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Summary. We prove the Hilbert basis theorem following [5], page 145.
First we prove the theorem for the univariate case and then for the multivariate
case. Our proof for the latter is slightly different than in [5]. As a base case we
take the ring of polynomilas with no variables. We also prove that a polynomial
ring with infinite number of variables is not Noetherian.

MML Identifier: HILBASIS.

The terminology and notation used in this paper are introduced in the following
papers: [18], [19], [31], [13], [7], [4], [28], [12], [8], [9], [27], [1], [25], [2], [21], [3],
[26], [22], [24], [16], [20], [23], [6], [32], [33], [29], [14], [30], [11], [15], [17], and
[10].

1. PRELIMINARIES

One can prove the following propositions:

(1) Let A, B be finite sequences and f be a function. Suppose rng AUrng B C
dom f. Then there exist finite sequences fi, fo such that f; = f- A and
fg:f'Bandf'(AAB):flﬁfg.

(2) For every bag b of 0 holds decomp b = ({0, 0)).

(3) For all natural numbers i, j and for every bag b of j such that i < j
holds b[i is an element of Bags:i.

(4) Let 4, j be sets, b1, by be bags of j, and V), b}, be bags of 7. If b} = by [i
and b, = by[i and by divides by, then b] divides b}.
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(5) Let i, j be sets, b1, by be bags of j, and V), b, be bags of i. If b} = by [i
and b, = by 4, then (by —" ba) i = b] =" b, and (b1 + ba)[i = b} + b.

Let n, k be natural numbers and let b be a bag of n. The functor b extended by k
yields an element of Bagsn + 1 and is defined as follows:

(Def. 1) (b extended by k)[n = b and (b extended by k)(n) = k.

We now state two propositions:

(6) For every natural number n holds EmptyBagn + 1 = EmptyBagn
extended by 0.

(7) For every ordinal number n and for all bags b, by of n holds b; €
rng divisors b iff by divides b.

Let X be a set and let x be an element of X. The functor UnitBagx yields
an element of Bags X and is defined as follows:

(Def. 2) UnitBagz = EmptyBag X +- (z,1).

Next we state four propositions:

(8) For every non empty set X and for every element x of X holds
support UnitBagx = {x}.

(9) Let X be a non empty set and z be an element of X. Then
(UnitBagx)(z) = 1 and for every element y of X such that = # y holds
(UnitBagx)(y) = 0.

(10) For every non empty set X and for all elements x1, xo of X such that
UnitBag x1 = UnitBag x2 holds x1 = xo.

(11) Let X be a non empty ordinal number, = be an element of X, L be a
unital non trivial non empty double loop structure, and e be a function
from X into L. Then eval(UnitBagx,e) = e(x).

Let X be a set, let x be an element of X, and let L be a unital non empty
multiplicative loop with zero structure. The functor 1_1(z, L) yielding a Series
of X, L is defined by:

(Def. 3) 1.1(z,L) =0.(X, L)+ (UnitBagz, 1z,).

One can prove the following propositions:

(12) Let X be aset, L be a unital non trivial non empty double loop structure,
and = be an element of X. Then (1_1(x, L))(UnitBagx) = 1, and for every
bag b of X such that b # UnitBagx holds (1-1(z, L))(b) = 0f.

(13) Let X be a set, z be an element of X, and L be an add-associative
right zeroed right complementable unital right distributive non trivial non
empty double loop structure. Then Support 1_1(x, L) = {UnitBagz}.

Let X be an ordinal number, let = be an element of X, and let L be an
add-associative right zeroed right complementable unital right distributive non
trivial non empty double loop structure. Observe that 1_1(x, L) is finite-Support.

One can prove the following three propositions:
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(14) Let L be an add-associative right zeroed right complementable unital
right distributive non trivial non empty double loop structure, X be a
non empty set, and z1, x2 be elements of X. If 1.1(x1, L) = 1.1(x9, L),
then 1 = xs.

(15) Let L be an add-associative right zeroed right complementable distribu-
tive non empty double loop structure, x be an element of the carrier of
Polynom-Ring L, and p be a sequence of L. If x = p, then —z = —p.

(16) Let L be an add-associative right zeroed right complementable distribu-
tive non empty double loop structure, x, y be elements of the carrier of
Polynom-Ring L, and p, ¢ be sequences of L. If x+ = p and y = ¢, then
rT—y=p—q.

Let L be a right zeroed add-associative right complementable unital distri-
butive non empty double loop structure and let I be a non empty subset of the

carrier of Polynom-Ring L. The functor minlen I yields a non empty subset of I
and is defined by:

(Def. 4) minlen] = {z;z ranges over elements of I: A,
x ANy el = lenz’ <leny')}.

[
,y' : Polynomial of L (l’ -

We now state the proposition

(17) Let L be a right zeroed add-associative right complementable unital
distributive non empty double loop structure, I be a non empty subset
of the carrier of Polynom-Ring L, and i1, 72 be Polynomials of L. If i; €
minlen I and iy € I, then i1 € I and leni; < lenis.

Let L be a right zeroed add-associative right complementable unital distri-
butive non empty double loop structure, let n be a natural number, and let a be
an element of the carrier of L. The functor monomial(a,n) yields a Polynomial
of L and is defined as follows:

(Def. 5)  For every natural number z holds if x = n, then (monomial(a,n))(z) = a
and if = # n, then (monomial(a,n))(x) = 0r.
The following four propositions are true:

(18) Let L be a right zeroed add-associative right complementable uni-
tal distributive non empty double loop structure, n be a natural num-
ber, and a be an element of the carrier of L. Then if a # 0p, then
len monomial(a,n) = n + 1 and if @ = 0, then len monomial(a,n) = 0
and len monomial(a,n) < n + 1.

(19) Let L be a right zeroed add-associative right complementable unital
distributive non empty double loop structure, n, z be natural numbers,
a be an element of the carrier of L, and p be a Polynomial of L. Then
(monomial(a,n) * p)(x +n) = a- p(x).

(20) Let L be a right zeroed add-associative right complementable unital
distributive non empty double loop structure, n, x be natural numbers,
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a be an element of the carrier of L, and p be a Polynomial of L. Then
(p * monomial(a,n))(z +n) = p(x) - a.

(21) Let L be a right zeroed add-associative right complementable unital
distributive non empty double loop structure and p, ¢ be Polynomials of
L. Then len(p * ¢) < (lenp + leng) —' 1.

2. ON RING ISOMORPHISM

The following propositions are true:

(22) Let R, S be non empty double loop structures, I be an ideal of R, and
P be a map from R into S. If P is a ring isomorphism, then P°I is an
ideal of S.

(23) Let R, S be add-associative right zeroed right complementable non
empty double loop structures and f be a map from R into S. If f is a
ring homomorphism, then f(0g) = Og.

(24) Let R, S be add-associative right zeroed right complementable non
empty double loop structures, F' be a non empty subset of the carrier
of R, G be a non empty subset of the carrier of S, P be a map from R
into S, [1 be a linear combination of F', L be a linear combination of GG,
and E be a finite sequence of elements of [ the carrier of R, the carrier of
R, the carrier of R]. Suppose that

(i) P is a ring homomorphism,
(ii) len ll = len L1,
) E represents l1, and
) for every set i such that ¢ € dom Ly holds Ly (i) = P((Ei)1) - P((E;)2) -

P((Ei)3)-

Then P(Z ll) = Z Ll.

(25) Let R, S be non empty double loop structures and P be a map from R
into S. Suppose P is a ring isomorphism. Then there exists a map P; from

(i
(iv

S into R such that Py is a ring isomorphism and P = P~

(26) Let R, S be Abelian add-associative right zeroed right complementable
associative distributive well unital non empty double loop structures, F
be a non empty subset of the carrier of R, and P be a map from R into
S. If P is a ring isomorphism, then P°F—ideal = (P°F')—ideal.

(27) Let R, S be Abelian add-associative right zeroed right complementable
associative distributive well unital non empty double loop structures and
P be amap from R into S. If P is a ring isomorphism and R is Noetherian,
then S is Noetherian.
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(28) Let R be an add-associative right zeroed right complementable associa-
tive distributive well unital non trivial non empty double loop structure.
Then there exists a map from R into Polynom-Ring(0, R) which is a ring
isomorphism.

(29) Let R be a right zeroed add-associative right complementable unital
distributive non trivial non empty double loop structure, n be a natural
number, b be a bag of n, p; be a Polynomial of n, R, and F' be a finite sequ-
ence of elements of the carrier of Polynom-Ring(n, R). Suppose p; = > _ F.
Then there exists a function g from the carrier of Polynom-Ring(n, R) into
the carrier of R such that for every Polynomial p of n, R holds g(p) = p(b)
and p1(b) => (g F).

Let R be an Abelian add-associative right zeroed right complementable asso-
ciative distributive well unital commutative non trivial non empty double loop
structure and let n be a natural number. The functor upm(n, R) yielding a map
from Polynom-Ring Polynom-Ring(n, R) into Polynom-Ring(n+1, R) is defined
by the condition (Def. 6).

(Def. 6) Let p; be a Polynomial of Polynom-Ring(n, R), p2 be a Polynomial of
n, R, ps be a Polynomial of n + 1, R, and b be a bag of n 4+ 1. If p3 =
(upm(n, R))(p1) and pa = p1(b(n)), then p3(b) = p2(b[n).

Let R be an Abelian add-associative right zeroed right complementable asso-
ciative distributive well unital commutative non trivial non empty double loop
structure and let n be a natural number. One can verify the following observa-
tions:

* upm(n, R) is additive,

x upm(n, R) is multiplicative,

x upm(n, R) is unity-preserving, and

*x upm(n, R) is one-to-one.

Let R be an Abelian add-associative right zeroed right complementable as-
sociative distributive well unital commutative non trivial non empty double
loop structure and let n be a natural number. The functor mpu(n, R) yields a
map from Polynom-Ring(n + 1, R) into Polynom-Ring Polynom-Ring(n, R) and
is defined by the condition (Def. 7).

(Def. 7) Let p; be a Polynomial of n + 1, R, ps be a Polynomial of n, R, p3
be a Polynomial of Polynom-Ring(n, R), ¢ be a natural number, and b
be a bag of n. If p3 = (mpu(n,R))(p1) and pa = ps3(i), then pa(b) =
p1(b extended by 7).

Next we state two propositions:

(30) Let R be an Abelian add-associative right zeroed right complementable
associative distributive well unital commutative non trivial non empty
double loop structure, n be a natural number, and p be an element of the
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carrier of Polynom-Ring(n+1, R). Then (upm(n, R))((mpu(n, R))(p)) = p.

(31) Let R be an Abelian add-associative right zeroed right complementable
associative distributive well unital commutative non trivial non empty
double loop structure and n be a natural number. Then there exists a
map from Polynom-Ring Polynom-Ring(n, R) into Polynom-Ring(n+1, R)
which is a ring isomorphism.

3. HILBERT BASIS THEOREM

Let R be a Noetherian Abelian add-associative right zeroed right comple-
mentable associative distributive well unital commutative non empty double
loop structure. Observe that Polynom-Ring R is Noetherian.

One can prove the following propositions:

(32) Let R be a Noetherian Abelian add-associative right zeroed right com-
plementable associative distributive well unital commutative non empty
double loop structure. Then Polynom-Ring R is Noetherian.

(33) Let R be an Abelian add-associative right zeroed right complementable
associative distributive well unital non trivial commutative non empty do-
uble loop structure. Suppose R is Noetherian. Let n be a natural number.
Then Polynom-Ring(n, R) is Noetherian.

(34) Every field is Noetherian.

(35) For every field F and for every natural number n holds
Polynom-Ring(n, F') is Noetherian.

(36) Let R be an Abelian right zeroed add-associative right complemen-
table well unital distributive associative commutative non trivial non
empty double loop structure and X be an infinite ordinal number. Then
Polynom-Ring(X, R) is non Noetherian.
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