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The notation and terminology used here are introduced in the following papers:

[27], [21], [10], [15], [14], [9], [12], [8], [13], [23], [20], [6], [25], [11], [16], [7], [24],

[17], [18], [19], [28], [29], [26], [22], [1], [3], [4], [5], and [2].

In this paper X, x, z are sets.

Let S be a non empty non void many sorted signature and let A be a non

empty algebra over S. Observe that
⋃
(the sorts of A) is non empty.

Let S be a non empty non void many sorted signature and let A be a non

empty algebra over S.

(Def. 1) An element of
⋃
(the sorts of A) is said to be an element of A.

We now state two propositions:

(1) For every function f such that X ⊆ dom f and f is one-to-one holds

f−1(f◦X) = X.

(2) Let I be a set, A be a many sorted set indexed by I, and F be a many

sorted function indexed by I. If F is “1-1” and A ⊆ domκ F (κ), then

F−1(F ◦ A) = A.

Let S be a non void signature and let X be a many sorted set indexed by the

carrier of S. The functor FreeS(X) yields a strict algebra over S and is defined

by:

(Def. 2) There exists a subset A of Free(X ∪ ((the carrier of S) 7−→ {0})) such

that FreeS(X) = Gen(A) and A = (Reverse(X ∪ ((the carrier of S) 7−→

{0})))−1(X).

We now state four propositions:
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(3) Let S be a non void signature,X be a non-empty many sorted set indexed

by the carrier of S, and s be a sort symbol of S. Then 〈〈x, s〉〉 ∈ the carrier

of DTConMSA(X) if and only if x ∈ X(s).

(4) Let S be a non void signature, Y be a non-empty many sorted set indexed

by the carrier of S, X be a many sorted set indexed by the carrier of S,

and s be a sort symbol of S. Then x ∈ X(s) and x ∈ Y (s) if and only if

the root tree of 〈〈x, s〉〉 ∈ ((Reverse(Y ))−1(X))(s).

(5) Let S be a non void signature, X be a many sorted set indexed by the

carrier of S, and s be a sort symbol of S. If x ∈ X(s), then the root tree

of 〈〈x, s〉〉 ∈ (the sorts of FreeS(X))(s).

(6) Let S be a non void signature, X be a many sorted set indexed by the

carrier of S, and o be an operation symbol of S. Suppose Arity(o) = ∅.

Then the root tree of 〈〈o, the carrier of S〉〉 ∈ (the sorts of FreeS(X))(the

result sort of o).

Let S be a non void signature and let X be a non empty yielding many

sorted set indexed by the carrier of S. Observe that FreeS(X) is non empty.

One can prove the following three propositions:

(7) Let S be a non void signature and X be a non-empty many sorted set

indexed by the carrier of S. Then x is an element of Free(X) if and only

if x is a term of S over X.

(8) Let S be a non void signature,X be a non-empty many sorted set indexed

by the carrier of S, s be a sort symbol of S, and x be a term of S over X.

Then x ∈ (the sorts of Free(X))(s) if and only if the sort of x = s.

(9) Let S be a non void signature and X be a non empty yielding many

sorted set indexed by the carrier of S. Then every element of FreeS(X) is

a term of S over X ∪ ((the carrier of S) 7−→ {0}).

Let S be a non empty non void many sorted signature and let X be a non

empty yielding many sorted set indexed by the carrier of S. Note that every

element of FreeS(X) is relation-like and function-like.

Let S be a non empty non void many sorted signature and let X be a non

empty yielding many sorted set indexed by the carrier of S. Note that every

element of FreeS(X) is finite and decorated tree-like.

Let S be a non empty non void many sorted signature and let X be a non

empty yielding many sorted set indexed by the carrier of S. Observe that every

element of FreeS(X) is finite-branching.

One can check that every decorated tree is non empty.

Let S be a many sorted signature and let t be a non empty binary relation.

The functor VarS t yields a many sorted set indexed by the carrier of S and is

defined as follows:

(Def. 3) For every set s such that s ∈ the carrier of S holds (VarS t)(s) = {a1; a
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ranges over elements of rng t : a2 = s}.

Let S be a many sorted signature, let X be a many sorted set indexed by

the carrier of S, and let t be a non empty binary relation. The functor VarX t

yielding a many sorted subset indexed by X is defined by:

(Def. 4) VarX t = X ∩VarS t.

We now state several propositions:

(10) Let S be a many sorted signature, X be a many sorted set indexed by

the carrier of S, t be a non empty binary relation, and V be a many sorted

subset indexed by X. Then V = VarX t if and only if for every set s such

that s ∈ the carrier of S holds V (s) = X(s) ∩ {a1; a ranges over elements

of rng t : a2 = s}.

(11) Let S be a many sorted signature and s, x be sets. Then

(i) if s ∈ the carrier of S, then (VarS (the root tree of 〈〈x, s〉〉))(s) = {x},

and

(ii) for every set s′ such that s′ 6= s or s /∈ the carrier of S holds (VarS (the

root tree of 〈〈x, s〉〉))(s′) = ∅.

(12) Let S be a many sorted signature and s be a set. Suppose s ∈ the carrier

of S. Let p be a decorated tree yielding finite sequence. Then x ∈ (VarS(〈〈z,

the carrier of S〉〉-tree(p)))(s) if and only if there exists a decorated tree t

such that t ∈ rng p and x ∈ (VarS t)(s).

(13) Let S be a many sorted signature, X be a many sorted set indexed by

the carrier of S, and s, x be sets. Then

(i) if x ∈ X(s), then (VarX (the root tree of 〈〈x, s〉〉))(s) = {x}, and

(ii) for every set s′ such that s′ 6= s or x /∈ X(s) holds (VarX (the root tree

of 〈〈x, s〉〉))(s′) = ∅.

(14) Let S be a many sorted signature, X be a many sorted set indexed by

the carrier of S, and s be a set. Suppose s ∈ the carrier of S. Let p be

a decorated tree yielding finite sequence. Then x ∈ (VarX(〈〈z, the carrier

of S〉〉-tree(p)))(s) if and only if there exists a decorated tree t such that

t ∈ rng p and x ∈ (VarX t)(s).

(15) Let S be a non void signature,X be a non-empty many sorted set indexed

by the carrier of S, and t be a term of S over X. Then VarS t ⊆ X.

Let S be a non void signature, letX be a non-empty many sorted set indexed

by the carrier of S, and let t be a term of S over X. The functor Vart yielding

a many sorted subset indexed by X is defined by:

(Def. 5) Vart = VarS t.

The following proposition is true

(16) Let S be a non void signature,X be a non-empty many sorted set indexed

by the carrier of S, and t be a term of S over X. Then Vart = VarX t.
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Let S be a non void signature, let Y be a non-empty many sorted set indexed

by the carrier of S, and let X be a many sorted set indexed by the carrier of S.

The functor S -TermsY (X) yielding a subset of Free(Y ) is defined as follows:

(Def. 6) For every sort symbol s of S holds (S -TermsY (X))(s) = {t; t ranges over

terms of S over Y : the sort of t = s ∧ Vart ⊆ X}.

One can prove the following propositions:

(17) Let S be a non void signature, Y be a non-empty many sorted set indexed

by the carrier of S, X be a many sorted set indexed by the carrier of S,

and s be a sort symbol of S. If x ∈ (S -TermsY (X))(s), then x is a term

of S over Y .

(18) Let S be a non void signature, Y be a non-empty many sorted set indexed

by the carrier of S,X be a many sorted set indexed by the carrier of S, t be

a term of S over Y , and s be a sort symbol of S. If t ∈ (S -TermsY (X))(s),

then the sort of t = s and Vart ⊆ X.

(19) Let S be a non void signature, Y be a non-empty many sorted set indexed

by the carrier of S, X be a many sorted set indexed by the carrier of S, and

s be a sort symbol of S. Then the root tree of 〈〈x, s〉〉 ∈ (S -TermsY (X))(s)

if and only if x ∈ X(s) and x ∈ Y (s).

(20) Let S be a non void signature, Y be a non-empty many sorted set indexed

by the carrier of S, X be a many sorted set indexed by the carrier of S, o

be an operation symbol of S, and p be an argument sequence of Sym(o, Y ).

Then Sym(o, Y )-tree(p) ∈ (S -TermsY (X))(the result sort of o) if and only

if rng p ⊆
⋃

(S -TermsY (X)).

(21) Let S be a non void signature, X be a non-empty many sorted set

indexed by the carrier of S, and A be a subset of Free(X). Then A is

operations closed if and only if for every operation symbol o of S and

for every argument sequence p of Sym(o,X) such that rng p ⊆
⋃

A holds

Sym(o,X)-tree(p) ∈ A(the result sort of o).

(22) Let S be a non void signature, Y be a non-empty many sorted set indexed

by the carrier of S, and X be a many sorted set indexed by the carrier of

S. Then S -TermsY (X) is operations closed.

(23) Let S be a non void signature, Y be a non-empty many sorted set indexed

by the carrier of S, and X be a many sorted set indexed by the carrier of

S. Then (Reverse(Y ))−1(X) ⊆ S -TermsY (X).

(24) Let S be a non void signature, X be a many sorted set indexed by the

carrier of S, t be a term of S over X ∪ ((the carrier of S) 7−→ {0}), and

s be a sort symbol of S. If t ∈ (S -TermsX∪((the carrier of S)7−→{0})(X))(s),

then t ∈ (the sorts of FreeS(X))(s).

(25) Let S be a non void signature and X be a many sorted set

indexed by the carrier of S. Then the sorts of FreeS(X) =
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S -TermsX∪((the carrier of S)7−→{0})(X).

(26) Let S be a non void signature and X be a many sorted set in-

dexed by the carrier of S. Then Free(X ∪ ((the carrier of S) 7−→

{0}))↾(S -TermsX∪((the carrier of S)7−→{0})(X)) = FreeS(X).

(27) Let S be a non void signature, X, Y be non-empty many sorted sets

indexed by the carrier of S, A be a subalgebra of Free(X), and B be a

subalgebra of Free(Y ). Suppose the sorts of A = the sorts of B. Then the

algebra of A = the algebra of B.

(28) Let S be a non void signature, X be a non empty yielding many sorted

set indexed by the carrier of S, Y be a many sorted set indexed by the

carrier of S, and t be an element of FreeS(X). Then VarS t ⊆ X.

(29) Let S be a non void signature,X be a non-empty many sorted set indexed

by the carrier of S, and t be a term of S over X. Then Vart ⊆ X.

(30) Let S be a non void signature, X, Y be non-empty many sorted sets

indexed by the carrier of S, t1 be a term of S over X, and t2 be a term of

S over Y . If t1 = t2, then the sort of t1 = the sort of t2.

(31) Let S be a non void signature, X, Y be non-empty many sorted sets

indexed by the carrier of S, and t be a term of S over Y . If Vart ⊆ X,

then t is a term of S over X.

(32) Let S be a non void signature and X be a non-empty many sorted set

indexed by the carrier of S. Then FreeS(X) = Free(X).

(33) Let S be a non void signature, Y be a non-empty many sorted set indexed

by the carrier of S, t be a term of S over Y , and p be an element of dom t.

Then Vart↾p ⊆ Vart.

(34) Let S be a non void signature, X be a non empty yielding many sorted

set indexed by the carrier of S, t be an element of FreeS(X), and p be an

element of dom t. Then t↾p is an element of FreeS(X).

(35) Let S be a non void signature,X be a non-empty many sorted set indexed

by the carrier of S, t be a term of S over X, and a be an element of rng t.

Then a = 〈〈a1, a2〉〉.

(36) Let S be a non void signature, X be a non empty yielding many sorted

set indexed by the carrier of S, t be an element of FreeS(X), and s be a

sort symbol of S. Then

(i) if x ∈ (VarS t)(s), then 〈〈x, s〉〉 ∈ rng t, and

(ii) if 〈〈x, s〉〉 ∈ rng t, then x ∈ (VarS t)(s) and x ∈ X(s).

(37) Let S be a non void signature andX be a many sorted set indexed by the

carrier of S. Suppose that for every sort symbol s of S such that X(s) = ∅

there exists an operation symbol o of S such that the result sort of o = s

and Arity(o) = ∅. Then FreeS(X) is non-empty.

(38) Let S be a non void signature, A be an algebra over S, B be a subalgebra
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of A, and o be an operation symbol of S. Then Args(o,B) ⊆ Args(o,A).

(39) For every non void signature S and for every feasible algebra A over S

holds every subalgebra of A is feasible.

The following proposition is true

(40) Let S be a non void signature and X be a many sorted set indexed by

the carrier of S. Then FreeS(X) is feasible and free.
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