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Summary. This article is an introduction to convex analysis. In the be-
ginning, we have defined the concept of strictly convexity and proved some basic

properties between convexity and strictly convexity. Moreover, we have defined

concepts of other convexity and semicontinuity, and proved their basic properties.

MML Identifier: RFUNCT 4.

The papers [12], [3], [1], [4], [5], [9], [6], [13], [8], [16], [17], [11], [7], [10], [14],

[15], and [2] provide the notation and terminology for this paper.

1. Some Useful Properties of n-Tuples on R

We adopt the following convention: a, b, r, s, x0, x are real numbers, f , g

are partial functions from R to R, and X, Y are sets.

The following propositions are true:

(1) max(a, b) ­ min(a, b).

(2) Let n be a natural number, R1, R2 be elements of R
n, and r1, r2 be real

numbers. Then R1
a 〈r1〉 •R2

a 〈r2〉 = (R1 •R2)
a 〈r1 · r2〉.

(3) Let n be a natural number and R be an element of Rn. Suppose
∑

R = 0

and for every natural number i such that i ∈ domR holds 0 ¬ R(i). Let i

be a natural number. If i ∈ domR, then R(i) = 0.
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(4) Let n be a natural number and R be an element of R
n. Suppose that

for every natural number i such that i ∈ domR holds 0 = R(i). Then

R = n 7→ (0 qua real number).

(5) For every natural number n and for every element R of R
n holds n 7→

(0 qua real number) •R = n 7→ (0 qua real number).

2. Convex and Strictly Convex Functions

Let us consider f , X. We say that f is strictly convex on X if and only if

the conditions (Def. 1) are satisfied.

(Def. 1)(i) X ⊆ dom f, and

(ii) for every real number p such that 0 < p and p < 1 and for all real

numbers r, s such that r ∈ X and s ∈ X and p · r + (1 − p) · s ∈ X and

r 6= s holds f(p · r + (1− p) · s) < p · f(r) + (1− p) · f(s).

We now state a number of propositions:

(6) If f is strictly convex on X, then f is convex on X.

(7) Let a, b be real numbers and f be a partial function from R to R. Then

f is strictly convex on [a, b] if and only if the following conditions are

satisfied:

(i) [a, b] ⊆ dom f, and

(ii) for every real number p such that 0 < p and p < 1 and for all real

numbers r, s such that r ∈ [a, b] and s ∈ [a, b] and r 6= s holds f(p · r +

(1− p) · s) < p · f(r) + (1− p) · f(s).

(8) Let X be a set and f be a partial function from R to R. Then f is convex

on X if and only if the following conditions are satisfied:

(i) X ⊆ dom f, and

(ii) for all real numbers a, b, c such that a ∈ X and b ∈ X and c ∈ X and

a < b and b < c holds f(b) ¬ c−b
c−a
· f(a) + b−a

c−a
· f(c).

(9) Let X be a set and f be a partial function from R to R. Then f is strictly

convex on X if and only if the following conditions are satisfied:

(i) X ⊆ dom f, and

(ii) for all real numbers a, b, c such that a ∈ X and b ∈ X and c ∈ X and

a < b and b < c holds f(b) < c−b
c−a
· f(a) + b−a

c−a
· f(c).

(10) If f is strictly convex on X and Y ⊆ X, then f is strictly convex on Y .

(11) f is strictly convex on X iff f − r is strictly convex on X.

(12) If 0 < r, then f is strictly convex on X iff r f is strictly convex on X.

(13) If f is strictly convex on X and g is strictly convex on X, then f + g is

strictly convex on X.
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(14) If f is strictly convex on X and g is convex on X, then f + g is strictly

convex on X.

(15) Suppose f is strictly convex on X but g is strictly convex on X but a > 0

and b ­ 0 or a ­ 0 and b > 0. Then a f + b g is strictly convex on X.

(16) f is convex on X if and only if the following conditions are satisfied:

(i) X ⊆ dom f, and

(ii) for all a, b, r such that a ∈ X and b ∈ X and r ∈ X and a < r and

r < b holds f(r)−f(a)
r−a

¬ f(b)−f(a)
b−a

and f(b)−f(a)
b−a

¬ f(b)−f(r)
b−r

.

(17) f is strictly convex on X if and only if the following conditions are

satisfied:

(i) X ⊆ dom f, and

(ii) for all a, b, r such that a ∈ X and b ∈ X and r ∈ X and a < r and

r < b holds f(r)−f(a)
r−a

<
f(b)−f(a)

b−a
and f(b)−f(a)

b−a
<

f(b)−f(r)
b−r

.

(18) Let f be a partial function from R to R. Suppose f is total. Then for

every natural number n and for all elements P , E, F of R
n such that

∑
P = 1 and for every natural number i such that i ∈ domP holds

P (i) ­ 0 and F (i) = f(E(i)) holds f(
∑

(P • E)) ¬
∑

(P • F ) if and only

if f is convex on R.

(19) Let f be a partial function from R to R, I be an interval, and a be a real

number. Suppose there exist real numbers x1, x2 such that x1 ∈ I and

x2 ∈ I and x1 < a and a < x2 and f is convex on I. Then f is continuous

in a.

3. Definitions of Several Convexity and Semicontinuity Concepts

Let us consider f , X. We say that f is quasiconvex on X if and only if the

conditions (Def. 2) are satisfied.

(Def. 2)(i) X ⊆ dom f, and

(ii) for every real number p such that 0 < p and p < 1 and for all real

numbers r, s such that r ∈ X and s ∈ X and p · r + (1− p) · s ∈ X holds

f(p · r + (1− p) · s) ¬ max(f(r), f(s)).

Let us consider f , X. We say that f is strictly quasiconvex on X if and only

if the conditions (Def. 3) are satisfied.

(Def. 3)(i) X ⊆ dom f, and

(ii) for every real number p such that 0 < p and p < 1 and for all real

numbers r, s such that r ∈ X and s ∈ X and p · r + (1 − p) · s ∈ X and

f(r) 6= f(s) holds f(p · r + (1− p) · s) < max(f(r), f(s)).

Let us consider f , X. We say that f is strongly quasiconvex on X if and

only if the conditions (Def. 4) are satisfied.
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(Def. 4)(i) X ⊆ dom f, and

(ii) for every real number p such that 0 < p and p < 1 and for all real

numbers r, s such that r ∈ X and s ∈ X and p · r + (1 − p) · s ∈ X and

r 6= s holds f(p · r + (1− p) · s) < max(f(r), f(s)).

Let us consider f , x0. We say that f is upper semicontinuous in x0 if and

only if:

(Def. 5) x0 ∈ dom f and for every r such that 0 < r there exists s such that 0 < s

and for every x such that x ∈ dom f and |x−x0| < s holds f(x0)−f(x) < r.

Let us consider f , X. We say that f is upper semicontinuous on X if and

only if:

(Def. 6) X ⊆ dom f and for every x0 such that x0 ∈ X holds f↾X is upper

semicontinuous in x0.

Let us consider f , x0. We say that f is lower semicontinuous in x0 if and

only if:

(Def. 7) x0 ∈ dom f and for every r such that 0 < r there exists s such that 0 < s

and for every x such that x ∈ dom f and |x−x0| < s holds f(x)−f(x0) < r.

Let us consider f , X. We say that f is lower semicontinuous on X if and

only if:

(Def. 8) X ⊆ dom f and for every x0 such that x0 ∈ X holds f↾X is lower

semicontinuous in x0.

The following propositions are true:

(20) Let given x0, f . Then f is upper semicontinuous in x0 and f is lower

semicontinuous in x0 if and only if f is continuous in x0.

(21) Let given X, f . Then f is upper semicontinuous on X and f is lower

semicontinuous on X if and only if f is continuous on X.

(22) For all X, f such that f is strictly convex on X holds f is strongly

quasiconvex on X.

(23) For all X, f such that f is strongly quasiconvex on X holds f is quasi-

convex on X.

(24) For all X, f such that f is convex on X holds f is strictly quasiconvex

on X.

(25) For all X, f such that f is strongly quasiconvex on X holds f is strictly

quasiconvex on X.

(26) Let given X, f . Suppose f is strictly quasiconvex on X and f is one-to-

one. Then f is strongly quasiconvex on X.
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