
FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001

University of Białystok

Quick Sort on SCMPDS1

Jing-Chao Chen
Shanghai Jiaotong University / China Bell Labs

Summary. Proving the correctness of quick sort is much more complicated
than proving the correctness of the insert sort. Its difficulty is determined mainly

by the following points:

• Quick sort needs to use a push-down stack.

• It contains three nested loops.

• A subroutine of this algorithm, “Partition”, has no loop-invariant.

This means we cannot justify the correctness of the “Partition” subroutine by

the Hoare’s axiom on program verification. This article is organized as follows.

First, we present several fundamental properties of “while” program and finite

sequence. Second, we define the “Partition” subroutine on SCMPDS, the task of

which is to split a sequence into a smaller and a larger subsequence. The definition

of quick sort on SCMPDS follows. Finally, we describe the basic property of the

“Partition” and quick sort, and prove their correctness.

MML Identifier: SCPQSORT.

The terminology and notation used here have been introduced in the following

articles: [18], [19], [23], [21], [1], [3], [4], [6], [24], [2], [15], [26], [17], [11], [7], [10],

[8], [9], [12], [14], [5], [13], [20], [25], [22], and [16].

1. The Several Properties of “while” Program and Finite

Sequence

In this paper n, p0 denote natural numbers.

Let I, J be shiftable Program-blocks, let a be an Int position, and let k1 be

an integer. Observe that if a > k1 then I else J is shiftable.

Next we state the proposition

1This research is partially supported by the National Natural Science Foundation of China

Grant No. 69873033.

413
c© 2001 University of Białystok

ISSN 1426–2630



414 jing-chao chen

(1) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, J be a shiftable Program-block, a, b be Int positions, and k1 be an

integer. Suppose s(DataLoc(s(a), k1)) > 0 and I is closed on s and halting

on s. Then (IExec(if a > k1 then I else J, s))(b) = (IExec(I, s))(b).

One can prove the following propositions:

(2) Let s, s1 be states of SCMPDS, I be a No-StopCode shiftable Program-

block, a be an Int position, i be an integer, and m be a natural num-

ber. Suppose card I > 0 and I is closed on s and halting on s and

s(DataLoc(s(a), i)) > 0 and m = LifeSpan(s+· Initialized(stop I)) + 2

and s1 = (Computation(s+· Initialized(stopwhile > 0(a, i, I))))(m). Then

s1↾Data-LocSCM = IExec(I, s)↾Data-LocSCM and s1+· Initialized(stopwhile >

0(a, i, I)) = s1.

(3) Let s be a state of SCMPDS and I be a Program-block. Suppose that

for every state t of SCMPDS such that t↾Data-LocSCM = s↾Data-LocSCM
holds I is halting on t. Then I is closed on s.

(4) For all instructions i1, i2, i3, i4 of SCMPDS holds card(i1; i2; i3; i4) = 4.

(5) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a, x, y be Int positions, and i, c be integers. Suppose that

(i) card I > 0,

(ii) s(x) ­ c + s(DataLoc(s(a), i)), and

(iii) for every state t of SCMPDS such that t(x) ­ c + t(DataLoc(s(a), i))

and t(y) = s(y) and t(a) = s(a) and t(DataLoc(s(a), i)) > 0

holds (IExec(I, t))(a) = t(a) and I is closed on t and halting

on t and (IExec(I, t))(DataLoc(s(a), i)) < t(DataLoc(s(a), i)) and

(IExec(I, t))(x) ­ c+(IExec(I, t))(DataLoc(s(a), i)) and (IExec(I, t))(y) =

t(y).

Then while > 0(a, i, I) is closed on s and while > 0(a, i, I) is halting

on s and if s(DataLoc(s(a), i)) > 0, then IExec(while > 0(a, i, I), s) =

IExec(while > 0(a, i, I), IExec(I, s)).

(6) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a, x, y be Int positions, and i, c be integers. Suppose that

(i) card I > 0,

(ii) s(x) ­ c, and

(iii) for every state t of SCMPDS such that t(x) ­ c and t(y) = s(y) and

t(a) = s(a) and t(DataLoc(s(a), i)) > 0 holds (IExec(I, t))(a) = t(a) and

I is closed on t and halting on t and (IExec(I, t))(DataLoc(s(a), i)) <

t(DataLoc(s(a), i)) and (IExec(I, t))(x) ­ c and (IExec(I, t))(y) = t(y).

Then while > 0(a, i, I) is closed on s and while > 0(a, i, I) is halting

on s and if s(DataLoc(s(a), i)) > 0, then IExec(while > 0(a, i, I), s) =

IExec(while > 0(a, i, I), IExec(I, s)).



quick sort on scmpds 415

(7) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a, x1, x2, x3, x4 be Int positions, and i, c, m1 be integers. Suppose

that

(i) card I > 0,

(ii) s(x4) = (s(x3)− c) + s(x1),

(iii) m1 ¬ s(x3)− c, and

(iv) for every state t of SCMPDS such that t(x4) = (t(x3) − c) +

t(x1) and m1 ¬ t(x3) − c and t(x2) = s(x2) and t(a) = s(a) and

t(DataLoc(s(a), i)) > 0 holds (IExec(I, t))(a) = t(a) and I is closed on t

and halting on t and (IExec(I, t))(DataLoc(s(a), i)) < t(DataLoc(s(a), i))

and (IExec(I, t))(x4) = ((IExec(I, t))(x3) − c) + (IExec(I, t))(x1) and

m1 ¬ (IExec(I, t))(x3)− c and (IExec(I, t))(x2) = t(x2).

Then while > 0(a, i, I) is closed on s and while > 0(a, i, I) is halting

on s and if s(DataLoc(s(a), i)) > 0, then IExec(while > 0(a, i, I), s) =

IExec(while > 0(a, i, I), IExec(I, s)).

(8) Let f be a finite sequence of elements of Z and m, k1, k, n be natural

numbers. Suppose that m ¬ k and k ¬ n and k1 = k − 1 and f is non

decreasing on m, k1 and f is non decreasing on k + 1, n and for every

natural number i such that m ¬ i and i < k holds f(i) ¬ f(k) and for

every natural number i such that k < i and i ¬ n holds f(k) ¬ f(i). Then

f is non decreasing on m, n.

(9) Let f , g be finite sequences and x be arbitrary. Suppose x ∈ dom g and

f and g are fiberwise equipotent. Then there exists arbitrary y such that

y ∈ dom g and f(x) = g(y).

(10) Let f , g, h be finite sequences. Then f and g are fiberwise equipotent if

and only if h a f and h a g are fiberwise equipotent.

(11) Let f , g be finite sequences and m, n, j be natural numbers. Suppose

that f and g are fiberwise equipotent and m ¬ n and n ¬ len f and for

every natural number i such that 1 ¬ i and i ¬ m holds f(i) = g(i) and

for every natural number i such that n < i and i ¬ len f holds f(i) = g(i)

and m < j and j ¬ n. Then there exists a natural number k such that

m < k and k ¬ n and f(j) = g(k).

2. Program Partition is to Split a Sequence into a Smaller and a

Larger Subsequence

The Program-block Partition is defined by the condition (Def. 1).

(Def. 1) Partition = ((GBP, 5) := (GBP, 4)); SubFrom(GBP, 5,GBP, 2);

((GBP, 3) := (GBP, 2)); AddTo(GBP, 3, 1); while > 0(GBP, 5,while >

0(GBP, 5, ((GBP, 7) := (GBP, 5)); AddTo(GBP, 5,−1); ((GBP, 6) :=

(intpos 4, 0)); SubFrom(GBP, 6, intpos 2, 0); (if GBP > 6 then



416 jing-chao chen

AddTo(GBP, 4,−1); AddTo(GBP, 7,−1) else Load((GBP)5:=0)));

while > 0(GBP, 7, ((GBP, 5) := (GBP, 7)); AddTo(GBP, 7,−1);

((GBP, 6) := (intpos 2, 0)); SubFrom(GBP, 6, intpos 3, 0); (if GBP >

6 then AddTo(GBP, 3, 1); AddTo(GBP, 5,−1) else Load((GBP)7:=0)));

(if GBP > 0 then 5 else (((GBP, 6) := (intpos 4, 0)); ((intpos 4, 0) :=

(intpos 3, 0)); ((intpos 3, 0) := (GBP, 6)); AddTo(GBP, 5,−2);

AddTo(GBP, 3, 1); AddTo(GBP, 4,−1)))); ((GBP, 6) := (intpos 4, 0));

((intpos 4, 0) := (intpos 2, 0)); ((intpos 2, 0) := (GBP, 6)).

3. The Construction of Quick Sort

Let n, p0 be natural numbers. The functor QuickSort(n, p0) yielding a

Program-block is defined by the condition (Def. 2).

(Def. 2) QuickSort(n, p0) = (GBP :=0); (SBP :=1); ((SBP)p1
:=p0 + 1);

((SBP)p1+1:=p1); while > 0(GBP, 1, ((GBP, 2) := (SBP, p1 + 1));

SubFrom(GBP, 2,SBP, p1); (if GBP > 2 then ((GBP, 2) := (SBP, p1));

((GBP, 4) := (SBP, p1 + 1)); Partition ; (((SBP, p1 + 3) := (SBP, p1 +

1)); ((SBP, p1 + 1) := (GBP, 4)); ((SBP, p1 + 2) := (GBP, 4));

AddTo(SBP, p1 + 1,−1); AddTo(SBP, p1 + 2, 1);

AddTo(GBP, 1, 2)) else Load(AddTo(GBP, 1,−2)))), where p1 = p0 + n.

4. The Basic Property of Partition Program

The following four propositions are true:

(12) cardPartition = 38.

(13) Let s be a state of SCMPDS and m1, p0 be natural numbers. Suppose

s(GBP) = 0 and s(intpos 4) − s(intpos 2) > 0 and s(intpos 2) = m1 and

m1 ­ p0 + 1 and p0 ­ 7. Then Partition is closed on s and Partition is

halting on s.

(14) Let s be a state of SCMPDS, m1, p0, n be natural numbers, and f ,

f1 be finite sequences of elements of Z. Suppose that s(GBP) = 0 and

s(intpos 4) − s(intpos 2) > 0 and s(intpos 2) = m1 and m1 ­ p0 + 1 and

s(intpos 4) ¬ p0+n and p0 ­ 7 and f is FinSequence on s, p0 and len f = n

and f1 is FinSequence on IExec(Partition, s), p0 and len f1 = n. Then

(i) (IExec(Partition, s))(GBP) = 0,

(ii) (IExec(Partition, s))(intpos 1) = s(intpos 1),

(iii) f and f1 are fiberwise equipotent, and

(iv) there exists a natural number m4 such that m4 = (IExec(Partition, s))



quick sort on scmpds 417

(intpos 4) and m1 ¬ m4 and m4 ¬ s(intpos 4) and for every natural num-

ber i such thatm1 ¬ i and i < m4 holds (IExec(Partition, s))(intposm4) ­

(IExec(Partition, s))(intpos i) and for every natural number i such that

m4 < i and i ¬ s(intpos 4) holds (IExec(Partition, s))(intposm4) ¬

(IExec(Partition, s))(intpos i) and for every natural number i such

that i ­ p0 + 1 but i < s(intpos 2) or i > s(intpos 4) holds

(IExec(Partition, s))(intpos i) = s(intpos i).

(15) Partition is No-StopCode and shiftable.

5. The Basic Property of Quick Sort and Its Correctness

One can prove the following three propositions:

(16) cardQuickSort(n, p0) = 57.

(17) For all natural numbers p0, n such that p0 ­ 7 holds QuickSort(n, p0) is

parahalting.

(18) Let s be a state of SCMPDS and p0, n be natural numbers. Suppose

p0 ­ 7. Then there exist finite sequences f , g of elements of Z such that

(i) len f = n,

(ii) f is FinSequence on s, p0,

(iii) len g = n,

(iv) g is FinSequence on IExec(QuickSort(n, p0), s), p0,

(v) f and g are fiberwise equipotent, and

(vi) g is non decreasing on 1, n.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[5] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized
Mathematics, 4(1):61–67, 1993.

[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[7] Jing-Chao Chen. Computation and program shift in the SCMPDS computer. Formalized
Mathematics, 8(1):193–199, 1999.

[8] Jing-Chao Chen. Computation of two consecutive program blocks for SCMPDS. Forma-
lized Mathematics, 8(1):211–217, 1999.

[9] Jing-Chao Chen. The construction and computation of conditional statements for
SCMPDS. Formalized Mathematics, 8(1):219–234, 1999.

[10] Jing-Chao Chen. The construction and shiftability of program blocks for SCMPDS.
Formalized Mathematics, 8(1):201–210, 1999.

[11] Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.
Formalized Mathematics, 8(1):183–191, 1999.



418 jing-chao chen

[12] Jing-Chao Chen. The construction and computation of while-loop programs for SCMPDS.
Formalized Mathematics, 9(2):397–405, 2001.

[13] Jing-Chao Chen. Insert sort on SCMPDS. Formalized Mathematics, 9(2):407–412, 2001.
[14] Jing-Chao Chen. Recursive Euclide algorithm. Formalized Mathematics, 9(1):1–4, 2001.
[15] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[16] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics,
6(4):573–577, 1997.

[17] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275–278, 1992.

[18] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[19] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241–250, 1992.

[20] Piotr Rudnicki. The for (going up) macro instruction. Formalized Mathematics, 7(1):107–
114, 1998.

[21] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[23] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[24] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received June 14, 2000


