The Characterization of the Continuity of Topologies¹

Grzegorz Bancerek University of Białystok Adam Naumowicz University of Białystok

Summary. Formalization of [14, pp. 128-130], chapter II, section 4 (4.10, 4.11).

MML Identifier: WAYBEL29.

The terminology and notation used here are introduced in the following articles: [27], [23], [13], [10], [9], [21], [1], [30], [28], [24], [32], [22], [25], [31], [26], [12], [34], [29], [17], [15], [20], [6], [8], [3], [4], [33], [19], [7], [2], [16], [18], [5], and [11].

1. Preliminaries

The following propositions are true:

- (1) Let S, T be non empty relational structures and f be a map from S into T. Suppose f is one-to-one and onto. Then $f \cdot f^{-1} = \mathrm{id}_T$ and $f^{-1} \cdot f = \mathrm{id}_S$ and f^{-1} is one-to-one and onto.
- (2) Let X, Y be non empty sets, Z be a non empty relational structure, S be a non empty relational substructure of $Z^{[X,Y]}$, T be a non empty relational substructure of $(Z^Y)^X$, and f be a map from S into T. If f is currying, one-to-one, and onto, then f^{-1} is uncurrying.
- (3) Let X, Y be non empty sets, Z be a non empty relational structure, S be a non empty relational substructure of $Z^{[X,Y]}$, T be a non empty relational substructure of $(Z^Y)^X$, and f be a map from T into S. If f is uncurrying, one-to-one, and onto, then f^{-1} is currying.

¹This work has been supported by KBN Grant 8 T11C 018 12.

- (4) Let X, Y be non empty sets, Z be a non empty poset, S be a non empty full relational substructure of $Z^{[X,Y]}$, T be a non empty full relational substructure of $(Z^Y)^X$, and f be a map from S into T. If f is currying, one-to-one, and onto, then f is isomorphic.
- (5) Let X, Y be non empty sets, Z be a non empty poset, T be a non empty full relational substructure of $Z^{[X,Y]}$, S be a non empty full relational substructure of $(Z^Y)^X$, and f be a map from S into T. If f is uncurrying, one-to-one, and onto, then f is isomorphic.
- (6) Let S_1 , S_2 , T_1 , T_2 be relational structures. Suppose that
- (i) the relational structure of S_1 = the relational structure of S_2 , and
- (ii) the relational structure of T_1 = the relational structure of T_2 . Let f be a map from S_1 into T_1 . Suppose f is isomorphic. Let g be a map from S_2 into T_2 . If g = f, then g is isomorphic.
- (7) Let R, S, T be relational structures and f be a map from R into S. Suppose f is isomorphic. Let g be a map from S into T. Suppose g is isomorphic. Let f be a map from f into f. If f is isomorphic.
- (8) Let T be an up-complete Scott non empty top-poset and S be a subset of T. Then S is closed if and only if S is directly closed and lower.
- (9) Let S, T be up-complete Scott non empty top-posets and f be a map from S into T. If f is directed-sups-preserving, then f is continuous.
- (10) Let X, Y, X_1, Y_1 be topological spaces. Suppose that
 - (i) the topological structure of X = the topological structure of X_1 , and
- (ii) the topological structure of Y = the topological structure of Y_1 . Then $[X, Y] = [X_1, Y_1]$.
- (11) Let X be a non empty topological space, L be a Scott up-complete non empty top-poset, and F be a non empty directed subset of $[X \to L]$. Then $\bigsqcup_{(L^{\text{the carrier of } X)}} F$ is a continuous map from X into L.
- (12) Let X be a non empty topological space and L be a Scott up-complete non empty top-poset. Then $[X \to L]$ is a directed-sups-inheriting relational substructure of L^{the carrier of X}.
- (13) Let S_1 , S_2 be topological structures. Suppose the topological structure of S_1 = the topological structure of S_2 . Let T_1 , T_2 be non empty FR-structures. If the FR-structure of T_1 = the FR-structure of T_2 , then $[S_1 \to T_1] = [S_2 \to T_2]$.

One can check that every complete continuous top-lattice which is Scott is also injective and T_0 .

One can check that there exists a top-lattice which is Scott, continuous, and complete.

Let X be a non empty topological space and let L be a Scott up-complete non empty top-poset. Note that $[X \to L]$ is up-complete.

One can prove the following propositions:

- (14) Let I be a non empty set and J be a poset-yielding nonempty many sorted set indexed by I. Suppose that for every element i of I holds J(i) is up-complete. Then I-prod_{POS} J is up-complete.
- (15) Let I be a non empty set and J be a poset-yielding nonempty reflexive-yielding many sorted set indexed by I. Suppose that for every element i of I holds J(i) is up-complete and lower-bounded. Let x, y be elements of $\prod J$. Then $x \ll y$ if and only if the following conditions are satisfied:
 - (i) for every element i of I holds $x(i) \ll y(i)$, and
 - (ii) there exists a finite subset K of I such that for every element i of I such that $i \notin K$ holds $x(i) = \bot_{J(i)}$.

Let X be a set and let L be a lower-bounded non empty reflexive antisymmetric relational structure. Observe that L^X is lower-bounded.

Let X be a non empty topological space and let L be a lower-bounded non empty top-poset. Note that $[X \to L]$ is lower-bounded.

Let L be an up-complete non empty poset. Note that every topological augmentation of L is up-complete and every topological augmentation of L which is Scott is also correct.

The following proposition is true

(16) Let S be an up-complete antisymmetric non empty reflexive relational structure and T be a non empty reflexive relational structure. Suppose the relational structure of S = the relational structure of T. Let A be a subset of S and C be a subset of T. If A = C and A is inaccessible, then C is inaccessible.

Let L be an up-complete non empty poset. Observe that there exists a topological augmentation of L which is strict and Scott.

We now state two propositions:

- (17) Let L be an up-complete non empty poset and S_1 , S_2 be Scott topological augmentations of L. Then the topology of S_1 = the topology of S_2 .
- (18) Let S_1 , S_2 be up-complete antisymmetric non empty reflexive FR-structures. Suppose the FR-structure of S_1 = the FR-structure of S_2 and S_1 is Scott. Then S_2 is Scott.

Let L be an up-complete non empty poset.

(Def. 1) ΣL is a strict Scott topological augmentation of L.

We now state two propositions:

- (19) For every Scott up-complete non empty top-poset S holds ΣS = the FR-structure of S.
- (20) Let L_1 , L_2 be up-complete non empty posets. Suppose the relational structure of L_1 = the relational structure of L_2 . Then $\Sigma L_1 = \Sigma L_2$.

- Let S, T be up-complete non empty posets and let f be a map from S into T. The functor Σf yielding a map from ΣS into ΣT is defined as follows:
- (Def. 2) $\Sigma f = f$.
 - Let S, T be up-complete non empty posets and let f be a directed-supspreserving map from S into T. Observe that Σf is continuous.

One can prove the following propositions:

- (21) Let S, T be up-complete non empty posets and f be a map from S into T. Then f is isomorphic if and only if Σf is isomorphic.
- (22) For every non empty topological space X and for every Scott complete top-lattice S holds $[X \to S] = [X \to S]$.
- Let X, Y be non empty topological spaces. The functor $\Theta(X, Y)$ yielding a map from \langle the topology of $[X, Y], \subseteq \rangle$ into $[X \to \Sigma \langle$ the topology of $Y, \subseteq \rangle]$ is defined as follows:
- (Def. 3) For every open subset W of [X, Y] holds $(\Theta(X, Y))(W) = \Theta_{\text{the carrier of }X}(W)$.

2. Some Natural Isomorphisms

Let X be a non empty topological space. The functor $\alpha(X)$ yielding a map from $[X \to \text{the Sierpiński space}]$ into $\langle \text{the topology of } X, \subseteq \rangle$ is defined as follows:

(Def. 4) For every continuous map g from X into the Sierpiński space holds $(\alpha(X))(g) = g^{-1}(\{1\}).$

One can prove the following proposition

(23) For every non empty topological space X and for every open subset V of X holds $(\alpha(X))^{-1}(V) = \chi_{V,\text{the carrier of }X}$.

Let X be a non empty topological space. Note that $\alpha(X)$ is isomorphic.

Let X be a non empty topological space. One can verify that $(\alpha(X))^{-1}$ is isomorphic.

Let S be an injective T_0 -space. One can verify that ΩS is Scott.

Let X be a non empty topological space. One can check that $[X \to \text{the Sierpiński space}]$ is complete.

Next we state the proposition

(24) $\Omega(\text{the Sierpiński space}) = \Sigma_{\mathbb{C}}^{1}$.

Let M be a non empty set and let S be an injective T_0 -space. One can verify that M-prod_{TOP} $(M \longmapsto S)$ is injective.

The following two propositions are true:

(25) For every non empty set M and for every complete continuous lattice L holds $\Omega(M\operatorname{-prod}_{\mathrm{TOP}}(M\longmapsto\Sigma L)) = \Sigma M\operatorname{-prod}_{\mathrm{POS}}(M\longmapsto L)$.

(26) For every non empty set M and for every injective T_0 -space T holds $\Omega(M\operatorname{-prod}_{\mathrm{TOP}}(M\longmapsto T)) = \Sigma M\operatorname{-prod}_{\mathrm{POS}}(M\longmapsto \Omega T).$

Let M be a non empty set and let X, Y be non empty topological spaces. The functor commute(X, M, Y) yielding a map from $[X \to M\operatorname{-prod}_{\operatorname{TOP}}(M \longmapsto Y)]$ into $([X \to Y])^M$ is defined by:

(Def. 5) For every continuous map f from X into M-prod_{TOP} $(M \longmapsto Y)$ holds (commute(X, M, Y))(f) = commute(f).

Let M be a non empty set and let X, Y be non empty topological spaces. Note that commute(X, M, Y) is one-to-one and onto.

Let M be a non empty set and let X be a non empty topological space. Note that commute (X, M), the Sierpiński space) is isomorphic.

Next we state the proposition

(27) Let X, Y be non empty topological spaces, S be a Scott topological augmentation of \langle the topology of Y, $\subseteq \rangle$, and f_1 , f_2 be elements of $[X \to S]$. If $f_1 \leqslant f_2$, then $G_{f_1} \subseteq G_{f_2}$.

3. The Poset of Open Sets

The following propositions are true:

- (28) Let Y be a T_0 -space. Then the following statements are equivalent
 - (i) for every non empty topological space X and for every Scott continuous complete top-lattice L and for every Scott topological augmentation T of $[Y \to L]$ there exists a map f from $[X \to T]$ into $[X, Y] \to L$ and there exists a map g from $[X, Y] \to L$ into $[X \to T]$ such that f is uncurrying, one-to-one, and onto and g is currying, one-to-one, and onto,
 - (ii) for every non empty topological space X and for every Scott continuous complete top-lattice L and for every Scott topological augmentation T of $[Y \to L]$ there exists a map f from $[X \to T]$ into $[[X, Y] \to L]$ and there exists a map g from $[[X, Y] \to L]$ into $[X \to T]$ such that f is uncurrying and isomorphic and g is currying and isomorphic.
- (29) Let Y be a T_0 -space. Then \langle the topology of $Y, \subseteq \rangle$ is continuous if and only if for every non empty topological space X holds $\Theta(X,Y)$ is isomorphic.
- (30) Let Y be a T_0 -space. Then \langle the topology of $Y, \subseteq \rangle$ is continuous if and only if for every non empty topological space X and for every continuous map f from X into $\Sigma \langle$ the topology of $Y, \subseteq \rangle$ holds G_f is an open subset of [X, Y].
- (31) Let Y be a T_0 -space. Then \langle the topology of $Y, \subseteq \rangle$ is continuous if and only if $\{\langle W, y \rangle; W \text{ ranges over open subsets of } Y, y \text{ ranges over elements of } Y: y \in W \}$ is an open subset of $[\Sigma \langle$ the topology of $Y, \subseteq \rangle, Y]$.

(32) Let Y be a T_0 -space. Then \langle the topology of $Y, \subseteq \rangle$ is continuous if and only if for every element y of Y and for every open neighbourhood V of y there exists an open subset H of $\Sigma \langle$ the topology of $Y, \subseteq \rangle$ such that $V \in H$ and $\bigcap H$ is a neighbourhood of y.

4. The Poset of Scott Open Sets

One can prove the following propositions:

- (33) Let R_1 , R_2 , R_3 be non empty relational structures and f_1 be a map from R_1 into R_3 . Suppose f_1 is isomorphic. Let f_2 be a map from R_2 into R_3 . Suppose $f_2 = f_1$ and f_2 is isomorphic. Then the relational structure of R_1 = the relational structure of R_2 .
- (34) Let L be a complete lattice. Then $\langle \sigma(L), \subseteq \rangle$ is continuous if and only if for every complete lattice S holds $\sigma([S, L]) =$ the topology of $[\Sigma S, \Sigma L]$.
- (35) Let L be a complete lattice. Then the following statements are equivalent
 - (i) for every complete lattice S holds $\sigma([S, L])$ = the topology of $[\Sigma S, \Sigma L]$,
 - (ii) for every complete lattice S holds the topological structure of $\Sigma[S, L] = [\Sigma S, \Sigma L]$.
- (36) Let L be a complete lattice. Then for every complete lattice S holds $\sigma([S, L]) = \text{the topology of } [\Sigma S, \Sigma L] \text{ if and only if for every complete lattice } S \text{ holds } \Sigma[S, L] = \Omega[\Sigma S, \Sigma L].$
- (37) Let L be a complete lattice. Then $\langle \sigma(L), \subseteq \rangle$ is continuous if and only if for every complete lattice S holds $\Sigma [: S, L:] = \Omega [: \Sigma S, \Sigma L:]$.

References

- [1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
- [2] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathematics, 6(1):81–91, 1997.
- [3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics, 6(1):93–107, 1997.
- [4] Grzegorz Bancerek. The "way-below" relation. Formalized Mathematics, 6(1):169–176, 1997.
- [5] Grzegorz Bancerek. Bases and refinements of topologies. Formalized Mathematics, 7(1):35-43, 1998.
- [6] Grzegorz Bancerek. Continuous lattices of maps between T₀ spaces. Formalized Mathematics, 9(1):111-117, 2001.
- [7] Grzegorz Bancerek. Retracts and inheritance. Formalized Mathematics, 9(1):77-85, 2001.
- [8] Grzegorz Bancerek and Adam Naumowicz. Function spaces in the category of directed suprema preserving maps. Formalized Mathematics, 9(1):171–177, 2001.
- [9] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245–254, 1990.
- [10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.

- [11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [12] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [14] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [15] Adam Grabowski. Scott-continuous functions. Part II. Formalized Mathematics, 9(1):5–11, 2001.
- [16] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. Formalized Mathematics, 6(1):117–121, 1997.
- [17] Jarosław Gryko. Injective spaces. Formalized Mathematics, 7(1):57–62, 1998.
- [18] Artur Korniłowicz. Cartesian products of relations and relational structures. Formalized Mathematics, 6(1):145–152, 1997.
- [19] Artur Korniłowicz. On the topological properties of meet-continuous lattices. Formalized Mathematics, 6(2):269–277, 1997.
- [20] Artur Korniłowicz and Jarosław Gryko. Injective spaces. Part II. Formalized Mathematics, 9(1):41–47, 2001.
- [21] Michał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563-571, 1991.
- [22] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [23] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93–96, 1991.
- [24] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [25] Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137–144, 1996.
- [26] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [27] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535–545, 1991.
- [28] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
- [29] Andrzej Trybulec. Scott topology. Formalized Mathematics, 6(2):311–319, 1997.
- [30] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319, 1990.
- 1990.
 [31] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [33] Mariusz Zynel. The equational characterization of continuous lattices. Formalized Mathematics, 6(2):199–205, 1997.
- [34] Mariusz Żynel and Adam Guzowski. T_0 topological spaces. Formalized Mathematics, 5(1):75-77, 1996.

Received January 6, 2000