
FORMALIZED MATHEMATICS

Volume 9, Number 4, 2001

University of Białystok

On the Instructions of SCM
1

Artur Korniłowicz

University of Białystok

MML Identifier: AMI 6.

The articles [15], [8], [9], [10], [14], [11], [18], [2], [4], [6], [7], [5], [16], [1], [3], [19],

[20], [12], [17], and [13] provide the notation and terminology for this paper.

For simplicity, we adopt the following rules: a, b are data-locations, i1, i2, i3
are instruction-locations of SCM, s1, s2 are states of SCM, T is an instruction

type of SCM, and k is a natural number.

We now state a number of propositions:

(1) a /∈ the instruction locations of SCM.

(2) Data-LocSCM 6= the instruction locations of SCM.

(3) For every object o of SCM holds o = ICSCM or o ∈ the instruction

locations of SCM or o is a data-location.

(4) If i2 6= i3, then Next(i2) 6= Next(i3).

(5) If s1 and s2 are equal outside the instruction locations of SCM, then

s1(a) = s2(a).

(6) LetN be a set with non empty elements, S be a realistic IC-Ins-separated

definite non empty non void AMI over N , t, u be states of S, i1 be an

instruction-location of S, e be an element of ObjectKind(ICS), and I be

an element of ObjectKind(i1). If e = i1 and u = t+·[ICS 7−→ e, i1 7−→ I],

then u(i1) = I and ICu = i1 and ICFollowing(u) = (Exec(u(ICu), u))(ICS).

(7) AddressPart(haltSCM) = ∅.

(8) AddressPart(a:=b) = 〈a, b〉.

(9) AddressPart(AddTo(a, b)) = 〈a, b〉.

(10) AddressPart(SubFrom(a, b)) = 〈a, b〉.

(11) AddressPart(MultBy(a, b)) = 〈a, b〉.

1This work has been partially supported by TYPES grant IST-1999-29001.

659
c© 2001 University of Białystok

ISSN 1426–2630



660 artur korniłowicz

(12) AddressPart(Divide(a, b)) = 〈a, b〉.

(13) AddressPart(goto i2) = 〈i2〉.

(14) AddressPart(if a = 0 goto i2) = 〈i2, a〉.

(15) AddressPart(if a > 0 goto i2) = 〈i2, a〉.

(16) If T = 0, then AddressPartsT = {0}.

Let us consider T . One can check that AddressPartsT is non empty.

The following propositions are true:

(17) If T = 1, then dom
∏
AddressPartsT = {1, 2}.

(18) If T = 2, then dom
∏
AddressPartsT = {1, 2}.

(19) If T = 3, then dom
∏
AddressPartsT = {1, 2}.

(20) If T = 4, then dom
∏
AddressPartsT = {1, 2}.

(21) If T = 5, then dom
∏
AddressPartsT = {1, 2}.

(22) If T = 6, then dom
∏
AddressPartsT = {1}.

(23) If T = 7, then dom
∏
AddressPartsT = {1, 2}.

(24) If T = 8, then dom
∏
AddressPartsT = {1, 2}.

(25)
∏
AddressParts InsCode(a:=b)(1) = Data-LocSCM.

(26)
∏
AddressParts InsCode(a:=b)(2) = Data-LocSCM.

(27)
∏
AddressParts InsCode(AddTo(a,b))(1) = Data-LocSCM.

(28)
∏
AddressParts InsCode(AddTo(a,b))(2) = Data-LocSCM.

(29)
∏
AddressParts InsCode(SubFrom(a,b))(1) = Data-LocSCM.

(30)
∏
AddressParts InsCode(SubFrom(a,b))(2) = Data-LocSCM.

(31)
∏
AddressParts InsCode(MultBy(a,b))(1) = Data-LocSCM.

(32)
∏
AddressParts InsCode(MultBy(a,b))(2) = Data-LocSCM.

(33)
∏
AddressParts InsCode(Divide(a,b))(1) = Data-LocSCM.

(34)
∏
AddressParts InsCode(Divide(a,b))(2) = Data-LocSCM.

(35)
∏
AddressParts InsCode(goto i2)(1) = the instruction locations of SCM.

(36)
∏
AddressParts InsCode(if a=0 goto i2)(1) = the instruction locations of

SCM.

(37)
∏
AddressParts InsCode(if a=0 goto i2)(2) = Data-LocSCM.

(38)
∏
AddressParts InsCode(if a>0 goto i2)(1) = the instruction locations of

SCM.

(39)
∏
AddressParts InsCode(if a>0 goto i2)(2) = Data-LocSCM.

(40) NIC(haltSCM, i1) = {i1}.

Let us note that JUMP(haltSCM) is empty.

One can prove the following proposition

(41) NIC(a:=b, i1) = {Next(i1)}.



on the instructions of SCM 661

Let us consider a, b. One can verify that JUMP(a:=b) is empty.

Next we state the proposition

(42) NIC(AddTo(a, b), i1) = {Next(i1)}.

Let us consider a, b. Note that JUMP(AddTo(a, b)) is empty.

The following proposition is true

(43) NIC(SubFrom(a, b), i1) = {Next(i1)}.

Let us consider a, b. One can check that JUMP(SubFrom(a, b)) is empty.

Next we state the proposition

(44) NIC(MultBy(a, b), i1) = {Next(i1)}.

Let us consider a, b. Observe that JUMP(MultBy(a, b)) is empty.

The following proposition is true

(45) NIC(Divide(a, b), i1) = {Next(i1)}.

Let us consider a, b. Note that JUMP(Divide(a, b)) is empty.

We now state two propositions:

(46) NIC(goto i2, i1) = {i2}.

(47) JUMP(goto i2) = {i2}.

Let us consider i2. One can check that JUMP(goto i2) is non empty and

trivial.

The following two propositions are true:

(48) i2 ∈ NIC(if a = 0 goto i2, i1) and NIC(if a = 0 goto i2, i1) ⊆

{i2,Next(i1)}.

(49) JUMP(if a = 0 goto i2) = {i2}.

Let us consider a, i2. Note that JUMP(if a = 0 goto i2) is non empty and

trivial.

One can prove the following propositions:

(50) i2 ∈ NIC(if a > 0 goto i2, i1) and NIC(if a > 0 goto i2, i1) ⊆

{i2,Next(i1)}.

(51) JUMP(if a > 0 goto i2) = {i2}.

Let us consider a, i2. One can check that JUMP(if a > 0 goto i2) is non

empty and trivial.

Next we state two propositions:

(52) SUCC(i1) = {i1,Next(i1)}.

(53) Let f be a function from N into the instruction locations of SCM. Sup-

pose that for every natural number k holds f(k) = ik. Then

(i) f is bijective, and

(ii) for every natural number k holds f(k +1) ∈ SUCC(f(k)) and for every

natural number j such that f(j) ∈ SUCC(f(k)) holds k ¬ j.

Let us note that SCM is standard.

One can prove the following three propositions:



662 artur korniłowicz

(54) ilSCM(k) = ik.

(55) Next(ilSCM(k)) = ilSCM(k + 1).

(56) Next(i1) = NextLoc i1.

Let us observe that InsCode(haltSCM) is jump-only.

Let us observe that haltSCM is jump-only.

Let us consider i2. Observe that InsCode(goto i2) is jump-only.

Let us consider i2. Note that goto i2 is jump-only non sequential and non

instruction location free.

Let us consider a, i2. One can verify that InsCode(if a = 0 goto i2) is jump-

only and InsCode(if a > 0 goto i2) is jump-only.

Let us consider a, i2. One can verify that if a = 0 goto i2 is jump-only non

sequential and non instruction location free and if a > 0 goto i2 is jump-only

non sequential and non instruction location free.

Let us consider a, b. One can verify the following observations:

∗ InsCode(a:=b) is non jump-only,

∗ InsCode(AddTo(a, b)) is non jump-only,

∗ InsCode(SubFrom(a, b)) is non jump-only,

∗ InsCode(MultBy(a, b)) is non jump-only, and

∗ InsCode(Divide(a, b)) is non jump-only.

Let us consider a, b. One can check the following observations:

∗ a:=b is non jump-only and sequential,

∗ AddTo(a, b) is non jump-only and sequential,

∗ SubFrom(a, b) is non jump-only and sequential,

∗ MultBy(a, b) is non jump-only and sequential, and

∗ Divide(a, b) is non jump-only and sequential.

Let us note that SCM is homogeneous and has explicit jumps and no implicit

jumps.

Let us observe that SCM is regular.

We now state three propositions:

(57) IncAddr(goto i2, k) = goto ilSCM(locnum(i2) + k).

(58) IncAddr(if a = 0 goto i2, k) = if a = 0 goto ilSCM(locnum(i2) + k).

(59) IncAddr(if a > 0 goto i2, k) = if a > 0 goto ilSCM(locnum(i2) + k).

Let us note that SCM is IC-good and Exec-preserving.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–
290, 1990.



on the instructions of SCM 663

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[8] Artur Korniłowicz. On the composition of macro instructions of standard computers.
Formalized Mathematics, 9(2):303–316, 2001.

[9] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[10] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241–250, 1992.

[11] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[12] Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137–144,
1996.

[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[14] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[15] Andrzej Trybulec, Piotr Rudnicki, and Artur Korniłowicz. Standard ordering of instruc-
tion locations. Formalized Mathematics, 9(2):291–301, 2001.

[16] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[18] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

Received May 8, 2001


