Hilbert Basis Theorem¹

Jonathan Backer University of Alberta Edmonton

Piotr Rudnicki University of Alberta Edmonton

Summary. We prove the Hilbert basis theorem following [5], page 145. First we prove the theorem for the univariate case and then for the multivariate case. Our proof for the latter is slightly different than in [5]. As a base case we take the ring of polynomials with no variables. We also prove that a polynomial ring with infinite number of variables is not Noetherian.

MML Identifier: HILBASIS.

The terminology and notation used in this paper are introduced in the following papers: [18], [19], [31], [13], [7], [4], [28], [12], [8], [9], [27], [1], [25], [2], [21], [3], [26], [22], [24], [16], [20], [23], [6], [32], [33], [29], [14], [30], [11], [15], [17], and [10].

1. Preliminaries

One can prove the following propositions:

- (1) Let A, B be finite sequences and f be a function. Suppose rng $A \cup$ rng $B \subseteq$ dom f. Then there exist finite sequences f_1, f_2 such that $f_1 = f \cdot A$ and $f_2 = f \cdot B$ and $f \cdot (A \cap B) = f_1 \cap f_2$.
- (2) For every bag b of 0 holds decomp $b = \langle \langle \emptyset, \emptyset \rangle \rangle$.
- (3) For all natural numbers i, j and for every bag b of j such that $i \leq j$ holds $b \upharpoonright i$ is an element of Bags i.
- (4) Let i, j be sets, b_1, b_2 be bags of j, and b'_1, b'_2 be bags of i. If $b'_1 = b_1 \upharpoonright i$ and $b'_2 = b_2 \upharpoonright i$ and b_1 divides b_2 , then b'_1 divides b'_2 .

¹This work has been partially supported by NSERC grant OGP9207.

(5) Let i, j be sets, b_1, b_2 be bags of j, and b'_1, b'_2 be bags of i. If $b'_1 = b_1 \upharpoonright i$ and $b'_2 = b_2 \upharpoonright i$, then $(b_1 - b_2) \upharpoonright i = b'_1 - b'_2$ and $(b_1 + b_2) \upharpoonright i = b'_1 + b'_2$.

Let n, k be natural numbers and let b be a bag of n. The functor b extended by k yields an element of Bags n + 1 and is defined as follows:

(Def. 1) (b extended by k) | n = b and (b extended by k)(n) = k.

We now state two propositions:

- (6) For every natural number n holds EmptyBag n + 1 = EmptyBag n extended by 0.
- (7) For every ordinal number n and for all bags b, b_1 of n holds $b_1 \in \operatorname{rng divisors } b$ iff b_1 divides b.

Let X be a set and let x be an element of X. The functor UnitBag x yields an element of Bags X and is defined as follows:

(Def. 2) UnitBag x = EmptyBag X + (x, 1).

Next we state four propositions:

- (8) For every non empty set X and for every element x of X holds support UnitBag $x = \{x\}$.
- (9) Let X be a non empty set and x be an element of X. Then $(\operatorname{UnitBag} x)(x) = 1$ and for every element y of X such that $x \neq y$ holds $(\operatorname{UnitBag} x)(y) = 0$.
- (10) For every non empty set X and for all elements x_1 , x_2 of X such that UnitBag x_1 = UnitBag x_2 holds $x_1 = x_2$.
- (11) Let X be a non empty ordinal number, x be an element of X, L be a unital non trivial non empty double loop structure, and e be a function from X into L. Then eval(UnitBag x, e) = e(x).

Let X be a set, let x be an element of X, and let L be a unital non empty multiplicative loop with zero structure. The functor $1_{-}1(x, L)$ yielding a Series of X, L is defined by:

(Def. 3) $1_{-1}(x, L) = 0_{-}(X, L) + \cdot (\text{UnitBag } x, 1_L).$

One can prove the following propositions:

- (12) Let X be a set, L be a unital non trivial non empty double loop structure, and x be an element of X. Then $(1_{-}1(x, L))(\text{UnitBag } x) = 1_L$ and for every bag b of X such that $b \neq \text{UnitBag } x \text{ holds } (1_{-}1(x, L))(b) = 0_L$.
- (13) Let X be a set, x be an element of X, and L be an add-associative right zeroed right complementable unital right distributive non trivial non empty double loop structure. Then Support $1_{-}1(x, L) = \{\text{UnitBag } x\}$.

Let X be an ordinal number, let x be an element of X, and let L be an add-associative right zeroed right complementable unital right distributive non trivial non empty double loop structure. Observe that $1_{-}1(x, L)$ is finite-Support.

One can prove the following three propositions:

- (14) Let L be an add-associative right zeroed right complementable unital right distributive non trivial non empty double loop structure, X be a non empty set, and x_1 , x_2 be elements of X. If $1_{-1}(x_1, L) = 1_{-1}(x_2, L)$, then $x_1 = x_2$.
- (15) Let L be an add-associative right zeroed right complementable distributive non empty double loop structure, x be an element of the carrier of Polynom-Ring L, and p be a sequence of L. If x = p, then -x = -p.
- (16) Let L be an add-associative right zeroed right complementable distributive non empty double loop structure, x, y be elements of the carrier of Polynom-Ring L, and p, q be sequences of L. If x = p and y = q, then x y = p q.

Let L be a right zeroed add-associative right complementable unital distributive non empty double loop structure and let I be a non empty subset of the carrier of Polynom-Ring L. The functor minlen I yields a non empty subset of I and is defined by:

(Def. 4) minlen $I = \{x; x \text{ ranges over elements of } I: \bigwedge_{x',y': \text{Polynomial of } L} (x' = x \land y' \in I \Rightarrow \text{len } x' \leq \text{len } y')\}.$

We now state the proposition

(17) Let L be a right zeroed add-associative right complementable unital distributive non empty double loop structure, I be a non empty subset of the carrier of Polynom-Ring L, and i_1 , i_2 be Polynomials of L. If $i_1 \in \min I$ and $i_2 \in I$, then $i_1 \in I$ and $\lim i_2 \in I$.

Let L be a right zeroed add-associative right complementable unital distributive non empty double loop structure, let n be a natural number, and let a be an element of the carrier of L. The functor monomial (a, n) yields a Polynomial of L and is defined as follows:

(Def. 5) For every natural number x holds if x = n, then (monomial(a, n))(x) = a and if $x \neq n$, then $(\text{monomial}(a, n))(x) = 0_L$.

The following four propositions are true:

- (18) Let L be a right zeroed add-associative right complementable unital distributive non empty double loop structure, n be a natural number, and a be an element of the carrier of L. Then if $a \neq 0_L$, then len monomial(a, n) = n + 1 and if $a = 0_L$, then len monomial(a, n) = 0 and len monomial $(a, n) \leq n + 1$.
- (19) Let L be a right zeroed add-associative right complementable unital distributive non empty double loop structure, n, x be natural numbers, a be an element of the carrier of L, and p be a Polynomial of L. Then $(\text{monomial}(a, n) * p)(x + n) = a \cdot p(x)$.
- (20) Let L be a right zeroed add-associative right complementable unital distributive non empty double loop structure, n, x be natural numbers,

- a be an element of the carrier of L, and p be a Polynomial of L. Then $(p*\text{monomial}(a,n))(x+n)=p(x)\cdot a.$
- (21) Let L be a right zeroed add-associative right complementable unital distributive non empty double loop structure and p, q be Polynomials of L. Then $len(p*q) \leq (len p + len q) -' 1$.

2. On Ring Isomorphism

The following propositions are true:

- (22) Let R, S be non empty double loop structures, I be an ideal of R, and P be a map from R into S. If P is a ring isomorphism, then $P^{\circ}I$ is an ideal of S.
- (23) Let R, S be add-associative right zeroed right complementable non empty double loop structures and f be a map from R into S. If f is a ring homomorphism, then $f(0_R) = 0_S$.
- (24) Let R, S be add-associative right zeroed right complementable non empty double loop structures, F be a non empty subset of the carrier of R, G be a non empty subset of the carrier of S, P be a map from R into S, l_1 be a linear combination of F, L_1 be a linear combination of G, and E be a finite sequence of elements of E; the carrier of E, the carrier of E, the carrier of E. Suppose that
 - (i) P is a ring homomorphism,
 - (ii) $\operatorname{len} l_1 = \operatorname{len} L_1$,
- (iii) E represents l_1 , and
- (iv) for every set i such that $i \in \text{dom } L_1 \text{ holds } L_1(i) = P((E_i)_1) \cdot P((E_i)_2) \cdot P((E_i)_3)$. Then $P(\sum l_1) = \sum L_1$.
- (25) Let R, S be non empty double loop structures and P be a map from R into S. Suppose P is a ring isomorphism. Then there exists a map P_1 from S into R such that P_1 is a ring isomorphism and $P_1 = P^{-1}$.
- (26) Let R, S be Abelian add-associative right zeroed right complementable associative distributive well unital non empty double loop structures, F be a non empty subset of the carrier of R, and P be a map from R into S. If P is a ring isomorphism, then $P^{\circ}F$ -ideal = $(P^{\circ}F)$ -ideal.
- (27) Let R, S be Abelian add-associative right zeroed right complementable associative distributive well unital non empty double loop structures and P be a map from R into S. If P is a ring isomorphism and R is Noetherian, then S is Noetherian.

- (28) Let R be an add-associative right zeroed right complementable associative distributive well unital non trivial non empty double loop structure. Then there exists a map from R into Polynom-Ring(0, R) which is a ring isomorphism.
- (29) Let R be a right zeroed add-associative right complementable unital distributive non trivial non empty double loop structure, n be a natural number, b be a bag of n, p_1 be a Polynomial of n, R, and F be a finite sequence of elements of the carrier of Polynom-Ring(n, R). Suppose $p_1 = \sum F$. Then there exists a function g from the carrier of Polynom-Ring(n, R) into the carrier of R such that for every Polynomial p of n, R holds g(p) = p(b) and $p_1(b) = \sum (g \cdot F)$.

Let R be an Abelian add-associative right zeroed right complementable associative distributive well unital commutative non trivial non empty double loop structure and let n be a natural number. The functor $\operatorname{upm}(n,R)$ yielding a map from Polynom-Ring Polynom-Ring(n,R) into Polynom-Ring(n+1,R) is defined by the condition (Def. 6).

(Def. 6) Let p_1 be a Polynomial of Polynom-Ring(n, R), p_2 be a Polynomial of n, R, p_3 be a Polynomial of n + 1, R, and b be a bag of n + 1. If $p_3 = (\text{upm}(n, R))(p_1)$ and $p_2 = p_1(b(n))$, then $p_3(b) = p_2(b \mid n)$.

Let R be an Abelian add-associative right zeroed right complementable associative distributive well unital commutative non trivial non empty double loop structure and let n be a natural number. One can verify the following observations:

- * upm(n, R) is additive,
- * upm(n, R) is multiplicative,
- * $\operatorname{upm}(n, R)$ is unity-preserving, and
- * $\operatorname{upm}(n, R)$ is one-to-one.

Let R be an Abelian add-associative right zeroed right complementable associative distributive well unital commutative non trivial non empty double loop structure and let n be a natural number. The functor mpu(n, R) yields a map from Polynom-Ring(n+1, R) into Polynom-Ring Polynom-Ring(n, R) and is defined by the condition (Def. 7).

(Def. 7) Let p_1 be a Polynomial of n+1, R, p_2 be a Polynomial of n, R, p_3 be a Polynomial of Polynom-Ring(n,R), i be a natural number, and b be a bag of n. If $p_3 = (\text{mpu}(n,R))(p_1)$ and $p_2 = p_3(i)$, then $p_2(b) = p_1(b)$ extended by i).

Next we state two propositions:

(30) Let R be an Abelian add-associative right zeroed right complementable associative distributive well unital commutative non trivial non empty double loop structure, n be a natural number, and p be an element of the

carrier of Polynom-Ring(n+1, R). Then (upm(n, R))((mpu(n, R))(p)) = p.

(31) Let R be an Abelian add-associative right zeroed right complementable associative distributive well unital commutative non trivial non empty double loop structure and n be a natural number. Then there exists a map from Polynom-Ring Polynom-Ring(n,R) into Polynom-Ring(n+1,R) which is a ring isomorphism.

3. Hilbert Basis Theorem

Let R be a Noetherian Abelian add-associative right zeroed right complementable associative distributive well unital commutative non empty double loop structure. Observe that Polynom-Ring R is Noetherian.

One can prove the following propositions:

- (32) Let R be a Noetherian Abelian add-associative right zeroed right complementable associative distributive well unital commutative non empty double loop structure. Then Polynom-Ring R is Noetherian.
- (33) Let R be an Abelian add-associative right zeroed right complementable associative distributive well unital non trivial commutative non empty double loop structure. Suppose R is Noetherian. Let n be a natural number. Then Polynom-Ring(n,R) is Noetherian.
- (34) Every field is Noetherian.
- (35) For every field F and for every natural number n holds Polynom-Ring(n, F) is Noetherian.
- (36) Let R be an Abelian right zeroed add-associative right complementable well unital distributive associative commutative non trivial non empty double loop structure and X be an infinite ordinal number. Then Polynom-Ring(X,R) is non Noetherian.

References

- [1] Jonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. Ring ideals. Formalized Mathematics, 9(3):565–582, 2001.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Thomas Becker and Volker Weispfenning. Gröbner bases: A Computational Approach to Commutative Algebra. Springer-Verlag, New York, Berlin, 1993.
- [6] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
- [7] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
- [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.

- [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [11] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [13] Agata Darmochwał and Andrzej Trybulec. Similarity of formulae. Formalized Mathematics, 2(5):635–642, 1991.
- [14] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471–475, 1990.
- [15] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [16] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.
- [17] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
- [18] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97–104, 1991.
- [19] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [20] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [21] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
- [22] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95–110, 2001.
- [23] Christoph Schwarzweller. The field of quotients over an integral domain. Formalized Mathematics, 7(1):69–79, 1998.
- [24] Christoph Schwarzweller and Andrzej Trybulec. The evaluation of multivariate polynomials. Formalized Mathematics, 9(2):331–338, 2001.
- [25] Andrzej Trybulec. Tuples, projections and Cartesian products. *Formalized Mathematics*, 1(1):97–105, 1990.
- [26] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
- [27] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [28] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [29] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [30] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [31] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [33] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received November 27, 2000