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1. Preliminaries

The following propositions are true:

(1) Let S, T be non empty relational structures and f be a map from S into

T . Suppose f is one-to-one and onto. Then f ·f−1 = idT and f−1 ·f = idS
and f−1 is one-to-one and onto.

(2) Let X, Y be non empty sets, Z be a non empty relational structure,

S be a non empty relational substructure of Z [: X, Y :], T be a non empty

relational substructure of (ZY )X , and f be a map from S into T . If f is

currying, one-to-one, and onto, then f−1 is uncurrying.

(3) Let X, Y be non empty sets, Z be a non empty relational structure,

S be a non empty relational substructure of Z [: X, Y :], T be a non empty

relational substructure of (ZY )X , and f be a map from T into S. If f is

uncurrying, one-to-one, and onto, then f−1 is currying.
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(4) Let X, Y be non empty sets, Z be a non empty poset, S be a non empty

full relational substructure of Z [: X, Y :], T be a non empty full relational

substructure of (ZY )X , and f be a map from S into T . If f is currying,

one-to-one, and onto, then f is isomorphic.

(5) Let X, Y be non empty sets, Z be a non empty poset, T be a non empty

full relational substructure of Z [: X, Y :], S be a non empty full relational

substructure of (ZY )X , and f be a map from S into T . If f is uncurrying,

one-to-one, and onto, then f is isomorphic.

(6) Let S1, S2, T1, T2 be relational structures. Suppose that

(i) the relational structure of S1 = the relational structure of S2, and

(ii) the relational structure of T1 = the relational structure of T2.

Let f be a map from S1 into T1. Suppose f is isomorphic. Let g be a map

from S2 into T2. If g = f, then g is isomorphic.

(7) Let R, S, T be relational structures and f be a map from R into S.

Suppose f is isomorphic. Let g be a map from S into T . Suppose g is

isomorphic. Let h be a map from R into T . If h = g·f, then h is isomorphic.

(8) Let T be an up-complete Scott non empty top-poset and S be a subset

of T . Then S is closed if and only if S is directly closed and lower.

(9) Let S, T be up-complete Scott non empty top-posets and f be a map

from S into T . If f is directed-sups-preserving, then f is continuous.

(10) Let X, Y , X1, Y1 be topological spaces. Suppose that

(i) the topological structure of X = the topological structure of X1, and

(ii) the topological structure of Y = the topological structure of Y1.

Then [:X, Y :] = [:X1, Y1 :].

(11) Let X be a non empty topological space, L be a Scott up-complete non

empty top-poset, and F be a non empty directed subset of [X → L]. Then
⊔

(Lthe carrier of X) F is a continuous map from X into L.

(12) Let X be a non empty topological space and L be a Scott up-complete

non empty top-poset. Then [X → L] is a directed-sups-inheriting relatio-

nal substructure of Lthe carrier of X .

(13) Let S1, S2 be topological structures. Suppose the topological structure

of S1 = the topological structure of S2. Let T1, T2 be non empty FR-

structures. If the FR-structure of T1 = the FR-structure of T2, then [S1 →

T1] = [S2 → T2].

One can check that every complete continuous top-lattice which is Scott is

also injective and T0.

One can check that there exists a top-lattice which is Scott, continuous, and

complete.

Let X be a non empty topological space and let L be a Scott up-complete

non empty top-poset. Note that [X → L] is up-complete.
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One can prove the following propositions:

(14) Let I be a non empty set and J be a poset-yielding nonempty many

sorted set indexed by I. Suppose that for every element i of I holds J(i)

is up-complete. Then I -prodPOS J is up-complete.

(15) Let I be a non empty set and J be a poset-yielding nonempty reflexive-

yielding many sorted set indexed by I. Suppose that for every element i

of I holds J(i) is up-complete and lower-bounded. Let x, y be elements of
∏

J. Then x≪ y if and only if the following conditions are satisfied:

(i) for every element i of I holds x(i)≪ y(i), and

(ii) there exists a finite subset K of I such that for every element i of I

such that i /∈ K holds x(i) = ⊥J(i).

Let X be a set and let L be a lower-bounded non empty reflexive antisym-

metric relational structure. Observe that LX is lower-bounded.

Let X be a non empty topological space and let L be a lower-bounded non

empty top-poset. Note that [X → L] is lower-bounded.

Let L be an up-complete non empty poset. Note that every topological au-

gmentation of L is up-complete and every topological augmentation of L which

is Scott is also correct.

The following proposition is true

(16) Let S be an up-complete antisymmetric non empty reflexive relational

structure and T be a non empty reflexive relational structure. Suppose

the relational structure of S = the relational structure of T . Let A be a

subset of S and C be a subset of T . If A = C and A is inaccessible, then

C is inaccessible.

Let L be an up-complete non empty poset. Observe that there exists a

topological augmentation of L which is strict and Scott.

We now state two propositions:

(17) Let L be an up-complete non empty poset and S1, S2 be Scott topological

augmentations of L. Then the topology of S1 = the topology of S2.

(18) Let S1, S2 be up-complete antisymmetric non empty reflexive FR-

structures. Suppose the FR-structure of S1 = the FR-structure of S2 and

S1 is Scott. Then S2 is Scott.

Let L be an up-complete non empty poset.

(Def. 1) ΣL is a strict Scott topological augmentation of L.

We now state two propositions:

(19) For every Scott up-complete non empty top-poset S holds ΣS = the

FR-structure of S.

(20) Let L1, L2 be up-complete non empty posets. Suppose the relational

structure of L1 = the relational structure of L2. Then ΣL1 = ΣL2.
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Let S, T be up-complete non empty posets and let f be a map from S into

T . The functor Σf yielding a map from ΣS into ΣT is defined as follows:

(Def. 2) Σf = f.

Let S, T be up-complete non empty posets and let f be a directed-sups-

preserving map from S into T . Observe that Σf is continuous.

One can prove the following propositions:

(21) Let S, T be up-complete non empty posets and f be a map from S into

T . Then f is isomorphic if and only if Σf is isomorphic.

(22) For every non empty topological space X and for every Scott complete

top-lattice S holds [X → S] = [X → S].

Let X, Y be non empty topological spaces. The functor Θ(X, Y ) yielding a

map from 〈the topology of [:X, Y :], ⊆〉 into [X → Σ〈the topology of Y , ⊆〉] is

defined as follows:

(Def. 3) For every open subset W of [:X, Y :] holds (Θ(X, Y ))(W ) =

Θthe carrier of X(W ).

2. Some Natural Isomorphisms

Let X be a non empty topological space. The functor α(X) yielding a map

from [X → the Sierpiński space] into 〈the topology ofX, ⊆〉 is defined as follows:

(Def. 4) For every continuous map g from X into the Sierpiński space holds

(α(X))(g) = g−1({1}).

One can prove the following proposition

(23) For every non empty topological space X and for every open subset V

of X holds (α(X))−1(V ) = χV,the carrier of X .

Let X be a non empty topological space. Note that α(X) is isomorphic.

Let X be a non empty topological space. One can verify that (α(X))−1 is

isomorphic.

Let S be an injective T0-space. One can verify that ΩS is Scott.

Let X be a non empty topological space. One can check that [X → the

Sierpiński space] is complete.

Next we state the proposition

(24) Ω(the Sierpiński space) = Σ21
⊆.

LetM be a non empty set and let S be an injective T0-space. One can verify

that M -prodTOP(M 7−→ S) is injective.

The following two propositions are true:

(25) For every non empty set M and for every complete continuous lattice L

holds Ω(M -prodTOP(M 7−→ ΣL)) = ΣM -prodPOS(M 7−→ L).



the characterization of the continuity of . . . 245

(26) For every non empty set M and for every injective T0-space T holds

Ω(M -prodTOP(M 7−→ T )) = ΣM -prodPOS(M 7−→ ΩT ).

LetM be a non empty set and letX, Y be non empty topological spaces. The

functor commute(X,M, Y ) yielding a map from [X →M -prodTOP(M 7−→ Y )]

into ([X → Y ])M is defined by:

(Def. 5) For every continuous map f from X into M -prodTOP(M 7−→ Y ) holds

(commute(X, M, Y ))(f) = commute(f).

Let M be a non empty set and let X, Y be non empty topological spaces.

Note that commute(X, M, Y ) is one-to-one and onto.

LetM be a non empty set and let X be a non empty topological space. Note

that commute(X,M, the Sierpiński space) is isomorphic.

Next we state the proposition

(27) Let X, Y be non empty topological spaces, S be a Scott topological

augmentation of 〈the topology of Y , ⊆〉, and f1, f2 be elements of [X → S].

If f1 ¬ f2, then Gf1
⊆ Gf2

.

3. The Poset of Open Sets

The following propositions are true:

(28) Let Y be a T0-space. Then the following statements are equivalent

(i) for every non empty topological space X and for every Scott continuous

complete top-lattice L and for every Scott topological augmentation T of

[Y → L] there exists a map f from [X → T ] into [[:X, Y :] → L] and

there exists a map g from [[:X, Y :] → L] into [X → T ] such that f is

uncurrying, one-to-one, and onto and g is currying, one-to-one, and onto,

(ii) for every non empty topological space X and for every Scott continuous

complete top-lattice L and for every Scott topological augmentation T of

[Y → L] there exists a map f from [X → T ] into [[:X, Y :]→ L] and there

exists a map g from [[:X, Y :]→ L] into [X → T ] such that f is uncurrying

and isomorphic and g is currying and isomorphic.

(29) Let Y be a T0-space. Then 〈the topology of Y , ⊆〉 is continuous if and

only if for every non empty topological space X holds Θ(X,Y ) is isomor-

phic.

(30) Let Y be a T0-space. Then 〈the topology of Y , ⊆〉 is continuous if and

only if for every non empty topological space X and for every continuous

map f from X into Σ〈the topology of Y , ⊆〉 holds Gf is an open subset

of [:X, Y :].

(31) Let Y be a T0-space. Then 〈the topology of Y , ⊆〉 is continuous if and

only if {〈〈W, y〉〉; W ranges over open subsets of Y , y ranges over elements

of Y : y ∈W} is an open subset of [: Σ〈the topology of Y , ⊆〉, Y :].
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(32) Let Y be a T0-space. Then 〈the topology of Y , ⊆〉 is continuous if and

only if for every element y of Y and for every open neighbourhood V of y

there exists an open subset H of Σ〈the topology of Y , ⊆〉 such that V ∈ H

and
⋂

H is a neighbourhood of y.

4. The Poset of Scott Open Sets

One can prove the following propositions:

(33) Let R1, R2, R3 be non empty relational structures and f1 be a map from

R1 into R3. Suppose f1 is isomorphic. Let f2 be a map from R2 into R3.

Suppose f2 = f1 and f2 is isomorphic. Then the relational structure of

R1 = the relational structure of R2.

(34) Let L be a complete lattice. Then 〈σ(L),⊆〉 is continuous if and only if

for every complete lattice S holds σ([:S, L :]) = the topology of [: ΣS, ΣL :].

(35) Let L be a complete lattice. Then the following statements are equivalent

(i) for every complete lattice S holds σ([:S, L :]) = the topology of [: ΣS,

ΣL :],

(ii) for every complete lattice S holds the topological structure of Σ[:S,

L :] = [: ΣS, ΣL :].

(36) Let L be a complete lattice. Then for every complete lattice S holds

σ([:S, L :]) = the topology of [: ΣS, ΣL :] if and only if for every complete

lattice S holds Σ[:S, L :] = Ω[: ΣS, ΣL :].

(37) Let L be a complete lattice. Then 〈σ(L),⊆〉 is continuous if and only if

for every complete lattice S holds Σ[:S, L :] = Ω[: ΣS, ΣL :].
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