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Summary. This paper is a continuation of the formalisation of [5] pp. 108–
109. Order-consistent and upper topologies are defined. The theorem that the
Scott and the upper topologies are order-consistent is proved. Remark 1.4 and
example 1.5(2) are generalized for proving this theorem.
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The terminology and notation used in this paper are introduced in the following

papers: [8], [12], [1], [13], [9], [15], [14], [16], [11], [3], [6], [7], [2], [10], and [4].

Let T be a non empty FR-structure. We say that T is upper if and only if:

(Def. 1) {−↓x : x ranges over elements of T} is a prebasis of T .

Let us mention that there exists a top-lattice which is Scott, up-complete,

and strict.

Let T be a topological space-like non empty reflexive FR-structure. We say

that T is order consistent if and only if the condition (Def. 2) is satisfied.

(Def. 2) Let x be an element of T . Then

(i) ↓x = {x}, and

(ii) for every eventually-directed net N in T such that x = supN and for

every neighbourhood V of x holds N is eventually in V .

One can verify that every non empty reflexive topological space-like FR-

structure which is trivial is also upper.

Let us mention that there exists a top-lattice which is upper, trivial, up-

complete, and strict.

The following propositions are true:

(1) For every upper up-complete non empty top-poset T and for every subset

A of T such that A is open holds A is upper.
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(2) For every up-complete non empty top-poset T such that T is upper holds

T is order consistent.

(3) Let T be a Scott up-complete non empty reflexive transitive antisym-

metric FR-structure and x be an element of T . Then ↓x is directly closed

and lower.

(4) Let T be a Scott up-complete non empty reflexive transitive antisymme-

tric FR-structure and S be a subset of T . Then S is closed if and only if

S is directly closed and lower.

(5) Let T be a Scott up-complete non empty reflexive transitive antisymme-

tric FR-structure and x be an element of T . Then ↓x is closed.

(6) Let S be an up-complete reflexive antisymmetric non empty relational

structure and T be a non empty reflexive relational structure. Suppose

the relational structure of S = the relational structure of T . Let A be a

subset of S and C be a subset of T . If A = C and A is inaccessible, then

C is inaccessible.

(7) For every up-complete non empty reflexive transitive antisymmetric re-

lational structure R holds there exists a topological augmentation of R

which is Scott.

(8) Let R be an up-complete non empty poset and T be a topological au-

gmentation of R. If T is Scott, then T is correct.

Let R be an up-complete non empty reflexive transitive antisymmetric re-

lational structure. Observe that every topological augmentation of R which is

Scott is also correct.

Let R be an up-complete non empty reflexive transitive antisymmetric rela-

tional structure. Note that there exists a topological augmentation of R which

is Scott and correct.

The following propositions are true:

(9) Let T be a Scott up-complete non empty reflexive transitive antisymme-

tric FR-structure and x be an element of T . Then {x} = ↓x.

(10) Every up-complete Scott non empty top-poset is order consistent.

(11) Let R be an inf-complete semilattice, Z be a net in R, and D be a subset

of R. Suppose D = {⌈−⌉R{Z(k); k ranges over elements of the carrier of Z:

k ­ j} : j ranges over elements of the carrier of Z}. Then D is non empty

and directed.

(12) Let R be an inf-complete semilattice, S be a subset of R, and a be an

element of R. If a ∈ S, then ⌈−⌉RS ¬ a.

(13) For every inf-complete semilattice R and for every monotone reflexive

net N in R holds lim infN = supN.

(14) Let R be an inf-complete semilattice and S be a subset of R. Then

S ∈ the topology of ConvergenceSpace(the Scott convergence of R) if and
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only if S is inaccessible and upper.

(15) Let R be an inf-complete up-complete semilattice and T be a topological

augmentation of R. If the topology of T = σ(R), then T is Scott.

Let R be an inf-complete up-complete semilattice. One can check that there

exists a topological augmentation of R which is strict, Scott, and correct.

One can prove the following two propositions:

(16) Let S be an up-complete inf-complete semilattice and T be a Scott to-

pological augmentation of S. Then σ(S) = the topology of T .

(17) Every Scott up-complete non empty reflexive transitive antisymmetric

FR-structure is a T0-space.

Let R be an up-complete non empty reflexive transitive antisymmetric rela-

tional structure. Note that every topological augmentation of R is up-complete.

The following propositions are true:

(18) Let R be an up-complete non empty reflexive transitive antisymmetric

relational structure, T be a Scott topological augmentation of R, x be an

element of T , and A be an upper subset of T . If x /∈ A, then −↓x is a

neighbourhood of A.

(19) Let R be an up-complete non empty reflexive transitive antisymmetric

FR-structure, T be a Scott topological augmentation of R, and S be an

upper subset of T . Then there exists a family F of subsets of T such that

S =
⋂

F and for every subset X of T such that X ∈ F holds X is a

neighbourhood of S.

(20) Let T be a Scott up-complete non empty reflexive transitive antisymme-

tric FR-structure and S be a subset of T . Then S is open if and only if S

is upper and property(S).

(21) Let R be an up-complete non empty reflexive transitive antisymmetric

FR-structure, S be a non empty directed subset of R, and a be an element

of R. If a ∈ S, then a ¬
⊔

R
S.

Let T be an up-complete non empty reflexive transitive antisymmetric FR-

structure. One can check that every subset of T which is lower is also pro-

perty(S).

One can prove the following propositions:

(22) For every finite up-complete non empty poset T holds every subset of T

is inaccessible.

(23) Let R be a complete connected lattice, T be a Scott topological augmen-

tation of R, and x be an element of T . Then −↓x is open.

(24) Let R be a complete connected lattice, T be a Scott topological augmen-

tation of R, and S be a subset of T . Then S is open if and only if one of

the following conditions is satisfied:

(i) S = the carrier of T , or
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(ii) S ∈ {−↓x : x ranges over elements of T}.

Let R be an up-complete non empty poset. One can check that there exists

a correct topological augmentation of R which is order consistent.

Let us observe that there exists a top-lattice which is order consistent and

complete.

The following three propositions are true:

(25) Let R be a non empty FR-structure and A be a subset of R. Suppose

that for every element x of R holds ↓x = {x}. If A is open, then A is

upper.

(26) Let R be a non empty FR-structure and A be a subset of R. Suppose

that for every element x of R holds ↓x = {x}. Let A be a subset of R. If

A is closed, then A is lower.

(27) For every up-complete inf-complete lattice T and for every net N in T

and for every element i of N holds lim inf(N↾i) = lim inf N.

Let S be a non empty 1-sorted structure, let R be a non empty relational

structure, and let f be a function from the carrier of R into the carrier of S.

The functor R ∗ f yielding a strict non empty net structure over S is defined as

follows:

(Def. 3) The relational structure of R ∗ f = the relational structure of R and the

mapping of R ∗ f = f.

Let S be a non empty 1-sorted structure, let R be a non empty transitive

relational structure, and let f be a function from the carrier of R into the carrier

of S. One can check that R ∗ f is transitive.

Let S be a non empty 1-sorted structure, let R be a non empty directed

relational structure, and let f be a function from the carrier of R into the

carrier of S. Note that R ∗ f is directed.

Let R be a non empty relational structure and let N be a prenet over R. The

functor inf netN yields a strict prenet over R and is defined by the condition

(Def. 4).

(Def. 4) There exists a map f from N into R such that

(i) inf netN = N ∗ f, and

(ii) for every element i of the carrier of N holds f(i) = ⌈−⌉R{N(k); k ranges

over elements of the carrier of N : k ­ i}.

Let R be a non empty relational structure and let N be a net in R. One can

verify that inf netN is transitive.

Let R be a non empty relational structure and let N be a net in R. Note

that inf netN is directed.

Let R be an inf-complete non empty reflexive antisymmetric relational struc-

ture and let N be a net in R. One can verify that inf netN is monotone.
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Let R be an inf-complete non empty reflexive antisymmetric relational struc-

ture and letN be a net in R. One can verify that inf netN is eventually-directed.

We now state several propositions:

(28) Let R be a non empty relational structure and N be a net in R. Then

rng (the mapping of inf netN) = {⌈−⌉R{N(i); i ranges over elements of the

carrier of N : i ­ j} : j ranges over elements of the carrier of N}.

(29) For every up-complete inf-complete lattice R and for every net N in R

holds sup inf netN = lim inf N.

(30) For every up-complete inf-complete lattice R and for every net N in R

and for every element i of N holds sup inf netN = lim inf(N↾i).

(31) Let R be an inf-complete semilattice, N be a net in R, and V be an

upper subset of R. If inf netN is eventually in V , then N is eventually in

V .

(32) Let R be an inf-complete semilattice, N be a net in R, and V be a lower

subset of R. If N is eventually in V , then inf netN is eventually in V .

(33) Let R be a topological space-like order consistent up-complete inf-

complete non empty top-lattice, N be a net in R, and x be an element of

R. If x ¬ lim inf N, then x is a cluster point of N .

(34) Let R be an order consistent up-complete inf-complete topological space-

like non empty top-lattice, N be an eventually-directed net in R, and x

be an element of R. Then x ¬ lim inf N if and only if x is a cluster point

of N .
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