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Summary. We prove the Hilbert basis theorem following [5], page 145.
First we prove the theorem for the univariate case and then for the multivariate
case. Our proof for the latter is slightly different than in [5]. As a base case we
take the ring of polynomilas with no variables. We also prove that a polynomial
ring with infinite number of variables is not Noetherian.

MML Identifier: HILBASIS.

The terminology and notation used in this paper are introduced in the following

papers: [18], [19], [31], [13], [7], [4], [28], [12], [8], [9], [27], [1], [25], [2], [21], [3],

[26], [22], [24], [16], [20], [23], [6], [32], [33], [29], [14], [30], [11], [15], [17], and

[10].

1. Preliminaries

One can prove the following propositions:

(1) Let A, B be finite sequences and f be a function. Suppose rngA∪rngB ⊆

dom f. Then there exist finite sequences f1, f2 such that f1 = f · A and

f2 = f ·B and f · (A a B) = f1
a f2.

(2) For every bag b of 0 holds decomp b = 〈〈∅, ∅〉〉.

(3) For all natural numbers i, j and for every bag b of j such that i ¬ j

holds b↾i is an element of Bags i.

(4) Let i, j be sets, b1, b2 be bags of j, and b′
1
, b′

2
be bags of i. If b′

1
= b1↾i

and b′
2

= b2↾i and b1 divides b2, then b′
1
divides b′

2
.
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(5) Let i, j be sets, b1, b2 be bags of j, and b′
1
, b′

2
be bags of i. If b′

1
= b1↾i

and b′
2

= b2↾i, then (b1 −
′ b2)↾i = b′

1
−′ b′

2
and (b1 + b2)↾i = b′

1
+ b′

2
.

Let n, k be natural numbers and let b be a bag of n. The functor b extended by k

yields an element of Bagsn + 1 and is defined as follows:

(Def. 1) (b extended by k)↾n = b and (b extended by k)(n) = k.

We now state two propositions:

(6) For every natural number n holds EmptyBagn + 1 = EmptyBagn

extended by 0.

(7) For every ordinal number n and for all bags b, b1 of n holds b1 ∈

rng divisors b iff b1 divides b.

Let X be a set and let x be an element of X. The functor UnitBag x yields

an element of BagsX and is defined as follows:

(Def. 2) UnitBag x = EmptyBagX +· (x, 1).

Next we state four propositions:

(8) For every non empty set X and for every element x of X holds

supportUnitBag x = {x}.

(9) Let X be a non empty set and x be an element of X. Then

(UnitBag x)(x) = 1 and for every element y of X such that x 6= y holds

(UnitBag x)(y) = 0.

(10) For every non empty set X and for all elements x1, x2 of X such that

UnitBag x1 = UnitBag x2 holds x1 = x2.

(11) Let X be a non empty ordinal number, x be an element of X, L be a

unital non trivial non empty double loop structure, and e be a function

from X into L. Then eval(UnitBag x, e) = e(x).

Let X be a set, let x be an element of X, and let L be a unital non empty

multiplicative loop with zero structure. The functor 1 1(x, L) yielding a Series

of X, L is defined by:

(Def. 3) 1 1(x, L) = 0 (X, L) +· (UnitBag x, 1L).

One can prove the following propositions:

(12) LetX be a set, L be a unital non trivial non empty double loop structure,

and x be an element of X. Then (1 1(x, L))(UnitBag x) = 1L and for every

bag b of X such that b 6= UnitBag x holds (1 1(x, L))(b) = 0L.

(13) Let X be a set, x be an element of X, and L be an add-associative

right zeroed right complementable unital right distributive non trivial non

empty double loop structure. Then Support 1 1(x, L) = {UnitBag x}.

Let X be an ordinal number, let x be an element of X, and let L be an

add-associative right zeroed right complementable unital right distributive non

trivial non empty double loop structure. Observe that 1 1(x, L) is finite-Support.

One can prove the following three propositions:
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(14) Let L be an add-associative right zeroed right complementable unital

right distributive non trivial non empty double loop structure, X be a

non empty set, and x1, x2 be elements of X. If 1 1(x1, L) = 1 1(x2, L),

then x1 = x2.

(15) Let L be an add-associative right zeroed right complementable distribu-

tive non empty double loop structure, x be an element of the carrier of

Polynom-RingL, and p be a sequence of L. If x = p, then −x = −p.

(16) Let L be an add-associative right zeroed right complementable distribu-

tive non empty double loop structure, x, y be elements of the carrier of

Polynom-RingL, and p, q be sequences of L. If x = p and y = q, then

x− y = p− q.

Let L be a right zeroed add-associative right complementable unital distri-

butive non empty double loop structure and let I be a non empty subset of the

carrier of Polynom-RingL. The functor minlen I yields a non empty subset of I

and is defined by:

(Def. 4) minlen I = {x;x ranges over elements of I:
∧

x′,y′ :Polynomial of L (x′ =

x ∧ y′ ∈ I ⇒ lenx′ ¬ len y′)}.

We now state the proposition

(17) Let L be a right zeroed add-associative right complementable unital

distributive non empty double loop structure, I be a non empty subset

of the carrier of Polynom-RingL, and i1, i2 be Polynomials of L. If i1 ∈

minlen I and i2 ∈ I, then i1 ∈ I and len i1 ¬ len i2.

Let L be a right zeroed add-associative right complementable unital distri-

butive non empty double loop structure, let n be a natural number, and let a be

an element of the carrier of L. The functor monomial(a, n) yields a Polynomial

of L and is defined as follows:

(Def. 5) For every natural number x holds if x = n, then (monomial(a, n))(x) = a

and if x 6= n, then (monomial(a, n))(x) = 0L.

The following four propositions are true:

(18) Let L be a right zeroed add-associative right complementable uni-

tal distributive non empty double loop structure, n be a natural num-

ber, and a be an element of the carrier of L. Then if a 6= 0L, then

lenmonomial(a, n) = n + 1 and if a = 0L, then lenmonomial(a, n) = 0

and lenmonomial(a, n) ¬ n + 1.

(19) Let L be a right zeroed add-associative right complementable unital

distributive non empty double loop structure, n, x be natural numbers,

a be an element of the carrier of L, and p be a Polynomial of L. Then

(monomial(a, n) ∗ p)(x + n) = a · p(x).

(20) Let L be a right zeroed add-associative right complementable unital

distributive non empty double loop structure, n, x be natural numbers,
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a be an element of the carrier of L, and p be a Polynomial of L. Then

(p ∗monomial(a, n))(x + n) = p(x) · a.

(21) Let L be a right zeroed add-associative right complementable unital

distributive non empty double loop structure and p, q be Polynomials of

L. Then len(p ∗ q) ¬ (len p + len q)−′ 1.

2. On Ring Isomorphism

The following propositions are true:

(22) Let R, S be non empty double loop structures, I be an ideal of R, and

P be a map from R into S. If P is a ring isomorphism, then P ◦I is an

ideal of S.

(23) Let R, S be add-associative right zeroed right complementable non

empty double loop structures and f be a map from R into S. If f is a

ring homomorphism, then f(0R) = 0S .

(24) Let R, S be add-associative right zeroed right complementable non

empty double loop structures, F be a non empty subset of the carrier

of R, G be a non empty subset of the carrier of S, P be a map from R

into S, l1 be a linear combination of F , L1 be a linear combination of G,

and E be a finite sequence of elements of [: the carrier of R, the carrier of

R, the carrier of R :]. Suppose that

(i) P is a ring homomorphism,

(ii) len l1 = lenL1,

(iii) E represents l1, and

(iv) for every set i such that i ∈ domL1 holds L1(i) = P ((Ei)1) ·P ((Ei)2) ·

P ((Ei)3).

Then P (
∑

l1) =
∑

L1.

(25) Let R, S be non empty double loop structures and P be a map from R

into S. Suppose P is a ring isomorphism. Then there exists a map P1 from

S into R such that P1 is a ring isomorphism and P1 = P−1.

(26) Let R, S be Abelian add-associative right zeroed right complementable

associative distributive well unital non empty double loop structures, F

be a non empty subset of the carrier of R, and P be a map from R into

S. If P is a ring isomorphism, then P ◦F–ideal = (P ◦F )–ideal.

(27) Let R, S be Abelian add-associative right zeroed right complementable

associative distributive well unital non empty double loop structures and

P be a map from R into S. If P is a ring isomorphism and R is Noetherian,

then S is Noetherian.
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(28) Let R be an add-associative right zeroed right complementable associa-

tive distributive well unital non trivial non empty double loop structure.

Then there exists a map from R into Polynom-Ring(0, R) which is a ring

isomorphism.

(29) Let R be a right zeroed add-associative right complementable unital

distributive non trivial non empty double loop structure, n be a natural

number, b be a bag of n, p1 be a Polynomial of n, R, and F be a finite sequ-

ence of elements of the carrier of Polynom-Ring(n,R). Suppose p1 =
∑

F.

Then there exists a function g from the carrier of Polynom-Ring(n,R) into

the carrier of R such that for every Polynomial p of n, R holds g(p) = p(b)

and p1(b) =
∑

(g · F ).

Let R be an Abelian add-associative right zeroed right complementable asso-

ciative distributive well unital commutative non trivial non empty double loop

structure and let n be a natural number. The functor upm(n,R) yielding a map

from Polynom-Ring Polynom-Ring(n,R) into Polynom-Ring(n+1, R) is defined

by the condition (Def. 6).

(Def. 6) Let p1 be a Polynomial of Polynom-Ring(n,R), p2 be a Polynomial of

n, R, p3 be a Polynomial of n + 1, R, and b be a bag of n + 1. If p3 =

(upm(n,R))(p1) and p2 = p1(b(n)), then p3(b) = p2(b↾n).

Let R be an Abelian add-associative right zeroed right complementable asso-

ciative distributive well unital commutative non trivial non empty double loop

structure and let n be a natural number. One can verify the following observa-

tions:

∗ upm(n,R) is additive,

∗ upm(n,R) is multiplicative,

∗ upm(n,R) is unity-preserving, and

∗ upm(n,R) is one-to-one.

Let R be an Abelian add-associative right zeroed right complementable as-

sociative distributive well unital commutative non trivial non empty double

loop structure and let n be a natural number. The functor mpu(n,R) yields a

map from Polynom-Ring(n + 1, R) into Polynom-Ring Polynom-Ring(n,R) and

is defined by the condition (Def. 7).

(Def. 7) Let p1 be a Polynomial of n + 1, R, p2 be a Polynomial of n, R, p3

be a Polynomial of Polynom-Ring(n,R), i be a natural number, and b

be a bag of n. If p3 = (mpu(n,R))(p1) and p2 = p3(i), then p2(b) =

p1(b extended by i).

Next we state two propositions:

(30) Let R be an Abelian add-associative right zeroed right complementable

associative distributive well unital commutative non trivial non empty

double loop structure, n be a natural number, and p be an element of the
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carrier of Polynom-Ring(n+1, R). Then (upm(n,R))((mpu(n,R))(p)) = p.

(31) Let R be an Abelian add-associative right zeroed right complementable

associative distributive well unital commutative non trivial non empty

double loop structure and n be a natural number. Then there exists a

map from Polynom-Ring Polynom-Ring(n,R) into Polynom-Ring(n+1, R)

which is a ring isomorphism.

3. Hilbert Basis Theorem

Let R be a Noetherian Abelian add-associative right zeroed right comple-

mentable associative distributive well unital commutative non empty double

loop structure. Observe that Polynom-RingR is Noetherian.

One can prove the following propositions:

(32) Let R be a Noetherian Abelian add-associative right zeroed right com-

plementable associative distributive well unital commutative non empty

double loop structure. Then Polynom-RingR is Noetherian.

(33) Let R be an Abelian add-associative right zeroed right complementable

associative distributive well unital non trivial commutative non empty do-

uble loop structure. Suppose R is Noetherian. Let n be a natural number.

Then Polynom-Ring(n,R) is Noetherian.

(34) Every field is Noetherian.

(35) For every field F and for every natural number n holds

Polynom-Ring(n, F ) is Noetherian.

(36) Let R be an Abelian right zeroed add-associative right complemen-

table well unital distributive associative commutative non trivial non

empty double loop structure and X be an infinite ordinal number. Then

Polynom-Ring(X,R) is non Noetherian.
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