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The notation and terminology used in this paper have been introduced in the

following articles: [11], [15], [12], [18], [1], [3], [14], [4], [16], [6], [7], [8], [9], [2],

[10], [5], [19], [20], [13], and [17].

1. Preliminaries

We use the following convention: x, X are sets, D is a non empty set, and

k, m, n are natural numbers.

The following two propositions are true:

(1) For every real number r holds max{r} = r.

(2) max{n} = n.

One can verify that there exists a finite sequence which is non trivial.

The following proposition is true

(3) For every trivial finite sequence f of elements of D holds f is empty or

there exists an element x of D such that f = 〈x〉.

Let x, y be sets. Note that 〈〈x, y〉〉 is non empty.

Let us observe that every binary relation has non empty elements.

One can prove the following proposition

(4) idX is bijective.

Let A be a finite set and let B be a set. Observe that A 7−→ B is finite.

Let x, y be sets. One can check that x7−→. y is trivial.
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2. Restricted Concatenation

Let f1 be a non empty finite sequence and let f2 be a finite sequence. Observe

that f1 aa f2 is non empty.

The following propositions are true:

(5) Let f1 be a non empty finite sequence of elements of D and f2 be a finite

sequence of elements of D. Then (f1 aa f2)1 = (f1)1.

(6) Let f1 be a finite sequence of elements of D and f2 be a non trivial finite

sequence of elements of D. Then (f1 aa f2)len(f1aaf2) = (f2)len f2
.

(7) For every finite sequence f holds f aa ε = f.

(8) For every finite sequence f holds f aa 〈x〉 = f.

(9) For all finite sequences f1, f2 of elements of D such that 1 ¬ n and

n ¬ len f1 holds (f1 aa f2)n = (f1)n.

(10) For all finite sequences f1, f2 of elements of D such that 1 ¬ n and

n < len f2 holds (f1 aa f2)len f1+n = (f2)n+1.

3. Ami-Struct

For simplicity, we adopt the following convention: N is a set with non empty

elements, S is a von Neumann definite AMI over N , i is an instruction of S, l,

l1, l2, l3 are instruction-locations of S, and s is a state of S.

We now state the proposition

(11) Let S be a definite AMI over N , I be an instruction of S, and s be a

state of S. Then s+·((the instruction locations of S) 7−→ I) is a state of

S.

Let N be a set and let S be an AMI over N . Observe that every finite partial

state of S which is empty is also programmed.

Let N be a set and let S be an AMI over N . One can check that there exists

a finite partial state of S which is empty.

Let N be a set with non empty elements and let S be a von Neumann

definite AMI over N . Note that there exists a finite partial state of S which is

non empty, trivial, and programmed.

Let N be a set with non empty elements, let S be an AMI over N , let i be

an instruction of S, and let s be a state of S. One can verify that (the execution

of S)(i)(s) is function-like and relation-like.

Let N be a set and let S be an AMI over N .

(Def. 1) An element of the instruction codes of S is said to be an instruction type

of S.
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Let N be a set, let S be an AMI over N , and let I be an element of the

instructions of S. The functor InsCode(I) yields an instruction type of S and is

defined by:

(Def. 2) InsCode(I) = I1.

Let N be a set with non empty elements and let S be a steady-programmed

von Neumann definite AMI over N . Observe that there exists a finite partial

state of S which is non empty, trivial, autonomic, and programmed.

One can prove the following propositions:

(12) Let S be a steady-programmed von Neumann definite AMI over N , i1
be an instruction-location of S, and I be an instruction of S. Then i1 7−→

. I

is autonomic.

(13) Every steady-programmed von Neumann definite AMI over N is pro-

grammable.

Let N be a set with non empty elements. One can check that every von Neu-

mann definite AMI over N which is steady-programmed is also programmable.

Let N be a set with non empty elements, let S be an AMI over N , and let

T be an instruction type of S. We say that T is jump-only if and only if the

condition (Def. 3) is satisfied.

(Def. 3) Let s be a state of S, o be an object of S, and I be an instruction of S.

If InsCode(I) = T and o 6= ICS , then (Exec(I, s))(o) = s(o).

Let N be a set with non empty elements, let S be an AMI over N , and let

I be an instruction of S. We say that I is jump-only if and only if:

(Def. 4) InsCode(I) is jump-only.

Let us consider N , S, i, l. The functor NIC(i, l) yielding a subset of the

instruction locations of S is defined by:

(Def. 5) NIC(i, l) = {ICFollowing(s) : ICs = l ∧ s(l) = i}.

Let N be a set with non empty elements, let S be a realistic von Neumann

definite AMI over N , let i be an instruction of S, and let l be an instruction-

location of S. Note that NIC(i, l) is non empty.

Let us consider N , S, i. The functor JUMP(i) yields a subset of the instruc-

tion locations of S and is defined by:

(Def. 6) JUMP(i) =
⋂
{NIC(i, l)}.

Let us consider N , S, l. The functor SUCC(l) yielding a subset of the in-

struction locations of S is defined by:

(Def. 7) SUCC(l) =
⋃
{NIC(i, l) \ JUMP(i)}.

One can prove the following propositions:

(14) Let S be a von Neumann definite AMI over N and i be an instruction

of S. Suppose the instruction locations of S are non trivial and for every

instruction-location l of S holds NIC(i, l) = {l}. Then JUMP(i) is empty.
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(15) Let S be a realistic von Neumann definite AMI over N , i1 be an

instruction-location of S, and i be an instruction of S. If i is halting,

then NIC(i, i1) = {i1}.

4. Ordering of Instruction Locations

Let us consider N , S, l1, l2. The predicate l1 ¬ l2 is defined by the condition

(Def. 8).

(Def. 8) There exists a non empty finite sequence f of elements of the instruction

locations of S such that f1 = l1 and flen f = l2 and for every n such that

1 ¬ n and n < len f holds fn+1 ∈ SUCC(fn).

Let us note that the predicate l1 ¬ l2 is reflexive.

Next we state the proposition

(16) If l1 ¬ l2 and l2 ¬ l3, then l1 ¬ l3.

Let us consider N , S. We say that S is InsLoc-antisymmetric if and only if:

(Def. 9) For all l1, l2 such that l1 ¬ l2 and l2 ¬ l1 holds l1 = l2.

Let us consider N , S. We say that S is standard if and only if the condition

(Def. 10) is satisfied.

(Def. 10) There exists a function f from N into the instruction locations of S

such that f is bijective and for all natural numbers m, n holds m ¬ n iff

f(m) ¬ f(n).

One can prove the following three propositions:

(17) Let S be a von Neumann definite AMI over N and f1, f2 be functions

from N into the instruction locations of S. Suppose that

(i) f1 is bijective,

(ii) for all natural numbers m, n holds m ¬ n iff f1(m) ¬ f1(n),

(iii) f2 is bijective, and

(iv) for all natural numbers m, n holds m ¬ n iff f2(m) ¬ f2(n).

Then f1 = f2.

(18) Let S be a von Neumann definite AMI over N and f be a function from

N into the instruction locations of S. Suppose f is bijective. Then the

following statements are equivalent

(i) for all natural numbers m, n holds m ¬ n iff f(m) ¬ f(n),

(ii) for every natural number k holds f(k +1) ∈ SUCC(f(k)) and for every

natural number j such that f(j) ∈ SUCC(f(k)) holds k ¬ j.

(19) Let S be a von Neumann definite AMI over N . Then S is standard if and

only if there exists a function f from N into the instruction locations of S

such that f is bijective and for every natural number k holds f(k + 1) ∈
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SUCC(f(k)) and for every natural number j such that f(j) ∈ SUCC(f(k))

holds k ¬ j.

5. Standard Trivial Computer

Let N be a set with non empty elements. The functor STC(N) yielding a

strict AMI over N is defined by the conditions (Def. 11).

(Def. 11) The objects of STC(N) = N ∪ {N} and the instruction counter of

STC(N) = N and the instruction locations of STC(N) = N and the in-

struction codes of STC(N) = {0, 1} and the instructions of STC(N) =

{〈〈0, 0〉〉, 〈〈1, 0〉〉} and the object kind of STC(N) = (N 7−→ {〈〈1, 0〉〉, 〈〈0,

0〉〉})+·({N} 7−→ N) and there exists a function f from
∏
(the object kind

of STC(N)) into
∏
(the object kind of STC(N)) such that for every ele-

ment s of
∏
(the object kind of STC(N)) holds f(s) = s+·({N} 7−→

succ s(N)) and the execution of STC(N) = ({〈〈1, 0〉〉} 7−→ f)+·({〈〈0,

0〉〉} 7−→ id∏ (the object kind of STC(N))).

Let N be a set with non empty elements. Note that the instruction locations

of STC(N) is infinite.

Let N be a set with non empty elements. Observe that STC(N) is von

Neumann definite realistic steady-programmed and data-oriented.

Next we state several propositions:

(20) For every instruction i of STC(N) such that InsCode(i) = 0 holds i is

halting.

(21) For every instruction i of STC(N) such that InsCode(i) = 1 holds i is

non halting.

(22) For every instruction i of STC(N) holds InsCode(i) = 1 or InsCode(i) =

0.

(23) Every instruction of STC(N) is jump-only.

(24) For every instruction-location l of STC(N) such that l = k holds

SUCC(l) = {k, k + 1}.

Let N be a set with non empty elements. Observe that STC(N) is standard.

Let N be a set with non empty elements. Observe that STC(N) is halting.

Let N be a set with non empty elements. One can check that there exists a

von Neumann definite AMI over N which is standard, halting, realistic, steady-

programmed, and programmable.

Let N be a set with non empty elements, let S be a standard von Neumann

definite AMI over N , and let k be a natural number. The functor ilS(k) yields

an instruction-location of S and is defined by the condition (Def. 12).
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(Def. 12) There exists a function f from N into the instruction locations of S

such that f is bijective and for all natural numbers m, n holds m ¬ n iff

f(m) ¬ f(n) and ilS(k) = f(k).

We now state two propositions:

(25) Let S be a standard von Neumann definite AMI over N and k1, k2 be

natural numbers. If ilS(k1) = ilS(k2), then k1 = k2.

(26) Let S be a standard von Neumann definite AMI over N and l be an

instruction-location of S. Then there exists a natural number k such that

l = ilS(k).

Let N be a set with non empty elements, let S be a standard von Neumann

definite AMI over N , and let l be an instruction-location of S. The functor

locnum(l) yields a natural number and is defined as follows:

(Def. 13) ilS(locnum(l)) = l.

One can prove the following propositions:

(27) Let S be a standard von Neumann definite AMI over N and l1, l2 be

instruction-locations of S. If locnum(l1) = locnum(l2), then l1 = l2.

(28) Let S be a standard von Neumann definite AMI over N and k1, k2 be

natural numbers. Then ilS(k1) ¬ ilS(k2) if and only if k1 ¬ k2.

(29) Let S be a standard von Neumann definite AMI over N and l1, l2 be

instruction-locations of S. Then locnum(l1) ¬ locnum(l2) if and only if

l1 ¬ l2.

(30) If S is standard, then S is InsLoc-antisymmetric.

Let us consider N . Observe that every von Neumann definite AMI over N

which is standard is also InsLoc-antisymmetric.

Let N be a set with non empty elements, let S be a standard von Neumann

definite AMI over N , let f be an instruction-location of S, and let k be a natural

number. The functor f + k yielding an instruction-location of S is defined by:

(Def. 14) f + k = ilS(locnum(f) + k).

Next we state three propositions:

(31) For every standard von Neumann definite AMI S over N and for every

instruction-location f of S holds f + 0 = f.

(32) Let S be a standard von Neumann definite AMI over N and f , g be

instruction-locations of S. If f + k = g + k, then f = g.

(33) For every standard von Neumann definite AMI S over N and for every

instruction-location f of S holds locnum(f) + k = locnum(f + k).

Let N be a set with non empty elements, let S be a standard von Neumann

definite AMI over N , and let f be an instruction-location of S. The functor

NextLoc f yields an instruction-location of S and is defined as follows:

(Def. 15) NextLoc f = f + 1.
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The following propositions are true:

(34) For every standard von Neumann definite AMI S over N and for every

instruction-location f of S holds NextLoc f = ilS(locnum(f) + 1).

(35) For every standard von Neumann definite AMI S over N and for every

instruction-location f of S holds f 6= NextLoc f.

(36) Let S be a standard von Neumann definite AMI over N and f , g be

instruction-locations of S. If NextLoc f = NextLoc g, then f = g.

(37) ilSTC(N)(k) = k.

(38) For every instruction i of STC(N) and for every state s of STC(N) such

that InsCode(i) = 1 holds (Exec(i, s))(ICSTC(N)) = NextLoc ICs.

(39) For every instruction-location l of STC(N) and for every instruction i

of STC(N) such that InsCode(i) = 1 holds NIC(i, l) = {NextLoc l}.

(40) For every instruction-location l of STC(N) holds SUCC(l) =

{l,NextLoc l}.

Let N be a set with non empty elements, let S be a standard von Neumann

definite AMI over N , and let i be an instruction of S. We say that i is sequential

if and only if:

(Def. 16) For every state s of S holds (Exec(i, s))(ICS) = NextLoc ICs.

The following propositions are true:

(41) Let S be a standard realistic von Neumann definite AMI over N , i1 be

an instruction-location of S, and i be an instruction of S. If i is sequential,

then NIC(i, i1) = {NextLoc i1}.

(42) Let S be a realistic standard von Neumann definite AMI over N and i

be an instruction of S. If i is sequential, then i is non halting.

Let us consider N and let S be a realistic standard von Neumann definite

AMI over N . Observe that every instruction of S which is sequential is also non

halting and every instruction of S which is halting is also non sequential.

One can prove the following proposition

(43) Let S be a standard von Neumann definite AMI over N and i be an

instruction of S. If JUMP(i) is non empty, then i is non sequential.

6. Closedness of Finite Partial States

Let N be a set with non empty elements, let S be a von Neumann definite

AMI over N , and let F be a finite partial state of S. We say that F is closed if

and only if:

(Def. 17) For every instruction-location l of S such that l ∈ domF holds

NIC(πlF, l) ⊆ domF.
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We say that F is really-closed if and only if:

(Def. 18) For every state s of S such that F ⊆ s and ICs ∈ domF and for every

natural number k holds IC(Computation(s))(k) ∈ domF.

Let N be a set with non empty elements, let S be a standard von Neumann

definite AMI over N , and let F be a finite partial state of S. We say that F is

para-closed if and only if:

(Def. 19) For every state s of S such that F ⊆ s and ICs = ilS(0) and for every

natural number k holds IC(Computation(s))(k) ∈ domF.

The following propositions are true:

(44) Let S be a standard steady-programmed von Neumann definite AMI

over N and F be a finite partial state of S. If F is really-closed and

ilS(0) ∈ domF, then F is para-closed.

(45) Let S be a von Neumann definite steady-programmed AMI over N and

F be a finite partial state of S. If F is closed, then F is really-closed.

Let N be a set with non empty elements and let S be a von Neumann definite

steady-programmed AMI over N . One can verify that every finite partial state

of S which is closed is also really-closed.

We now state the proposition

(46) For every standard realistic halting von Neumann definite AMI S over

N holds ilS(0)7−→. haltS is closed.

Let N be a set with non empty elements, let S be a von Neumann definite

AMI over N , and let F be a finite partial state of S. We say that F is lower if

and only if the condition (Def. 20) is satisfied.

(Def. 20) Let l be an instruction-location of S. Suppose l ∈ domF. Let m be an

instruction-location of S. If m ¬ l, then m ∈ domF.

The following proposition is true

(47) For every von Neumann definite AMI S over N holds every empty finite

partial state of S is lower.

Let N be a set with non empty elements and let S be a von Neumann definite

AMI over N . Observe that every finite partial state of S which is empty is also

lower.

The following proposition is true

(48) For every standard von Neumann definite AMI S over N and for every

instruction i of S holds ilS(0)7−→. i is lower.

Let N be a set with non empty elements and let S be a standard von

Neumann definite AMI over N . Note that there exists a finite partial state of S

which is lower, non empty, trivial, and programmed.

We now state two propositions:
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(49) Let S be a standard von Neumann definite AMI over N and F be a lower

non empty programmed finite partial state of S. Then ilS(0) ∈ domF.

(50) Let N be a set with non empty elements, S be a standard von Neumann

definite AMI over N , and P be a lower programmed finite partial state of

S. Then m < cardP if and only if ilS(m) ∈ domP.

Let N be a set with non empty elements, let S be a standard von Neumann

definite AMI over N , and let F be a non empty programmed finite partial state

of S. The functor LastLocF yields an instruction-location of S and is defined

by the condition (Def. 21).

(Def. 21) There exists a finite non empty subset M of N such that M =

{locnum(l); l ranges over elements of the instruction locations of S: l ∈

domF} and LastLocF = ilS(maxM).

We now state several propositions:

(51) Let S be a standard von Neumann definite AMI over N and F be a non

empty programmed finite partial state of S. Then LastLocF ∈ domF.

(52) Let S be a standard von Neumann definite AMI over N and F , G be non

empty programmed finite partial states of S. If F ⊆ G, then LastLocF ¬

LastLocG.

(53) Let S be a standard von Neumann definite AMI over N , F be a non

empty programmed finite partial state of S, and l be an instruction-

location of S. If l ∈ domF, then l ¬ LastLocF.

(54) Let S be a standard von Neumann definite AMI overN , F be a lower non

empty programmed finite partial state of S, and G be a non empty pro-

grammed finite partial state of S. If F ⊆ G and LastLocF = LastLocG,

then F = G.

(55) Let N be a set with non empty elements, S be a standard von Neumann

definite AMI over N , and F be a lower non empty programmed finite

partial state of S. Then LastLocF = ilS(cardF −′ 1).

Let N be a set with non empty elements and let S be a standard steady-

programmed von Neumann definite AMI over N . Note that every finite partial

state of S which is really-closed, lower, non empty, and programmed is also

para-closed.

Let N be a set with non empty elements, let S be a standard halting von

Neumann definite AMI over N , and let F be a non empty programmed finite

partial state of S. We say that F is halt-ending if and only if:

(Def. 22) F (LastLocF ) = haltS .

We say that F is unique-halt if and only if:

(Def. 23) For every instruction-location f of S such that F (f) = haltS and f ∈

domF holds f = LastLocF.



300 andrzej trybulec et al.

Let N be a set with non empty elements and let S be a standard halting

von Neumann definite AMI over N . One can check that there exists a lower non

empty programmed finite partial state of S which is halt-ending, unique-halt,

and trivial.

Let N be a set with non empty elements and let S be a standard halting

realistic von Neumann definite AMI over N . One can check that there exists a

finite partial state of S which is trivial, closed, lower, non empty, and program-

med.

Let N be a set with non empty elements and let S be a standard halting

realistic von Neumann definite AMI over N . Observe that there exists a lower

non empty programmed finite partial state of S which is halt-ending, unique-

halt, trivial, and closed.

Let N be a set with non empty elements and let S be a standard halting

realistic steady-programmed von Neumann definite AMI over N . Observe that

there exists a lower non empty programmed finite partial state of S which is

halt-ending, unique-halt, autonomic, trivial, and closed.

Let N be a set with non empty elements and let S be a standard halting

von Neumann definite AMI over N .

(Def. 24) A halt-ending unique-halt lower non empty programmed finite partial

state of S is said to be a pre-Macro of S.

Let N be a set with non empty elements and let S be a standard realistic

halting von Neumann definite AMI over N . One can verify that there exists a

pre-Macro of S which is closed.
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