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The notation and terminology used here are introduced in the following papers:

[33], [2], [10], [11], [9], [1], [26], [3], [31], [16], [29], [23], [24], [27], [4], [34], [35],

[32], [28], [14], [30], [17], [19], [22], [8], [6], [13], [7], [25], [21], [5], [18], [36], [20],

and [12].

1. Currying, Uncurrying and Commuting Functions

Let F be a function. We say that F is uncurrying if and only if the conditions

(Def. 1) are satisfied.

(Def. 1)(i) For every set x such that x ∈ domF holds x is a function yielding

function, and

(ii) for every function f such that f ∈ domF holds F (f) = uncurry f.

We say that F is currying if and only if the conditions (Def. 2) are satisfied.

(Def. 2)(i) For every set x such that x ∈ domF holds x is a function and π1(x)

is a binary relation, and

(ii) for every function f such that f ∈ domF holds F (f) = curry f.

We say that F is commuting if and only if the conditions (Def. 3) are satisfied.
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(Def. 3)(i) For every set x such that x ∈ domF holds x is a function yielding

function, and

(ii) for every function f such that f ∈ domF holds F (f) = commute(f).

Let us note that every function which is empty is also uncurrying, currying,

and commuting.

Let us mention that there exists a function which is uncurrying, currying,

and commuting.

Let F be an uncurrying function and let X be a set. Observe that F ↾X is

uncurrying.

Let F be a currying function and let X be a set. Note that F ↾X is currying.

The following propositions are true:

(1) Let X, Y , Z, D be sets. Suppose D ⊆ (ZY )X . Then there exists a many

sorted set F indexed by D such that F is uncurrying and rngF ⊆ Z [: X, Y :].

(2) Let X, Y , Z, D be sets. Suppose D ⊆ Z [: X, Y :]. Then there exists a many

sorted set F indexed by D such that F is currying and if if Y = ∅, then

X = ∅, then rngF ⊆ (ZY )X .

Let X, Y , Z be sets. Note that there exists a many sorted set indexed

by (ZY )X which is uncurrying and there exists a many sorted set indexed by

Z [: X, Y :] which is currying.

Next we state several propositions:

(3) Let A, B be non empty sets, C be a set, and f , g be commuting functions.

If dom f ⊆ (CB)A and rng f ⊆ dom g, then g · f = iddom f .

(4) Let B be a non empty set, A, C be sets, f be an uncurrying function,

and g be a currying function. If dom f ⊆ (CB)A and rng f ⊆ dom g, then

g · f = iddom f .

(5) Let A, B, C be sets, f be a currying function, and g be an uncurrying

function. If dom f ⊆ C [: A, B :] and rng f ⊆ dom g, then g · f = iddom f .

(6) For every function yielding function f and for all sets i, A such that

i ∈ domcommute(f) holds (commute(f))(i)◦A ⊆ πif
◦A.

(7) Let f be a function yielding function and i, A be sets. If for every function

g such that g ∈ f◦A holds i ∈ dom g, then πif
◦A ⊆ (commute(f))(i)◦A.

(8) For all sets X, Y and for every function f such that rng f ⊆ Y X and for

all sets i, A such that i ∈ X holds (commute(f))(i)◦A = πif
◦A.

(9) For every function f and for all sets i, A such that [:A, {i} :] ⊆ dom f

holds πi(curry f)◦A = f◦[:A, {i} :].

Let X be a set and let Y be a non empty functional set. One can verify that

every function from X into Y is function yielding.

Let T be a constituted functions 1-sorted structure. Observe that the carrier

of T is functional.
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Let X be a set and let L be a non empty relational structure. One can check

that LX is constituted functions.

One can verify that there exists a lattice which is constituted functions,

complete, and strict and there exists a 1-sorted structure which is constituted

functions and non empty.

Let T be a constituted functions non empty relational structure. Note that

every non empty relational substructure of T is constituted functions.

Next we state four propositions:

(10) Let S, T be complete lattices, f be an idempotent map from T into T ,

and h be a map from S into Im f. Then f · h = h.

(11) Let S be a non empty relational structure and T , T1 be non empty

relational structures. Suppose T is a relational substructure of T1. Let f

be a map from S into T and f1 be a map from S into T1. If f is monotone

and f = f1, then f1 is monotone.

(12) Let S be a non empty relational structure and T , T1 be non empty

relational structures. Suppose T is a full relational substructure of T1.

Let f be a map from S into T and f1 be a map from S into T1. If f1 is

monotone and f = f1, then f is monotone.

(13) For every set X and for every subset V of X holds (χV,X)−1({1}) = V

and (χV,X)−1({0}) = X \ V.

2. Maps of Power Posets

Let X be a non empty set, let T be a non empty relational structure, let f

be an element of TX , and let x be an element of X. Then f(x) is an element of

T .

Next we state several propositions:

(14) Let X be a non empty set, T be a non empty relational structure, and

f , g be elements of TX . Then f ¬ g if and only if for every element x of

X holds f(x) ¬ g(x).

(15) Let X be a set and L, S be non empty relational structures. Suppose the

relational structure of L = the relational structure of S. Then LX = SX .

(16) Let S1, S2, T1, T2 be non empty topological spaces. Suppose that

(i) the topological structure of S1 = the topological structure of S2, and

(ii) the topological structure of T1 = the topological structure of T2.

Then [S1 → T1] = [S2 → T2].

(17) Let X be a set. Then there exists a map f from 2X
⊆ into (21

⊆)X such that

f is isomorphic and for every subset Y of X holds f(Y ) = χY,X .

(18) For every set X holds 2X
⊆ and (21

⊆)X are isomorphic.
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(19) Let X, Y be non empty sets, T be a non empty poset, S1 be a full non

empty relational substructure of (TX)Y , S2 be a full non empty relational

substructure of (T Y )X , and F be a map from S1 into S2. If F is commuting,

then F is monotone.

(20) Let X, Y be non empty sets, T be a non empty poset, S1 be a full non

empty relational substructure of (T Y )X , S2 be a full non empty relatio-

nal substructure of T [: X, Y :], and F be a map from S1 into S2. If F is

uncurrying, then F is monotone.

(21) Let X, Y be non empty sets, T be a non empty poset, S1 be a full non

empty relational substructure of (T Y )X , S2 be a full non empty relational

substructure of T [: X, Y :], and F be a map from S2 into S1. If F is currying,

then F is monotone.

3. Posets of Directed Suprema Preserving Maps

Let S be a non empty relational structure and let T be a non empty refle-

xive antisymmetric relational structure. The functor UPS(S, T ) yielding a strict

relational structure is defined by the conditions (Def. 4).

(Def. 4)(i) UPS(S, T ) is a full relational substructure of T the carrier of S , and

(ii) for every set x holds x ∈ the carrier of UPS(S, T ) iff x is a directed-

sups-preserving map from S into T .

Let S be a non empty relational structure and let T be a non empty refle-

xive antisymmetric relational structure. Observe that UPS(S, T ) is non empty

reflexive antisymmetric and constituted functions.

Let S be a non empty relational structure and let T be a non empty poset.

One can verify that UPS(S, T ) is transitive.

We now state the proposition

(22) Let S be a non empty relational structure and T be a non empty reflexive

antisymmetric relational structure. Then the carrier of UPS(S, T ) ⊆ (the

carrier of T )the carrier of S .

Let S be a non empty relational structure, let T be a non empty reflexive

antisymmetric relational structure, let f be an element of UPS(S, T ), and let s

be an element of S. Then f(s) is an element of T .

Next we state three propositions:

(23) Let S be a non empty relational structure, T be a non empty reflexive

antisymmetric relational structure, and f , g be elements of UPS(S, T ).

Then f ¬ g if and only if for every element s of S holds f(s) ¬ g(s).

(24) For all complete Scott top-lattices S, T holds UPS(S, T ) =

SCMaps(S, T ).
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(25) Let S, S′ be non empty relational structures and T , T ′ be non empty

reflexive antisymmetric relational structures. Suppose that

(i) the relational structure of S = the relational structure of S′, and

(ii) the relational structure of T = the relational structure of T ′.

Then UPS(S, T ) = UPS(S′, T ′).

Let S, T be complete lattices. Note that UPS(S, T ) is complete.

The following propositions are true:

(26) Let S, T be complete lattices. Then UPS(S, T ) is a sups-inheriting rela-

tional substructure of T the carrier of S .

(27) For all complete lattices S, T and for every subset A of UPS(S, T ) holds

supA =
⊔

(T the carrier of S) A.

Let S1, S2, T1, T2 be non empty reflexive antisymmetric relational structu-

res and let f be a map from S1 into S2. Let us assume that f is directed-

sups-preserving. Let g be a map from T1 into T2. Let us assume that g is

directed-sups-preserving. The functor UPS(f, g) yields a map from UPS(S2, T1)

into UPS(S1, T2) and is defined by:

(Def. 5) For every directed-sups-preserving map h from S2 into T1 holds

(UPS(f, g))(h) = g · h · f.

Next we state a number of propositions:

(28) Let S1, S2, S3, T1, T2, T3 be non empty posets, f1 be a directed-sups-

preserving map from S2 into S3, f2 be a directed-sups-preserving map from

S1 into S2, g1 be a directed-sups-preserving map from T1 into T2, and g2

be a directed-sups-preserving map from T2 into T3. Then UPS(f2, g2) ·

UPS(f1, g1) = UPS(f1 · f2, g2 · g1).

(29) For all non empty reflexive antisymmetric relational structures S, T

holds UPS(idS , idT ) = idUPS(S,T ).

(30) Let S1, S2, T1, T2 be complete lattices, f be a directed-sups-preserving

map from S1 into S2, and g be a directed-sups-preserving map from T1

into T2. Then UPS(f, g) is directed-sups-preserving.

(31) Ω(the Sierpiński space) is Scott.

(32) For every complete Scott top-lattice S holds [S → the Sierpiński space] =

UPS(S, 21
⊆).

(33) Let S be a complete lattice. Then there exists a map F from UPS(S, 21
⊆)

into 〈σ(S),⊆〉 such that F is isomorphic and for every directed-sups-

preserving map f from S into 21
⊆ holds F (f) = f−1({1}).

(34) For every complete lattice S holds UPS(S, 21
⊆) and 〈σ(S),⊆〉 are isomor-

phic.

(35) Let S1, S2, T1, T2 be complete lattices, f be a map from S1 into S2, and

g be a map from T1 into T2. If f is isomorphic and g is isomorphic, then

UPS(f, g) is isomorphic.
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(36) Let S1, S2, T1, T2 be complete lattices. Suppose S1 and S2 are isomorphic

and T1 and T2 are isomorphic. Then UPS(S2, T1) and UPS(S1, T2) are

isomorphic.

(37) Let S, T be complete lattices and f be a directed-sups-preserving pro-

jection map from T into T . Then ImUPS(idS , f) = UPS(S, Im f).

(38) Let X be a non empty set, S, T be non empty posets, f be a directed-

sups-preserving map from S into TX , and i be an element of X. Then

(commute(f))(i) is a directed-sups-preserving map from S into T .

(39) LetX be a non empty set, S, T be non empty posets, and f be a directed-

sups-preserving map from S into TX . Then commute(f) is a function from

X into the carrier of UPS(S, T ).

(40) Let X be a non empty set, S, T be non empty posets, and f be a

function from X into the carrier of UPS(S, T ). Then commute(f) is a

directed-sups-preserving map from S into TX .

(41) For every non empty set X and for all non empty posets S, T holds there

exists a map from UPS(S, TX) into UPS(S, T )X which is commuting and

isomorphic.

(42) For every non empty set X and for all non empty posets S, T holds

UPS(S, TX) and (UPS(S, T ))X are isomorphic.

(43) For all continuous complete lattices S, T holds UPS(S, T ) is continuous.

(44) For all algebraic complete lattices S, T holds UPS(S, T ) is algebraic.

(45) Let R, S, T be complete lattices and f be a directed-sups-preserving

map from R into UPS(S, T ). Then uncurry f is a directed-sups-preserving

map from [:R, S :] into T .

(46) Let R, S, T be complete lattices and f be a directed-sups-preserving

map from [:R, S :] into T . Then curry f is a directed-sups-preserving map

from R into UPS(S, T ).

(47) For all complete lattices R, S, T holds there exists a map from

UPS(R,UPS(S, T )) into UPS([:R, S :], T ) which is uncurrying and isomor-

phic.
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