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Summary. This paper contains theorems which describe the correspon-
dence between topological properties of real numbers subsets introduced in [40]
and introduced in [38], [16]. We also show the homeomorphism between the car-
tesian product of two R* and £2. The compactness of the bounded closed subset
of £2 is proven.

MML Identifier: TOPREALG.

The articles [41], [48], [12], [49], [10], [11], [6], [47], [7], [18], [24], [43], [1], [39],
[35], [8], [14], [28], [27], [26], [45], [25], [23], [3], [9], [13], [29], [2], [46], [40], [38],
[50], [17], [36], [37], [16], [42], [5], [19], [4], [20], [21], [22], [51], [33], [32], [15],
[31], [30], [44], and [34] provide the notation and terminology for this paper.

1. REAL NUMBERS

For simplicity, we use the following convention: a, b are real numbers, 7 is a
real number, ¢, j, n are natural numbers, M is a non empty metric space, p, q,
s are points of 5%, e is a point of £2, w is a point of E", z is a point of M, A,
B are subsets of &7, P is a subset of 5%, and D is a non empty subset of 5%.

One can prove the following propositions:

2? a—2-a=—a.
3) —a+2-a=a.

I This paper was written while the author visited Shinshu University, winter 1999.
2The proposition (1) has been removed.
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4) a—5=73.
(5) Ifa#0andb+#0, then ¢ =0.

b

(6) For all real numbers a, b such that 0 < @ and 0 < b holds va+b <
Va+Vb.

(7) If0<aanda<b,then |a| < [b].
(8) Ifb<aanda<0,then |a| < |b].
9) [10—r)=1
(10) J[1—r7r)=r.
(11) [[2—7r)=r-r
(12) [I((n+1)—r)=]I(n—r71)-r
(13) j#0and r=0iff [[(j — r) =0.
(14) Ifr # 0 and j <4, then JJ((z — ]) =) = H((;:Z))
(15) Ifr 0 and j <4, then =7 = ﬁ

In the sequel a, b denote real numbers.
The following propositions are true:
(16) 2{a,b) = (a2, b?).
(17) For every finite sequence F' of elements of R such that i € dom|F| and
a = F(i) holds |F|(i) = |al.
(18)  [(a,b)| = (lal,[b]).
(19) For all real numbers a, b, ¢, d such that a < b and ¢ < d holds |b — a| +
|d—c|=(b—a)+(d—c).

(20) Ifr >0, thenac€]a—r,a+r

(21) Ifr >0, thena€[a—r,a+r].

(22) If a < b, then infla, b] = a and sup|a, b] = b.

(23) Ja,b[ C [a,b].

(24) For every bounded subset A of R holds A C [inf A, sup A].

2. TOPOLOGICAL PRELIMINARIES

Let T be a topological structure and let A be a finite subset of the carrier
of T. One can verify that T[A is finite.

Let us observe that there exists a topological space which is finite, non empty,
and strict.

Let T be a topological structure. Note that every subset of 7" which is empty
is also connected.

Let T be a topological space. Observe that every subset of T which is finite
is also compact.
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Let T" be T> non empty topological space. Observe that every subset of T’
which is compact is also closed.
The following two propositions are true:

(25) For all topological spaces S, T' such that S and T are homeomorphic
and S is connected holds 7T is connected.

(26) Let T be a topological space and F' be a finite family of subsets of T'.
Suppose that for every subset X of T" such that X € F holds X is compact.
Then |J F is compact.

3. POINTS AND SUBSETS IN 2

The following propositions are true:

(27) For every non empty set X and for every set Y such that X C Y holds
X meets Y.

(28) For all sets A, B, C, D, X such that AUB = X and CUD = X and
ANB=0and CND =0 and B= D holds A= C.

(29) For all sets A, B, C, D, a, b such that A C B and C C D holds
[lla— A, b— C] C []la — B,b+~— D|.

(30) For all subsets A, B of R holds [[[1 — A,2 —— B] is a subset of 2.

(31) [[0,a][ = |a| and [[a,0]| = |a].

(32) For every point p of £ and for every point ¢ of 5% such that p = OggF
and p = ¢ holds ¢ = (0,0) and ¢1 = 0 and g2 = 0.

(33) For all points p, g of £2 and for every point z of £2 such that p = 05%
and g = z holds p(p,q) = |z|.

(34) r-p=[r-p1,7-pa.

(35) Ifs=(1—7r)-p+r-qand s+# pand 0 <7, then 0 <.

(36) If s=(1—r)-p+r-qand s# qandr <1, thenr <1.

(37) If s € L(p,q) and s # p and s # ¢ and p1 < ¢1, then p1 < s1 and
S1<q1.

(38) If s € L(p,q) and s # p and s # ¢ and pa2 < g2, then pa < sg and
S2 < Q2.

(39) For every point p of 5% there exists a point g of 5% such that ¢1 <
W-bound D and p # q.

(40) For every point p of €% there exists a point g of €% such that g1 >
E-bound D and p # q.

(41) For every point p of €% there exists a point ¢ of €2 such that ga >
N-bound D and p # gq.
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(42) For every point p of £% there exists a point ¢ of €% such that gz <
S-bound D and p # q.

One can verify the following observations:

x every subset of 5% which is convex and non empty is also connected,
x every subset of 8% which is non horizontal is also non empty,

x every subset of 8% which is non vertical is also non empty,

x every subset of E% which is region is also open and connected, and

x every subset of 8% which is open and connected is also region.

Let us observe that every subset of 5% which is empty is also horizontal and
every subset of 5% which is empty is also vertical.

Let us mention that there exists a subset of 5% which is non empty and
convex.

Let a, b be points of 5%. Observe that L(a,b) is convex and connected.

Let us mention that [g2 is connected.

Let us observe that every subset of 5% which is simple closed curve is also
connected and compact.

One can prove the following propositions:

(43) L£(NE-corner P,SE-corner P) C £(SpStSeq P).
(44) L£(SW-corner P, SE-corner P) C L(SpStSeq P).
(45) L(SW-corner P, NW-corner P) C L(SpStSeq P).
(46)

46) For every subset C' of 8% holds {p;p ranges over points of 5%: p1 <

W-bound C} is a non empty convex connected subset of 5%.

4. BALLS AS SUBSETS OF &

We now state a number of propositions:
(47) If e=q and p € Ball(e,7), then ¢ — 7 < p1 and p1 < g1 + .
(48) If e =q and p € Ball(e, ), then g2 —r < p2 and p2 < g2 + .
T

(49) Ifp =, then [Tl +—Ip1 = J5pa+ 52— Ip2 — mop2 + Fl €
Ball(e, 7).

(50) If p=e, then Ball(e,r) C [[[l — |p1 —7,p1+7[,2 — |p2 — r,p2 +7]].
(51) If P = Ball(e,r) and p = e, then (projl)°P = |p1 — r,p1 +r].

(52) If P =Ball(e,r) and p = e, then (proj2)°P = |p2 — r,p2 + 7]

(53) If D = Ball(e,r) and p = e, then W-bound D = p; — .

(54) 1If D = Ball(e,r) and p = e, then E-bound D = p; + .

(55) If D = Ball(e,r) and p = e, then S-bound D = pa — r.

(56) If D = Ball(e,r) and p = e, then N-bound D = pa + 7.
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(57) If D = Ball(e,r), then D is non horizontal.

(58) If D = Ball(e,), then D is non vertical.

(59) For every point f of £% and for every point x of £2 such that z €
Ball(f,a) holds [z1 — 2 - a,z2] ¢ Ball(f,a).

(60) Let X be a non empty compact subset of €% and p be a point of £2.
If p = Ogz and @ > 0, then X C Ball(p, | E-bound X| + | N-bound X| +
| W-bound X | 4 | S-bound X| + a).

(61) Let M be a Reflexive symmetric triangle non empty metric structure
and z be a point of M. If r < 0, then Sphere(z,r) = 0.

(62) For every Reflexive discernible non empty metric structure M and for
every point z of M holds Sphere(z,0) = {z}.

(63) Let M be a Reflexive symmetric triangle non empty metric structure
and z be a point of M. If r < 0, then Ball(z,r) = 0.

Ball(z,0) = {z}.

For every subset A of M, such that A = Ball(z,r) holds A is closed.
If A= Ball(w,r), then A is closed.

Ball(z,r) is bounded.

For every subset A of M;p, such that A = Sphere(z, ) holds A is closed.
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69) If A = Sphere(w,r), then A is closed.

70) Sphere(z, ) is bounded.

71) If A is Bounded, then A is Bounded.

72) For every non empty metric structure M holds M is bounded iff every

subset of the carrier of M is bounded.

(73) Let M be a Reflexive symmetric triangle non empty metric structure and
X, Y be subsets of the carrier of M. Suppose the carrier of M = X UY
and M is non bounded and X is bounded. Then Y is non bounded.

(74) For all subsets X, Y of £} such that n > 1 and the carrier of &f = XUY
and X is Bounded holds Y is non Bounded.

(76)3 If A is Bounded and B is Bounded, then AU B is Bounded.

5. TOPOLOGICAL PROPERTIES OF REAL NUMBERS SUBSETS

Let X be a non empty subset of R. Observe that X is non empty.

Let D be a lower bounded subset of R. One can verify that D is lower
bounded.

3The proposition (75) has been removed.
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Let D be an upper bounded subset of R. One can verify that D is upper
bounded.
We now state two propositions:
(77) For every non empty lower bounded subset D of R holds inf D = inf D.
(78) For every non empty upper bounded subset D of R holds sup D = sup D.
Let us observe that R is Tb.
The following three propositions are true:
(79) For every subset A of R and for every subset B of R! such that A = B
holds A is closed iff B is closed.
(80) For every subset A of R and for every subset B of Rl such that A = B
holds A = B.
(81) For every subset A of R and for every subset B of R such that A = B
holds A is compact iff B is compact.
One can check that every subset of R which is finite is also compact.
Let a, b be real numbers. Note that [a,b] is compact.
Next we state the proposition
(82) a#biff |a,b] = [a,b].
Let us observe that there exists a subset of R which is non empty, finite, and
bounded.
The following propositions are true:

(83) Let T be a topological structure, f be a real map of T, and g be a map
from T into RY. If f = g, then f is continuous iff g is continuous.

(84) Let A, B be subsets of R and f be a map from [ R, R!] into £2. If for
all real numbers z, y holds f({z, y)) = (x,y), then f°} A, B] =[]l —
A,2+— BJ.

(85) For every map f from [R!, R1] into £2 such that for all real numbers
x, y holds f({z, y)) = (z,y) holds f is a homeomorphism.

(86) [R', R']and £2 are homeomorphic.

6. BOUNDED SUBSETS

One can prove the following propositions:

(87) For all compact subsets A, B of R holds [[[1 — A,2 —— B] is a
compact subset of 5%.

(88) If P is Bounded and closed, then P is compact.

(89) If P is Bounded, then for every continuous real map g of £2 holds g°P C
g°P.

(90) (proj1)°P C (projl)°P.
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(proj2)°P C (proj2)°P.

If P is Bounded, then (proj1)°P = (projl1)°P.
If P is Bounded, then (proj2)°P = (proj2)°P.

If D is Bounded, then W-bound D = W-bound D.
If D is Bounded, then E-bound D = E-bound D.
If D is Bounded, then N-bound D = N-bound D.

If D is Bounded, then S-bound D = S-bound D.
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