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The notation and terminology used in this paper are introduced in the following

papers: [25], [2], [11], [26], [21], [12], [3], [5], [30], [7], [28], [6], [18], [22], [17], [24],

[20], [23], [8], [10], [16], [1], [27], [9], [4], [15], [32], [19], [29], [31], [13], and [14].

For simplicity, we adopt the following convention: E denotes a compact non

vertical non horizontal subset of E2
T, C denotes a compact connected non vertical

non horizontal subset of E2
T, G denotes a Go-board, i, j, m, n denote natural

numbers, and p denotes a point of E2
T.

Let us observe that every simple closed curve is non vertical and non hori-

zontal.

Let T be a non empty topological space. Note that there exists a union of

components of T which is non empty.

The following propositions are true:

(1) Let T be a non empty topological space and A be a non empty union of

components of T . If A is connected, then A is a component of T .

(2) For every finite sequence f holds f is empty iff Rev(f) is empty.

(3) Let D be a non empty set, f be a finite sequence of elements of D, and

given i, j. If 1 ¬ i and i ¬ len f and 1 ¬ j and j ¬ len f, then mid(f, i, j)

is non empty.

(4) Let f be a non empty finite sequence of elements of E2
T and p be a point

of E2
T. If 1 ¬ len f and p ∈ L̃(f), then (⇂ f, p)(1) = f(1).

(5) Let f be a non empty finite sequence of elements of E2
T and p be a point

of E2
T. If f is a special sequence and p ∈ L̃(f), then (⇃ p, f)(len ⇃ p, f) =

f(len f).
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(6) For every simple closed curve P holds W-maxP 6= E-maxP.

(7) Let D be a non empty set and f be a finite sequence of elements of D. If

1 ¬ i and i < len f, then (mid(f, i, len f −′ 1)) a 〈flen f 〉 = mid(f, i, len f).

(8) For all points p, q of E2
T such that p 6= q and L(p, q) is vertical holds 〈p,

q〉 is a special sequence.

(9) For all points p, q of E2
T such that p 6= q and L(p, q) is horizontal holds

〈p, q〉 is a special sequence.

(10) Let p, q be finite sequences of elements of E2
T and v be a point of E2

T. If

p is in the area of q, then pv
ª is in the area of q.

(11) For every non trivial finite sequence p of elements of E2
T and for every

point v of E2
T holds pv

ª is in the area of p.

(12) For every finite sequence f holds Center f ­ 1.

(13) For every finite sequence f such that len f ­ 1 holds Center f ¬ len f.

(14) CenterG ¬ lenG.

(15) For every finite sequence f such that len f ­ 2 holds Center f > 1.

(16) For every finite sequence f such that len f ­ 3 holds Center f < len f.

(17) CenterGauge(E,n) = 2n−′1 + 2.

(18) E ⊆ cell(Gauge(E, 0), 2, 2).

(19) cell(Gauge(E, 0), 2, 2) 6⊆ BDDE.

(20) (Gauge(C, 1))CenterGauge(C,1),1 =

[W-boundC+E-boundC
2 ,S-bound L̃(Cage(C, 1))].

(21) (Gauge(C, 1))CenterGauge(C,1),lenGauge(C,1) =

[W-boundC+E-boundC
2 ,N-bound L̃(Cage(C, 1))].

(22) If 1 ¬ j and j < widthG and 1 ¬ m and m ¬ lenG and 1 ¬ n and

n ¬ widthG and p ∈ cell(G, lenG, j) and p1 = (Gm,n)1, then lenG = m.

(23) Suppose 1 ¬ i and i ¬ lenG and 1 ¬ j and j < widthG and 1 ¬ m

and m ¬ lenG and 1 ¬ n and n ¬ widthG and p ∈ cell(G, i, j) and

p1 = (Gm,n)1. Then i = m or i = m−′ 1.

(24) If 1 ¬ i and i < lenG and 1 ¬ m and m ¬ lenG and 1 ¬ n and n ¬

widthG and p ∈ cell(G, i,widthG) and p2 = (Gm,n)2, then widthG = n.

(25) Suppose 1 ¬ i and i < lenG and 1 ¬ j and j ¬ widthG and 1 ¬ m

and m ¬ lenG and 1 ¬ n and n ¬ widthG and p ∈ cell(G, i, j) and

p2 = (Gm,n)2. Then j = n or j = n−′ 1.

(26) For every simple closed curve C and for every real number r such

that W-boundC ¬ r and r ¬ E-boundC holds L([r,S-boundC], [r,

N-boundC]) meets UpperArcC.

(27) For every simple closed curve C and for every real number r such

that W-boundC ¬ r and r ¬ E-boundC holds L([r,S-boundC], [r,
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N-boundC]) meets LowerArcC.

(28) Let C be a simple closed curve and i be a natural number. If 1 < i and

i < lenGauge(C, n), then L((Gauge(C, n))i,1, (Gauge(C, n))i,lenGauge(C,n))

meets UpperArcC.

(29) Let C be a simple closed curve and i be a natural number. If 1 < i and

i < lenGauge(C, n), then L((Gauge(C, n))i,1, (Gauge(C, n))i,lenGauge(C,n))

meets LowerArcC.

(30) For every simple closed curve C holds L((Gauge(C, n))CenterGauge(C,n),1,

(Gauge(C, n))CenterGauge(C,n),lenGauge(C,n)) meets UpperArcC.

(31) For every simple closed curve C holds L((Gauge(C, n))CenterGauge(C,n),1,

(Gauge(C, n))CenterGauge(C,n),lenGauge(C,n)) meets LowerArcC.

(32) Let C be a compact connected non vertical non horizontal sub-

set of E2
T and i be a natural number. If 1 ¬ i and i ¬

lenGauge(C, n), then L((Gauge(C, n))i,1, (Gauge(C, n))i,lenGauge(C,n))me-

ets UpperArc L̃(Cage(C, n)).

(33) Let C be a compact connected non vertical non horizontal sub-

set of E2
T and i be a natural number. If 1 ¬ i and i ¬

lenGauge(C, n), then L((Gauge(C, n))i,1, (Gauge(C, n))i,lenGauge(C,n))me-

ets LowerArc L̃(Cage(C, n)).

(34) For every compact connected non vertical non horizontal subset C of E2
T

holds L((Gauge(C, n))CenterGauge(C,n),1,

(Gauge(C, n))CenterGauge(C,n),lenGauge(C,n))meets UpperArc L̃(Cage(C, n)).

(35) For every compact connected non vertical non horizontal subset C of E2
T

holds L((Gauge(C, n))CenterGauge(C,n),1,

(Gauge(C, n))CenterGauge(C,n),lenGauge(C,n))meets LowerArc L̃(Cage(C, n)).

(36) If j ¬ widthG, then cell(G, 0, j) is not Bounded.

(37) If i ¬ widthG, then cell(G, lenG, i) is not Bounded.

(38) If j ¬ widthGauge(C, n), then cell(Gauge(C, n), 0, j) ⊆ UBDC.

(39) If j ¬ lenGauge(E,n), then cell(Gauge(E, n), lenGauge(E, n), j) ⊆

UBDE.

(40) If i ¬ lenGauge(C, n) and j ¬ widthGauge(C, n) and cell(Gauge(C, n), i, j) ⊆

BDDC, then j > 1.

(41) If i ¬ lenGauge(C, n) and j ¬ widthGauge(C, n) and cell(Gauge(C, n), i, j) ⊆

BDDC, then i > 1.

(42) If i ¬ lenGauge(C, n) and j ¬ widthGauge(C, n) and cell(Gauge(C, n), i, j) ⊆

BDDC, then j + 1 < widthGauge(C, n).

(43) If i ¬ lenGauge(C, n) and j ¬ widthGauge(C, n) and cell(Gauge(C, n), i, j) ⊆

BDDC, then i + 1 < lenGauge(C, n).
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(44) If there exist i, j such that i ¬ lenGauge(C, n) and j ¬

widthGauge(C, n) and cell(Gauge(C, n), i, j) ⊆ BDDC, then n ­ 1.
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