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Summary. The paper introduces some preliminary notions concerning
the Wroclaw taxonomy according to [16]. The classifications and tolerances are

defined and considered w.r.t. sets and metric spaces. We prove theorems showing

various classifications based on tolerances.

MML Identifier: TAXONOM1.

The articles [14], [15], [20], [4], [9], [5], [6], [8], [12], [1], [13], [17], [19], [2], [23],

[25], [24], [3], [18], [22], [21], [10], [11], and [7] provide the terminology and

notation for this paper.

1. Preliminaries

In this paper A, X are non empty sets, f is a partial function from [:X, X :]

to R, and a is a real number.

Let us note that there exists a real number which is non negative.

We now state a number of propositions:

(1) For every finite sequence p and for every natural number k such that

k + 1 ∈ dom p and k /∈ dom p holds k = 0.

(2) Let p be a finite sequence and i, j be natural numbers. Suppose i ∈ dom p

and j ∈ dom p and for every natural number k such that k ∈ dom p and

k + 1 ∈ dom p holds p(k) = p(k + 1). Then p(i) = p(j).

1This work has been partially supported by the European Community TYPES grant IST-

1999-29001 and CALCULEMUS grant HPRN-CT-2000-00102.
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(3) For every set X and for every binary relation R on X such that R is

reflexive in X holds domR = X.

(4) For every set X and for every binary relation R on X such that R is

reflexive in X holds rngR = X.

(5) For every set X and for every binary relation R on X such that R is

reflexive in X holds R∗ is reflexive in X.

(6) Let X, x, y be sets and R be a binary relation on X. Suppose R is

reflexive in X. If R reduces x to y and x ∈ X, then 〈〈x, y〉〉 ∈ R∗.

(7) Let X be a set and R be a binary relation on X. If R is reflexive in X

and symmetric in X, then R∗ is symmetric in X.

(8) For every set X and for every binary relation R on X such that R is

reflexive in X holds R∗ is transitive in X.

(9) Let X be a non empty set and R be a binary relation on X. Suppose R

is reflexive in X and symmetric in X. Then R∗ is an equivalence relation

of X.

(10) For all binary relations R1, R2 onX such that R1 ⊆ R2 holds R1
∗ ⊆ R2

∗.

(11) SmallestPartition(A) is finer than {A}.

2. The Notion of Classification

Let A be a non empty set. A subset of PARTITIONS(A) is called a classifi-

cation of A if:

(Def. 1) For all partitions X, Y of A such that X ∈ it and Y ∈ it holds X is finer

than Y or Y is finer than X.

One can prove the following propositions:

(12) {{A}} is a classification of A.

(13) {SmallestPartition(A)} is a classification of A.

(14) For every subset S of PARTITIONS(A) such that S = {{A},

SmallestPartition(A)} holds S is a classification of A.

Let A be a non empty set. A subset of PARTITIONS(A) is called a strong

classification of A if:

(Def. 2) It is a classification of A and {A} ∈ it and SmallestPartition(A) ∈ it.

Next we state the proposition

(15) For every subset S of PARTITIONS(A) such that S = {{A},

SmallestPartition(A)} holds S is a strong classification of A.
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3. The Tolerance on a Non Empty Set

Let X be a non empty set, let f be a partial function from [:X, X :] to R,

and let a be a real number. The functor Tl(f, a) yields a binary relation on X

and is defined as follows:

(Def. 3) For all elements x, y of X holds 〈〈x, y〉〉 ∈ Tl(f, a) iff f(x, y) ¬ a.

The following four propositions are true:

(16) If f is Reflexive and a  0, then Tl(f, a) is reflexive in X.

(17) If f is symmetric, then Tl(f, a) is symmetric in X.

(18) If a  0 and f is Reflexive and symmetric, then Tl(f, a) is a tolerance

of X.

(19) Let X be a non empty set, f be a partial function from [:X, X :] to R,

and a1, a2 be real numbers. If a1 ¬ a2, then Tl(f, a1) ⊆ Tl(f, a2).

Let X be a set and let f be a partial function from [:X, X :] to R. We say

that f is non-negative if and only if:

(Def. 4) For all elements x, y of X holds f(x, y)  0.

We now state three propositions:

(20) Let X be a non empty set, f be a partial function from [:X, X :] to R,

and x, y be sets. Suppose f is non-negative, Reflexive, and discernible. If

〈〈x, y〉〉 ∈ Tl(f, 0), then x = y.

(21) Let X be a non empty set, f be a partial function from [:X, X :] to

R, and x be an element of X. If f is Reflexive and discernible, then 〈〈x,

x〉〉 ∈ Tl(f, 0).

(22) LetX be a non empty set, f be a partial function from [:X, X :] to R, and

a be a real number. Suppose Tl(f, a) is reflexive in X and f is symmetric.

Then (Tl(f, a))∗ is an equivalence relation of X.

4. The Partitions Defined by Lower Tolerance

Next we state several propositions:

(23) Let X be a non empty set and f be a partial function from [:X, X :] to R.

Suppose f is non-negative, Reflexive, and discernible. Then (Tl(f, 0))∗ =

Tl(f, 0).

(24) Let X be a non empty set, f be a partial function from [:X, X :] to R,

and R be an equivalence relation of X. Suppose R = (Tl(f, 0))∗ and f is

non-negative, Reflexive, and discernible. Then R = △X .
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(25) Let X be a non empty set, f be a partial function from [:X, X :] to

R, and R be an equivalence relation of X. Suppose R = (Tl(f, 0))∗

and f is non-negative, Reflexive, and discernible. Then ClassesR =

SmallestPartition(X).

(26) Let X be a finite non empty subset of R, f be a function from [:X, X :]

into R, z be a finite non empty subset of R, and A be a real number.

If z = rng f and A  max z, then for all elements x, y of X holds f(x,

y) ¬ A.

(27) Let X be a finite non empty subset of R, f be a function from [:X, X :]

into R, z be a finite non empty subset of R, and A be a real number.

Suppose z = rng f and A  max z. Let R be an equivalence relation of X.

If R = (Tl(f,A))∗, then ClassesR = {X}.

(28) Let X be a finite non empty subset of R, f be a function from [:X, X :]

into R, z be a finite non empty subset of R, and A be a real number. If

z = rng f and A  max z, then (Tl(f,A))∗ = Tl(f, A).

5. The Classification on a Non Empty Set

Let X be a non empty set and let f be a partial function from [:X, X :] to

R. The functor FamClass f yielding a subset of PARTITIONS(X) is defined by

the condition (Def. 5).

(Def. 5) Let x be a set. Then x ∈ FamClass f if and only if there exists a non

negative real number a and there exists an equivalence relation R of X

such that R = (Tl(f, a))∗ and ClassesR = x.

We now state four propositions:

(29) Let X be a non empty set, f be a partial function from [:X, X :] to R,

and a be a non negative real number. If Tl(f, a) is reflexive in X and f is

symmetric, then FamClass f is a non empty set.

(30) Let X be a finite non empty subset of R and f be a function from [:X,

X :] into R. If f is symmetric and non-negative, then {X} ∈ FamClass f.

(31) For every non empty set X and for every partial function f from [:X,

X :] to R holds FamClass f is a classification of X.

(32) LetX be a finite non empty subset of R and f be a function from [:X, X :]

into R. Suppose SmallestPartition(X) ∈ FamClass f and f is symmetric

and non-negative. Then FamClass f is a strong classification of X.
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6. The Classification on a Metric Space

LetM be a metric structure, let a be a real number, and let x, y be elements

of the carrier of M . We say that x, y are in tolerance w.r.t. a if and only if:

(Def. 6) ρ(x, y) ¬ a.

Let M be a non empty metric structure and let a be a real number. The

functor Tm(M, a) yielding a binary relation on M is defined by:

(Def. 7) For all elements x, y of the carrier of M holds 〈〈x, y〉〉 ∈ Tm(M,a) iff x,

y are in tolerance w.r.t. a.

Next we state two propositions:

(33) For every non empty metric structure M and for every real number a

holds Tm(M,a) = Tl(the distance of M , a).

(34) LetM be a non empty Reflexive symmetric metric structure, a be a real

number, and T be a relation between the carrier of M and the carrier of

M . If T = Tm(M, a) and a  0, then T is a tolerance of the carrier of M .

Let M be a Reflexive symmetric non empty metric structure. The func-

tor MetricFamClassM yielding a subset of PARTITIONS(the carrier of M) is

defined by the condition (Def. 8).

(Def. 8) Let x be a set. Then x ∈ MetricFamClassM if and only if there exists a

non negative real number a and there exists an equivalence relation R of

M such that R = (Tm(M, a))∗ and ClassesR = x.

The following propositions are true:

(35) For every Reflexive symmetric non empty metric structure M holds

MetricFamClassM = FamClass the distance of M .

(36) Let M be a non empty metric space and R be an equivalence relation of

M . If R = (Tm(M, 0))∗, then ClassesR = SmallestPartition(the carrier of

M).

(37) For every Reflexive symmetric bounded non empty metric structure M

such that a  Ø(ΩM ) holds Tm(M, a) = ∇the carrier of M .

(38) For every Reflexive symmetric bounded non empty metric structure M

such that a  Ø(ΩM ) holds Tm(M, a) = (Tm(M,a))∗.

(39) For every Reflexive symmetric bounded non empty metric structure M

such that a  Ø(ΩM ) holds (Tm(M,a))∗ = ∇the carrier of M .

(40) Let M be a Reflexive symmetric bounded non empty metric structure,

R be an equivalence relation of M , and a be a non negative real number.

If a  Ø(ΩM ) and R = (Tm(M, a))∗, then ClassesR = {the carrier ofM}.

Let M be a Reflexive symmetric triangle non empty metric structure and

let C be a non empty bounded subset of M . Observe that ØC is non negative.

We now state three propositions:
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(41) For every bounded non empty metric space M holds {the carrier of

M} ∈ MetricFamClassM.

(42) For every Reflexive symmetric non empty metric structure M holds

MetricFamClassM is a classification of the carrier of M .

(43) For every bounded non empty metric spaceM holds MetricFamClassM

is a strong classification of the carrier of M .
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