and for every subset B of R1 such that A = B

holds A is closed iff B is closed.

(80) For every subset A of R and for every subset B of R1 such that A = B

holds A = B.

(81) For every subset A of R and for every subset B of R1 such that A = B

holds A is compact iff B is compact.

One can check that every subset of R which is finite is also compact.

Let a, b be real numbers. Note that [a, b] is compact.

Next we state the proposition

(82) a 6= b iff ]a, b[ = [a, b].

Let us observe that there exists a subset of R which is non empty, finite, and

bounded.

The following propositions are true:

(83) Let T be a topological structure, f be a real map of T , and g be a map

from T into R
1. If f = g, then f is continuous iff g is continuous.

(84) Let A, B be subsets of R and f be a map from [: R1, R
1 :] into E2

T. If for

all real numbers x, y holds f(〈〈x, y〉〉) = 〈x, y〉, then f◦[:A, B :] =
∏

[1 7−→
A, 2 7−→ B].

(85) For every map f from [: R1, R
1 :] into E2

T such that for all real numbers

x, y holds f(〈〈x, y〉〉) = 〈x, y〉 holds f is a homeomorphism.

(86) [: R1, R
1 :] and E2

T are homeomorphic.

6. Bounded Subsets

One can prove the following propositions:

(87) For all compact subsets A, B of R holds
∏

[1 7−→ A, 2 7−→ B] is a

compact subset of E2
T.

(88) If P is Bounded and closed, then P is compact.

(89) If P is Bounded, then for every continuous real map g of E2
T holds g

◦P ⊆
g◦P .

(90) (proj1)◦P ⊆ (proj1)◦P.
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(91) (proj2)◦P ⊆ (proj2)◦P.

(92) If P is Bounded, then (proj1)◦P = (proj1)◦P .

(93) If P is Bounded, then (proj2)◦P = (proj2)◦P .

(94) If D is Bounded, then W-boundD =W-boundD.

(95) If D is Bounded, then E-boundD = E-boundD.

(96) If D is Bounded, then N-boundD = N-boundD.

(97) If D is Bounded, then S-boundD = S-boundD.
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