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Summary. First, we prove the fact that the circle is the simple closed
curve, which was defined as a curve homeomorphic to the square. For this proof,
we introduce a mapping which is a homeomorphism from 2-dimensional plane
to itself. This mapping maps the square to the circle. Secondly, we prove the
Fashoda meet theorem for the circle using this homeomorphism.
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The terminology and notation used in this paper have been introduced in the

following articles: [17], [5], [7], [1], [2], [11], [3], [12], [4], [13], [10], [18], [15], [16],

[14], [8], [9], and [6].

1. Preliminaries

In this paper x, y, z, u, a are real numbers.

We now state a number of propositions:

(1) If x2 = y2, then x = y or x = −y.

(2) If x2 = 1, then x = 1 or x = −1.

(3) If 0 ¬ x and x ¬ 1, then x2 ¬ x.

(4) If a ­ 0 and (x− a) · (x + a) ¬ 0, then −a ¬ x and x ¬ a.

(5) If x2 − 1 ¬ 0, then −1 ¬ x and x ¬ 1.

(6) x < y and x < z iff x < min(y, z).

(7) If 0 < x, then x

3 < x and x

4 < x.

(8) If x ­ 1, then
√

x ­ 1 and if x > 1, then
√

x > 1.
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(9) If x ¬ y and z ¬ u, then [y, z] ⊆ [x, u].

(10) For every point p of E2
T
holds |p| =

√

(p1)2 + (p2)2 and |p|2 = (p1)
2 +

(p2)
2.

(11) For every function f and for all sets B, C holds (f↾B)◦C = f◦(C ∩B).

(12) LetX be a topological structure, Y be a non empty topological structure,

f be a map from X into Y , and P be a subset of X. Then f↾P is a map

from X↾P into Y .

(13) Let X, Y be non empty topological spaces, p0 be a point of X, D be a

non empty subset of X, E be a non empty subset of Y , and f be a map

from X into Y . Suppose that Dc = {p0} and Ec = {f(p0)} and X is a T2

space and Y is a T2 space and for every point p of X↾D holds f(p) 6= f(p0)

and there exists a map h from X↾D into Y ↾E such that h = f↾D and h

is continuous and for every subset V of Y such that f(p0) ∈ V and V is

open there exists a subset W of X such that p0 ∈ W and W is open and

f◦W ⊆ V. Then f is continuous.

2. The Circle is a Simple Closed Curve

In the sequel p, q denote points of E2
T
.

The function SqCirc from the carrier of E2
T
into the carrier of E2

T
is defined

by the condition (Def. 1).

(Def. 1) Let p be a point of E2
T
. Then

(i) if p = 0E2
T

, then SqCirc(p) = p,

(ii) if p2 ¬ p1 and −p1 ¬ p2 or p2 ­ p1 and p2 ¬ −p1 and if p 6= 0E2
T

, then

SqCirc(p) = [ p1
√

1+(
p2

p1

)2
, p2
√

1+(
p2

p1

)2
], and

(iii) if p2 6¬ p1 or −p1 6¬ p2 but p2 6­ p1 or p2 6¬ −p1 and p 6= 0E2
T

, then

SqCirc(p) = [ p1
√

1+(
p1

p2

)2
, p2
√

1+(
p1

p2

)2
].

We now state a number of propositions:

(14) Let p be a point of E2
T
such that p 6= 0E2

T

. Then

(i) if p1 ¬ p2 and −p2 ¬ p1 or p1 ­ p2 and p1 ¬ −p2, then SqCirc(p) =

[ p1
√

1+(
p1

p2

)2
, p2
√

1+(
p1

p2

)2
], and

(ii) if p1 6¬ p2 or −p2 6¬ p1 and if p1 6­ p2 or p1 6¬ −p2, then SqCirc(p) =

[ p1
√

1+(
p2

p1

)2
, p2
√

1+(
p2

p1

)2
].

(15) Let X be a non empty topological space and f1 be a map from X into

R
1. Suppose f1 is continuous and for every point q of X there exists a real

number r such that f1(q) = r and r ­ 0. Then there exists a map g from

X into R
1 such that for every point p of X and for every real number r1

such that f1(p) = r1 holds g(p) =
√

r1 and g is continuous.
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(16) Let X be a non empty topological space and f1, f2 be maps from X into

R
1. Suppose f1 is continuous and f2 is continuous and for every point q of

X holds f2(q) 6= 0. Then there exists a map g from X into R
1 such that

(i) for every point p ofX and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) = ( r1

r2
)2, and

(ii) g is continuous.

(17) Let X be a non empty topological space and f1, f2 be maps from X into

R
1. Suppose f1 is continuous and f2 is continuous and for every point q of

X holds f2(q) 6= 0. Then there exists a map g from X into R
1 such that

(i) for every point p ofX and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) = 1 + ( r1

r2
)2, and

(ii) g is continuous.

(18) Let X be a non empty topological space and f1, f2 be maps from X into

R
1. Suppose f1 is continuous and f2 is continuous and for every point q of

X holds f2(q) 6= 0. Then there exists a map g from X into R
1 such that

(i) for every point p ofX and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) =
√

1 + ( r1

r2
)2, and

(ii) g is continuous.

(19) Let X be a non empty topological space and f1, f2 be maps from X into

R
1. Suppose f1 is continuous and f2 is continuous and for every point q of

X holds f2(q) 6= 0. Then there exists a map g from X into R
1 such that

(i) for every point p ofX and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) = r1
√

1+(
r1

r2
)2

, and

(ii) g is continuous.

(20) Let X be a non empty topological space and f1, f2 be maps from X into

R
1. Suppose f1 is continuous and f2 is continuous and for every point q of

X holds f2(q) 6= 0. Then there exists a map g from X into R
1 such that

(i) for every point p ofX and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) = r2
√

1+(
r1

r2
)2

, and

(ii) g is continuous.

(21) Let K1 be a non empty subset of E2
T
and f be a map from (E2

T
)↾K1 into

R
1. Suppose that

(i) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = p1
√

1+(
p2

p1

)2
, and

(ii) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds

q1 6= 0.

Then f is continuous.

(22) Let K1 be a non empty subset of E2
T
and f be a map from (E2

T
)↾K1 into

R
1. Suppose that
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(i) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = p2
√

1+(
p2

p1

)2
, and

(ii) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds

q1 6= 0.

Then f is continuous.

(23) Let K1 be a non empty subset of E2
T
and f be a map from (E2

T
)↾K1 into

R
1. Suppose that

(i) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = p2
√

1+(
p1

p2

)2
, and

(ii) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds

q2 6= 0.

Then f is continuous.

(24) Let K1 be a non empty subset of E2
T
and f be a map from (E2

T
)↾K1 into

R
1. Suppose that

(i) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = p1
√

1+(
p1

p2
)2

, and

(ii) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds

q2 6= 0.

Then f is continuous.

(25) Let K0, B0 be subsets of E2
T
and f be a map from (E2

T
)↾K0 into (E2

T
)↾B0.

Suppose f = SqCirc ↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

} and K0 =

{p : (p2 ¬ p1 ∧ −p1 ¬ p2 ∨ p2 ­ p1 ∧ p2 ¬ −p1) ∧ p 6= 0E2
T

}. Then f

is continuous.

(26) Let K0, B0 be subsets of E2
T
and f be a map from (E2

T
)↾K0 into (E2

T
)↾B0.

Suppose f = SqCirc ↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

} and K0 =

{p : (p1 ¬ p2 ∧ −p2 ¬ p1 ∨ p1 ­ p2 ∧ p1 ¬ −p2) ∧ p 6= 0E2
T

}. Then f

is continuous.

In this article we present several logical schemes. The scheme TopIncl con-

cerns a unary predicate P, and states that:

{p : P[p] ∧ p 6= 0E2
T

} ⊆ (the carrier of E2
T
) \ {0E2

T

}
for all values of the parameters.

The scheme TopInter concerns a unary predicate P, and states that:

{p : P[p] ∧ p 6= 0E2
T

} = {p7; p7 ranges over points of E2
T
: P[p7]} ∩

((the carrier of E2
T
) \ {0E2

T

})
for all values of the parameters.

Next we state several propositions:

(27) Let B0 be a subset of E2
T
, K0 be a subset of (E2

T
)↾B0, and f be a map

from (E2
T
)↾B0↾K0 into (E2

T
)↾B0. Suppose f = SqCirc ↾K0 and B0 = (the
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carrier of E2
T
) \ {0E2

T

} and K0 = {p : (p2 ¬ p1 ∧ −p1 ¬ p2 ∨ p2 ­
p1 ∧ p2 ¬ −p1) ∧ p 6= 0E2

T

}. Then f is continuous and K0 is closed.

(28) Let B0 be a subset of E2
T
, K0 be a subset of (E2

T
)↾B0, and f be a map

from (E2
T
)↾B0↾K0 into (E2

T
)↾B0. Suppose f = SqCirc ↾K0 and B0 = (the

carrier of E2
T
) \ {0E2

T

} and K0 = {p : (p1 ¬ p2 ∧ −p2 ¬ p1 ∨ p1 ­
p2 ∧ p1 ¬ −p2) ∧ p 6= 0E2

T

}. Then f is continuous and K0 is closed.

(29) Let D be a non empty subset of E2
T
. Suppose Dc = {0E2

T

}. Then there
exists a map h from (E2

T
)↾D into (E2

T
)↾D such that h = SqCirc ↾D and h

is continuous.

(30) For every non empty subset D of E2
T
such that D = (the carrier of

E2
T
) \ {0E2

T

} holds Dc = {0E2
T

}.
(31) There exists a map h from E2

T
into E2

T
such that h = SqCirc and h is

continuous.

(32) SqCirc is one-to-one.

Let us observe that SqCirc is one-to-one.

One can prove the following propositions:

(33) Let K2, C1 be subsets of E2
T
. Suppose that

(i) K2 = {q : −1 = q1 ∧ −1 ¬ q2 ∧ q2 ¬ 1 ∨ q1 = 1 ∧ −1 ¬ q2 ∧ q2 ¬
1 ∨ −1 = q2 ∧ −1 ¬ q1 ∧ q1 ¬ 1 ∨ 1 = q2 ∧ −1 ¬ q1 ∧ q1 ¬ 1}, and

(ii) C1 = {p2; p2 ranges over points of E2
T
: |p2| = 1}.

Then SqCirc◦K2 = C1.

(34) Let P , K2 be subsets of E2
T
and f be a map from (E2

T
)↾K2 into (E2

T
)↾P.

Suppose that

(i) K2 = {q : −1 = q1 ∧ −1 ¬ q2 ∧ q2 ¬ 1 ∨ q1 = 1 ∧ −1 ¬ q2 ∧ q2 ¬
1 ∨ −1 = q2 ∧ −1 ¬ q1 ∧ q1 ¬ 1 ∨ 1 = q2 ∧ −1 ¬ q1 ∧ q1 ¬ 1}, and

(ii) f is a homeomorphism.

Then P is a simple closed curve.

(35) Let K2 be a subset of E2
T
. Suppose K2 = {q : −1 = q1 ∧ −1 ¬ q2 ∧ q2 ¬

1 ∨ q1 = 1 ∧ −1 ¬ q2 ∧ q2 ¬ 1 ∨ −1 = q2 ∧ −1 ¬ q1 ∧ q1 ¬ 1 ∨ 1 =

q2 ∧ −1 ¬ q1 ∧ q1 ¬ 1}. Then K2 is a simple closed curve and compact.

(36) For every subset C1 of E2
T
such that C1 = {p; p ranges over points of E2

T
:

|p| = 1} holds C1 is a simple closed curve.

3. The Fashoda Meet Theorem for the Circle

Next we state a number of propositions:

(37) Let K0, C0 be subsets of E2
T
. Suppose K0 = {p : −1 ¬ p1 ∧ p1 ¬

1 ∧ −1 ¬ p2 ∧ p2 ¬ 1} and C0 = {p1; p1 ranges over points of E2
T
:

|p1| ¬ 1}. Then SqCirc−1(C0) ⊆ K0.
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(38) Let given p. Then

(i) if p = 0E2
T

, then SqCirc−1(p) = 0E2
T

,

(ii) if p2 ¬ p1 and −p1 ¬ p2 or p2 ­ p1 and p2 ¬ −p1 and if p 6= 0E2
T

, then

SqCirc−1(p) = [p1 ·
√

1 + (p2

p1
)2, p2 ·

√

1 + (p2

p1
)2], and

(iii) if p2 6¬ p1 or −p1 6¬ p2 but p2 6­ p1 or p2 6¬ −p1 and p 6= 0E2
T

, then

SqCirc−1(p) = [p1 ·
√

1 + (p1

p2
)2, p2 ·

√

1 + (p1

p2
)2].

(39) SqCirc−1 is a map from E2
T
into E2

T
.

(40) Let p be a point of E2
T
such that p 6= 0E2

T

. Then

(i) if p1 ¬ p2 and −p2 ¬ p1 or p1 ­ p2 and p1 ¬ −p2, then SqCirc
−1(p) =

[p1 ·
√

1 + (p1

p2
)2, p2 ·

√

1 + (p1

p2
)2], and

(ii) if p1 6¬ p2 or −p2 6¬ p1 and if p1 6­ p2 or p1 6¬ −p2, then SqCirc
−1(p) =

[p1 ·
√

1 + (p2

p1
)2, p2 ·

√

1 + (p2

p1
)2].

(41) Let X be a non empty topological space and f1, f2 be maps from X into

R
1. Suppose f1 is continuous and f2 is continuous and for every point q of

X holds f2(q) 6= 0. Then there exists a map g from X into R
1 such that

(i) for every point p ofX and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) = r1 ·
√

1 + ( r1

r2
)2, and

(ii) g is continuous.

(42) Let X be a non empty topological space and f1, f2 be maps from X into

R
1. Suppose f1 is continuous and f2 is continuous and for every point q of

X holds f2(q) 6= 0. Then there exists a map g from X into R
1 such that

(i) for every point p ofX and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) = r2 ·
√

1 + ( r1

r2
)2, and

(ii) g is continuous.

(43) Let K1 be a non empty subset of E2
T
and f be a map from (E2

T
)↾K1 into

R
1. Suppose that

(i) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = p1 ·
√

1 + (p2

p1
)2, and

(ii) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds

q1 6= 0.

Then f is continuous.

(44) Let K1 be a non empty subset of E2
T
and f be a map from (E2

T
)↾K1 into

R
1. Suppose that

(i) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = p2 ·
√

1 + (p2

p1
)2, and

(ii) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds

q1 6= 0.
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Then f is continuous.

(45) Let K1 be a non empty subset of E2
T
and f be a map from (E2

T
)↾K1 into

R
1. Suppose that

(i) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = p2 ·
√

1 + (p1

p2
)2, and

(ii) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds

q2 6= 0.

Then f is continuous.

(46) Let K1 be a non empty subset of E2
T
and f be a map from (E2

T
)↾K1 into

R
1. Suppose that

(i) for every point p of E2
T
such that p ∈ the carrier of (E2

T
)↾K1 holds

f(p) = p1 ·
√

1 + (p1

p2
)2, and

(ii) for every point q of E2
T
such that q ∈ the carrier of (E2

T
)↾K1 holds

q2 6= 0.

Then f is continuous.

(47) Let K0, B0 be subsets of E2
T
and f be a map from (E2

T
)↾K0 into (E2

T
)↾B0.

Suppose f = SqCirc−1↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

} and
K0 = {p : (p2 ¬ p1 ∧ −p1 ¬ p2 ∨ p2 ­ p1 ∧ p2 ¬ −p1) ∧ p 6= 0E2

T

}.
Then f is continuous.

(48) Let K0, B0 be subsets of E2
T
and f be a map from (E2

T
)↾K0 into (E2

T
)↾B0.

Suppose f = SqCirc−1↾K0 and B0 = (the carrier of E2
T
) \ {0E2

T

} and
K0 = {p : (p1 ¬ p2 ∧ −p2 ¬ p1 ∨ p1 ­ p2 ∧ p1 ¬ −p2) ∧ p 6= 0E2

T

}.
Then f is continuous.

(49) Let B0 be a subset of E2
T
, K0 be a subset of (E2

T
)↾B0, and f be a map

from (E2
T
)↾B0↾K0 into (E2

T
)↾B0. Suppose f = SqCirc−1↾K0 and B0 = (the

carrier of E2
T
) \ {0E2

T

} and K0 = {p : (p2 ¬ p1 ∧ −p1 ¬ p2 ∨ p2 ­
p1 ∧ p2 ¬ −p1) ∧ p 6= 0E2

T

}. Then f is continuous and K0 is closed.

(50) Let B0 be a subset of E2
T
, K0 be a subset of (E2

T
)↾B0, and f be a map

from (E2
T
)↾B0↾K0 into (E2

T
)↾B0. Suppose f = SqCirc−1↾K0 and B0 = (the

carrier of E2
T
) \ {0E2

T

} and K0 = {p : (p1 ¬ p2 ∧ −p2 ¬ p1 ∨ p1 ­
p2 ∧ p1 ¬ −p2) ∧ p 6= 0E2

T

}. Then f is continuous and K0 is closed.

(51) Let D be a non empty subset of E2
T
. Suppose Dc = {0E2

T

}. Then there
exists a map h from (E2

T
)↾D into (E2

T
)↾D such that h = SqCirc−1↾D and

h is continuous.

(52) There exists a map h from E2
T
into E2

T
such that h = SqCirc−1 and h is

continuous.

(54)1(i) SqCirc is a map from E2
T
into E2

T
,

(ii) rng SqCirc = the carrier of E2
T
, and

1The proposition (53) has been removed.
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(iii) for every map f from E2
T
into E2

T
such that f = SqCirc holds f is a

homeomorphism.

(55) Let f , g be maps from I into E2
T
, C0, K3, K4, K5, K6 be subsets of

E2
T
, and O, I be points of I. Suppose that O = 0 and I = 1 and f is

continuous and one-to-one and g is continuous and one-to-one and C0 =

{p : |p| ¬ 1} and K3 = {q1; q1 ranges over points of E2
T
: |q1| = 1 ∧ (q1)2 ¬

(q1)1 ∧ (q1)2 ­ −(q1)1} and K4 = {q2; q2 ranges over points of E2
T
:

|q2| = 1 ∧ (q2)2 ­ (q2)1 ∧ (q2)2 ¬ −(q2)1} and K5 = {q3; q3 ranges over

points of E2
T
: |q3| = 1 ∧ (q3)2 ­ (q3)1 ∧ (q3)2 ­ −(q3)1} and K6 = {q4; q4

ranges over points of E2
T
: |q4| = 1 ∧ (q4)2 ¬ (q4)1 ∧ (q4)2 ¬ −(q4)1} and

f(O) ∈ K4 and f(I) ∈ K3 and g(O) ∈ K6 and g(I) ∈ K5 and rng f ⊆ C0

and rng g ⊆ C0. Then rng f ∩ rng g 6= ∅.
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