FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Bialystok

The Characterization of the Continuity of
Topologies!

Grzegorz Bancerek Adam Naumowicz
University of Biatystok University of Bialystok

Summary. Formalization of [14, pp. 128-130], chapter II, section 4 (4.10,
4.11).

MML Identifier: WAYBEL29.

The terminology and notation used here are introduced in the following articles:
[27], [23], [13], [10], [9], [21], [1], [30], [28], [24], [32], [22], [25], [31], [26], [12],
[34], [29], [17], [15], [20], [6], (8], (3], 4], [33], [19], [7], [2], [16], 18], [5], and [11].

1. PRELIMINARIES

The following propositions are true:

(1) Let S, T be non empty relational structures and f be a map from S into
T. Suppose f is one-to-one and onto. Then f- f~! =idy and f~!- f =idg
and f~! is one-to-one and onto.

(2) Let X, Y be non empty sets, Z be a non empty relational structure,
S be a non empty relational substructure of ZEX:Y1 T be a non empty
relational substructure of (ZY)X, and f be a map from S into T. If f is
currying, one-to-one, and onto, then f~! is uncurrying.

(3) Let X, Y be non empty sets, Z be a non empty relational structure,
S be a non empty relational substructure of ZEX:Y 1 T be a non empty
relational substructure of (ZY)X, and f be a map from T into S. If f is
uncurrying, one-to-one, and onto, then f~! is currying.
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(4) Let X,Y be non empty sets, Z be a non empty poset, S be a non empty

full relational substructure of ZEX:Y ! T be a non empty full relational
substructure of (ZY)X, and f be a map from S into 7. If f is currying,

one-to-one, and onto, then f is isomorphic.

(5) Let X,Y benon empty sets, Z be a non empty poset, T' be a non empty

full relational substructure of ZE*Y1 § be a non empty full relational
substructure of (Z¥)X, and f be a map from S into T'. If f is uncurrying,

one-to-one, and onto, then f is isomorphic.

(6) Let Sy, So, Ty, Ty be relational structures. Suppose that

(i)  the relational structure of S; = the relational structure of Sa, and

(ii)  the relational structure of T = the relational structure of Tb.
Let f be a map from S; into T3. Suppose f is isomorphic. Let g be a map
from Sy into T5. If g = f, then g is isomorphic.

(7) Let R, S, T be relational structures and f be a map from R into S.
Suppose f is isomorphic. Let g be a map from S into 7. Suppose g is
isomorphic. Let h be a map from R into 7. If h = g- f, then h is isomorphic.

(8) Let T be an up-complete Scott non empty top-poset and S be a subset
of T. Then S is closed if and only if S is directly closed and lower.

(9) Let S, T be up-complete Scott non empty top-posets and f be a map
from S into T'. If f is directed-sups-preserving, then f is continuous.

(10) Let X, Y, X1, Y7 be topological spaces. Suppose that
(i)  the topological structure of X = the topological structure of X, and
(ii)  the topological structure of Y = the topological structure of Y;.
Then [ X, Y] =[X1, Y1 1.
(11) Let X be a non empty topological space, L be a Scott up-complete non
empty top-poset, and F' be a non empty directed subset of [ X — L]. Then
|_|( Lthe carrier of X) F' is a continuous map from X into L.

(12) Let X be a non empty topological space and L be a Scott up-complete
non empty top-poset. Then [X — L] is a directed-sups-inheriting relatio-
nal substructure of Lthe carrier of X
(13) Let S1, Sy be topological structures. Suppose the topological structure
of S1 = the topological structure of Sy. Let T7, T5 be non empty FR-
structures. If the FR-structure of 7} = the FR-structure of Tb, then [S] —
Tl] = [SQ — TQ].
One can check that every complete continuous top-lattice which is Scott is
also injective and Tj.
One can check that there exists a top-lattice which is Scott, continuous, and
complete.
Let X be a non empty topological space and let L be a Scott up-complete
non empty top-poset. Note that [X — L] is up-complete.



THE CHARACTERIZATION OF THE CONTINUITY OF ... 243

One can prove the following propositions:

(14) Let I be a non empty set and J be a poset-yielding nonempty many
sorted set indexed by I. Suppose that for every element i of I holds J(i)
is up-complete. Then [ -prodpng J is up-complete.

(15) Let I be a non empty set and J be a poset-yielding nonempty reflexive-
yielding many sorted set indexed by I. Suppose that for every element ¢
of I holds J () is up-complete and lower-bounded. Let z, y be elements of
[IJ. Then z < y if and only if the following conditions are satisfied:

(i) for every element i of I holds z(i) < y(i), and

(ii)  there exists a finite subset K of I such that for every element i of I

such that i ¢ K holds x(i) = L 4.

Let X be a set and let L be a lower-bounded non empty reflexive antisym-
metric relational structure. Observe that L¥ is lower-bounded.

Let X be a non empty topological space and let L be a lower-bounded non
empty top-poset. Note that [X — L] is lower-bounded.

Let L be an up-complete non empty poset. Note that every topological au-
gmentation of L is up-complete and every topological augmentation of L which
is Scott is also correct.

The following proposition is true

(16) Let S be an up-complete antisymmetric non empty reflexive relational
structure and 1" be a non empty reflexive relational structure. Suppose
the relational structure of S = the relational structure of T'. Let A be a
subset of S and C be a subset of T. If A = C and A is inaccessible, then
C is inaccessible.

Let L be an up-complete non empty poset. Observe that there exists a
topological augmentation of L which is strict and Scott.
We now state two propositions:

(17) Let L be an up-complete non empty poset and S7, S2 be Scott topological
augmentations of L. Then the topology of S = the topology of Ss.

(18) Let Si, S2 be up-complete antisymmetric non empty reflexive FR-
structures. Suppose the FR-structure of S; = the FR-structure of Se and
Sy is Scott. Then S5 is Scott.

Let L be an up-complete non empty poset.
(Def. 1) XL is a strict Scott topological augmentation of L.
We now state two propositions:

(19) For every Scott up-complete non empty top-poset S holds XS = the
FR-structure of S.

(20) Let Ly, Lo be up-complete non empty posets. Suppose the relational
structure of L1 = the relational structure of Ly. Then X L1 = X Ls.
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Let S, T be up-complete non empty posets and let f be a map from S into

T. The functor X f yielding a map from 3.5 into X7 is defined as follows:
(Def. 2) Xf = f.

Let S, T be up-complete non empty posets and let f be a directed-sups-
preserving map from .S into T'. Observe that > f is continuous.

One can prove the following propositions:

(21) Let S, T be up-complete non empty posets and f be a map from S into
T. Then f is isomorphic if and only if X f is isomorphic.

(22) For every non empty topological space X and for every Scott complete
top-lattice S holds [X — S| =[X — S5].

Let X, Y be non empty topological spaces. The functor ©(X,Y") yielding a
map from (the topology of [ X, Y |, C) into [X — X(the topology of Y, C)] is
defined as follows:

(Def. 3) For every open subset W of [X,Y] holds (O(X,Y))(W) =
@the carrier of X(W)

2. SOME NATURAL ISOMORPHISMS

Let X be a non empty topological space. The functor a(X) yielding a map
from [X — the Sierpinski space] into (the topology of X, C) is defined as follows:

(Def. 4) For every continuous map ¢ from X into the Sierpinski space holds
((X))(9) = g~ ({1}).
One can prove the following proposition
(23) For every non empty topological space X and for every open subset V'
of X holds (a(X))_l(V) = XV,the carrier of X -
Let X be a non empty topological space. Note that o(X) is isomorphic.
Let X be a non empty topological space. One can verify that (a(X))™! is
isomorphic.
Let S be an injective Tp-space. One can verify that €05 is Scott.
Let X be a non empty topological space. One can check that [X — the
Sierpinski space] is complete.
Next we state the proposition
(24) Q(the Sierpinski space) = ¥2L.
Let M be a non empty set and let S be an injective Tp-space. One can verify
that M -prodpop(M +—— S) is injective.
The following two propositions are true:

(25) For every non empty set M and for every complete continuous lattice L
holds Q(M -prodpop(M — XL)) = XM -prodpog(M —— L).
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(26) For every non empty set M and for every injective Tp-space T holds
Q(M -prodpop(M +—— T)) = XM -prodpog(M — QT').

Let M be a non empty set and let X, Y be non empty topological spaces. The
functor commute(X, M,Y") yielding a map from [X — M -prodpop(M +— Y)]
into ([X — Y])M is defined by:

(Def. 5) For every continuous map f from X into M -prodrop(M —— Y') holds
(commute(X, M,Y))(f) = commute(f).

Let M be a non empty set and let X, Y be non empty topological spaces.
Note that commute(X, M,Y) is one-to-one and onto.
Let M be a non empty set and let X be a non empty topological space. Note
that commute(X, M, the Sierpinski space) is isomorphic.
Next we state the proposition
(27) Let X, Y be non empty topological spaces, S be a Scott topological
augmentation of (the topology of Y, C), and f1, f2 be elements of [X — S].
If fi < f2, then Gy, C Gy,.

3. THE POSET OoF OPEN SETS

The following propositions are true:

(28) Let Y be a Tp-space. Then the following statements are equivalent

(i) for every non empty topological space X and for every Scott continuous
complete top-lattice L and for every Scott topological augmentation 71" of
[Y — L] there exists a map f from [X — T] into [[ X, Y ] — L] and
there exists a map ¢ from [[ X, Y] — L] into [X — T such that f is
uncurrying, one-to-one, and onto and g is currying, one-to-one, and onto,

(ii)  for every non empty topological space X and for every Scott continuous
complete top-lattice L and for every Scott topological augmentation 7" of
[Y — L] there exists a map f from [X — T into [[ X, Y | — L] and there
exists a map g from [} X, Y | — L] into [X — T such that f is uncurrying
and isomorphic and g is currying and isomorphic.

(29) Let Y be a Tp-space. Then (the topology of Y, C) is continuous if and
only if for every non empty topological space X holds ©(X,Y) is isomor-
phic.

(30) Let Y be a Tp-space. Then (the topology of Y, C) is continuous if and
only if for every non empty topological space X and for every continuous
map f from X into X(the topology of Y, C) holds G is an open subset
of [ X, Y.

(31) Let Y be a Ty-space. Then (the topology of Y, C) is continuous if and
only if {{(W, y); W ranges over open subsets of Y, y ranges over elements
of Y: y € W} is an open subset of [ ¥X(the topology of Y, C), Y {.
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(32) Let Y be a Tp-space. Then (the topology of Y, C) is continuous if and
only if for every element y of Y and for every open neighbourhood V of y
there exists an open subset H of Y (the topology of Y, C) such that V € H
and () H is a neighbourhood of y.

4. THE POSET OF ScoTT OPEN SETS

One can prove the following propositions:

(33) Let Ry, Ra, R3 be non empty relational structures and f; be a map from
Ry into Rs. Suppose fi is isomorphic. Let fo be a map from Ry into Rs.
Suppose fo = fi1 and fs is isomorphic. Then the relational structure of
R; = the relational structure of R».

(34) Let L be a complete lattice. Then (o(L), C) is continuous if and only if
for every complete lattice S holds o ([ S, L ]) = the topology of [ £5, ¥L].

(35) Let L be a complete lattice. Then the following statements are equivalent
(i)  for every complete lattice S holds o(} S, L]) = the topology of [ X5,
sLi,
(ii)  for every complete lattice S holds the topological structure of X[ S,
L]=[38, SL1.

(36) Let L be a complete lattice. Then for every complete lattice S holds
o(FS, L]) = the topology of [ £S, ¥ L] if and only if for every complete
lattice S holds X[ S, L] = Q[ XS, ¥L].

(37) Let L be a complete lattice. Then (o(L), C) is continuous if and only if
for every complete lattice S holds X} S, L] = Q[ XS, XL 1.
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