Duality Based on the Galois Connection. Part I

Grzegorz Bancerek University of Białystok Shinshu University, Nagano

Summary. In the paper, we investigate the duality of categories of complete lattices and maps preserving suprema or infima according to [12, p. 179–183; 1.1–1.12]. The duality is based on the concept of the Galois connection.

MML Identifier: WAYBEL34.

The papers [20], [8], [19], [21], [9], [16], [1], [23], [17], [25], [24], [18], [11], [14], [27], [22], [13], [3], [10], [4], [15], [7], [6], [2], [26], and [5] provide the terminology and notation for this paper.

1. INFS-PRESERVING AND SUPS-PRESERVING MAPS

Let S, T be complete lattices. One can check that there exists a connection between S and T which is Galois.

Next we state the proposition

- (1) Let S, T, S', T' be non empty relational structures. Suppose that
- (i) the relational structure of S = the relational structure of S', and
- (ii) the relational structure of T = the relational structure of T'. Let c be a connection between S and T and c' be a connection between S' and T'. If c = c', then if c is Galois, then c' is Galois.

Let S, T be lattices and let g be a map from S into T. Let us assume that S is complete and T is complete and g is infs-preserving. The lower adjoint of g is a map from T into S and is defined as follows:

(Def. 1) $\langle g, \text{ the lower adjoint of } g \rangle$ is Galois.

C 2001 University of Białystok ISSN 1426-2630

Let S, T be lattices and let d be a map from T into S. Let us assume that S is complete and T is complete and d is sups-preserving. The upper adjoint of d is a map from S into T and is defined as follows:

(Def. 2) (the upper adjoint of d, d) is Galois.

Let S, T be complete lattices and let g be an infs-preserving map from S into T. One can verify that the lower adjoint of g is lower adjoint.

Let S, T be complete lattices and let d be a sups-preserving map from T into S. One can check that the upper adjoint of d is upper adjoint.

The following two propositions are true:

- (2) Let S, T be complete lattices, g be an infs-preserving map from S into T, and t be an element of T. Then (the lower adjoint of g) $(t) = inf(g^{-1}(\uparrow t))$.
- (3) Let S, T be complete lattices, d be a sups-preserving map from T into S, and s be an element of S. Then (the upper adjoint of d) $(s) = \sup(d^{-1}(\downarrow s))$.

Let S, T be relational structures and let f be a function from the carrier of S into the carrier of T. The functor f^{op} yielding a map from S^{op} into T^{op} is defined as follows:

(Def. 3)
$$f^{\rm op} = f$$
.

Let S, T be complete lattices and let g be an infs-preserving map from S into T. One can verify that g^{op} is lower adjoint.

Let S, T be complete lattices and let d be a sups-preserving map from S into T. Observe that d^{op} is upper adjoint.

We now state several propositions:

- (4) Let S, T be complete lattices and g be an infs-preserving map from S into T. Then the lower adjoint of g = the upper adjoint of g^{op} .
- (5) Let S, T be complete lattices and d be a sups-preserving map from S into T. Then the lower adjoint of d^{op} = the upper adjoint of d.
- (6) For every non empty relational structure L holds $\langle id_L, id_L \rangle$ is Galois.
- (7) For every complete lattice L holds the lower adjoint of $id_L = id_L$ and the upper adjoint of $id_L = id_L$.
- (8) Let L_1 , L_2 , L_3 be complete lattices, g_1 be an infs-preserving map from L_1 into L_2 , and g_2 be an infs-preserving map from L_2 into L_3 . Then the lower adjoint of $g_2 \cdot g_1 =$ (the lower adjoint of g_1) \cdot (the lower adjoint of g_2).
- (9) Let L_1 , L_2 , L_3 be complete lattices, d_1 be a sups-preserving map from L_1 into L_2 , and d_2 be a sups-preserving map from L_2 into L_3 . Then the upper adjoint of $d_2 \cdot d_1 =$ (the upper adjoint of d_1) \cdot (the upper adjoint of d_2).
- (10) Let S, T be complete lattices and g be an infs-preserving map from S into T. Then the upper adjoint of the lower adjoint of g = g.

- (11) Let S, T be complete lattices and d be a sups-preserving map from S into T. Then the lower adjoint of the upper adjoint of d = d.
- (12) Let C be a non empty category structure and a, b, f be sets. Suppose $f \in (\text{the arrows of } C)(a, b)$. Then there exist objects o_1, o_2 of C such that $o_1 = a$ and $o_2 = b$ and $f \in \langle o_1, o_2 \rangle$ and f is a morphism from o_1 to o_2 .

Let W be a non empty set. Let us assume that there exists an element w of W such that w is non empty. The functor INF_W yields a lattice-wise strict category and is defined by the conditions (Def. 4).

- (Def. 4)(i) For every lattice x holds x is an object of INF_W iff x is strict and complete and the carrier of $x \in W$, and
 - (ii) for all objects a, b of INF_W and for every monotone map f from \mathbb{L}_a into \mathbb{L}_b holds $f \in \langle a, b \rangle$ iff f is infs-preserving.

Let W be a non empty set. Let us assume that there exists an element w of W such that w is non empty. The functor SUP_W yields a lattice-wise strict category and is defined by the conditions (Def. 5).

- (Def. 5)(i) For every lattice x holds x is an object of SUP_W iff x is strict and complete and the carrier of $x \in W$, and
 - (ii) for all objects a, b of SUP_W and for every monotone map f from \mathbb{L}_a into \mathbb{L}_b holds $f \in \langle a, b \rangle$ iff f is sups-preserving.

Let W be a set with a non-empty element. Observe that INF_W has complete lattices and SUP_W has complete lattices.

One can prove the following propositions:

- (13) Let W be a set with a non-empty element and L be a lattice. Then L is an object of INF_W if and only if L is strict and complete and the carrier of $L \in W$.
- (14) Let W be a set with a non-empty element, a, b be objects of INF_W , and f be a set. Then $f \in \langle a, b \rangle$ if and only if f is an infs-preserving map from \mathbb{L}_a into \mathbb{L}_b .
- (15) Let W be a set with a non-empty element and L be a lattice. Then L is an object of SUP_W if and only if L is strict and complete and the carrier of $L \in W$.
- (16) Let W be a set with a non-empty element, a, b be objects of SUP_W , and f be a set. Then $f \in \langle a, b \rangle$ if and only if f is a sups-preserving map from \mathbb{L}_a into \mathbb{L}_b .
- (17) For every set W with a non-empty element holds the carrier of INF_W = the carrier of SUP_W .

Let W be a set with a non-empty element. The functor LowerAdj_W yields a contravariant strict functor from INF_W to SUP_W and is defined by the conditions (Def. 6).

(Def. 6)(i) For every object a of INF_W holds LowerAdj_W(a) = \mathbb{L}_a , and

(ii) for all objects a, b of INF_W such that $\langle a, b \rangle \neq \emptyset$ and for every morphism f from a to b holds LowerAdj_W(f) = the lower adjoint of [@] f.

The functor UpperAdj_W yields a contravariant strict functor from SUP_W to INF_W and is defined by the conditions (Def. 7).

(Def. 7)(i) For every object a of SUP_W holds UpperAdj_W(a) = \mathbb{L}_a , and

(ii) for all objects a, b of SUP_W such that $\langle a, b \rangle \neq \emptyset$ and for every morphism f from a to b holds UpperAdj_W(f) = the upper adjoint of [@] f.

Let W be a set with a non-empty element. Observe that LowerAdj_W is bijective and UpperAdj_W is bijective.

We now state several propositions:

- (18) For every set W with a non-empty element holds $(\text{LowerAdj}_W)^{-1} = \text{UpperAdj}_W$ and $(\text{UpperAdj}_W)^{-1} = \text{LowerAdj}_W$.
- (19) For every set W with a non-empty element holds $\text{LowerAdj}_W \cdot \text{UpperAdj}_W$ = id_{SUP_W} and $\text{UpperAdj}_W \cdot \text{LowerAdj}_W = \text{id}_{INF_W}$.
- (20) For every set W with a non-empty element holds INF_W , SUP_W are anti-isomorphic.
- (21) For every set W with a non-empty element holds INF_W and SUP_W are anti-isomorphic under LowerAdj_W.
- (22) For every set W with a non-empty element holds SUP_W and INF_W are anti-isomorphic under UpperAdj_W.
 - 2. Scott Continuous Maps and Continuous Lattices

Next we state the proposition

(23) Let S, T be complete lattices and g be an infs-preserving map from S into T. Then g is directed-sups-preserving if and only if for every Scott topological augmentation X of T and for every Scott topological augmentation Y of S and for every open subset V of X holds \uparrow ((the lower adjoint of $g)^{\circ}V$) is an open subset of Y.

Let S, T be non empty reflexive relational structures and let f be a map from S into T. We say that f is waybelow-preserving if and only if:

(Def. 8) For all elements x, y of S such that $x \ll y$ holds $f(x) \ll f(y)$.

We now state two propositions:

- (24) Let S, T be complete lattices and g be an infs-preserving map from S into T. Suppose g is directed-sups-preserving. Then the lower adjoint of g is waybelow-preserving.
- (25) Let S be a complete lattice, T be a complete continuous lattice, and g be an infs-preserving map from S into T. Suppose the lower adjoint of g is waybelow-preserving. Then g is directed-sups-preserving.

770

Let S, T be topological spaces and let f be a map from S into T. We say that f is relatively open if and only if:

- (Def. 9) For every open subset V of S holds $f^{\circ}V$ is an open subset of $T \upharpoonright \operatorname{rng} f$. One can prove the following propositions:
 - (26) Let X, Y be non empty topological spaces and d be a map from X into Y. Then d is relatively open if and only if d° is open.
 - (27) Let S, T be complete lattices, g be an infs-preserving map from S into T, X be a Scott topological augmentation of T, Y be a Scott topological augmentation of S, and V be an open subset of X. Then (the lower adjoint of $g)^{\circ}V = \operatorname{rng}(\text{the lower adjoint of } g) \cap \uparrow ((\text{the lower adjoint of } g)^{\circ}V).$
 - (28) Let S, T be complete lattices, g be an infs-preserving map from S into T, X be a Scott topological augmentation of T, and Y be a Scott topological augmentation of S. Suppose that for every open subset V of X holds \uparrow ((the lower adjoint of g)°V) is an open subset of Y. Let d be a map from X into Y. If d = the lower adjoint of g, then d is relatively open.
 - Let X, Y be complete lattices and let f be a sups-preserving map from X into Y. One can check that Im f is complete.

Next we state four propositions:

- (29) Let S, T be complete lattices, g be an infs-preserving map from S into T, X be a Scott topological augmentation of T, Y be a Scott topological augmentation of S, Z be a Scott topological augmentation of Im (the lower adjoint of g), d be a map from X into Y, and d' be a map from X into Z. Suppose d = the lower adjoint of g and d' = d. If d is relatively open, then d' is open.
- (30) Let T_1, T_2, S_1, S_2 be topological structures. Suppose that
 - (i) the topological structure of T_1 = the topological structure of T_2 , and
 - (ii) the topological structure of S_1 = the topological structure of S_2 . If S_1 is a subspace of T_1 , then S_2 is a subspace of T_2 .
- (31) For every topological structure T holds $T \upharpoonright \Omega_T$ = the topological structure of T.
- (32) Let S, T be complete lattices and g be an infs-preserving map from S into T. Suppose g is one-to-one. Let X be a Scott topological augmentation of T, Y be a Scott topological augmentation of S, and d be a map from X into Y. Suppose d = the lower adjoint of g. Then g is directed-sups-preserving if and only if d is open.

Let X be a complete lattice and let f be a projection map from X into X. One can verify that Im f is complete.

We now state a number of propositions:

- (33) Let L be a complete lattice and k be a kernel map from L into L. Then
 - (i) k° is infs-preserving,

- (ii) k_{\circ} is sups-preserving,
- (iii) the lower adjoint of $k^{\circ} = k_{\circ}$, and
- (iv) the upper adjoint of $k_{\circ} = k^{\circ}$.
- (34) Let L be a complete lattice and k be a kernel map from L into L. Then k is directed-sups-preserving if and only if k° is directed-sups-preserving.
- (35) Let L be a complete lattice and k be a kernel map from L into L. Then k is directed-sups-preserving if and only if for every Scott topological augmentation X of Im k and for every Scott topological augmentation Y of L and for every subset V of L such that V is an open subset of X holds $\uparrow V$ is an open subset of Y.
- (36) Let L be a complete lattice, S be a sups-inheriting non empty full relational substructure of L, x, y be elements of L, and a, b be elements of S. If a = x and b = y, then if $x \ll y$, then $a \ll b$.
- (37) Let L be a complete lattice and k be a kernel map from L into L. Suppose k is directed-sups-preserving. Let x, y be elements of L and a, b be elements of Im k. If a = x and b = y, then $x \ll y$ iff $a \ll b$.
- (38) Let L be a complete lattice and k be a kernel map from L into L. Suppose that
 - (i) $\operatorname{Im} k$ is continuous, and
 - (ii) for all elements x, y of L and for all elements a, b of Im k such that a = x and b = y holds $x \ll y$ iff $a \ll b$.

Then k is directed-sups-preserving.

- (39) Let L be a complete lattice and c be a closure map from L into L. Then
- (i) c° is sups-preserving,
- (ii) c_{\circ} is infs-preserving,
- (iii) the upper adjoint of $c^{\circ} = c_{\circ}$, and
- (iv) the lower adjoint of $c_{\circ} = c^{\circ}$.
- (40) Let L be a complete lattice and c be a closure map from L into L. Then Im c is directed-sups-inheriting if and only if c_0 is directed-sups-preserving.
- (41) Let L be a complete lattice and c be a closure map from L into L. Then Im c is directed-sups-inheriting if and only if for every Scott topological augmentation X of Im c and for every Scott topological augmentation Y of L and for every map f from Y into X such that f = c holds f is open.
- (42) Let L be a complete lattice and c be a closure map from L into L. If Im c is directed-sups-inheriting, then c° is waybelow-preserving.
- (43) Let L be a continuous complete lattice and c be a closure map from L into L. If c° is waybelow-preserving, then Im c is directed-sups-inheriting.

772

3. DUALITY OF SUBCATEGORIES OF INF AND SUP

Let W be a non empty set. The functor INF_W^{\uparrow} yielding a strict non empty subcategory of INF_W is defined by the conditions (Def. 10).

- (Def. 10)(i) Every object of INF_W is an object of INF_W^{\uparrow} , and
 - (ii) for all objects a, b of INF_W and for all objects a', b' of INF_W^{\uparrow} such that a' = a and b' = b and $\langle a, b \rangle \neq \emptyset$ and for every morphism f from a to b holds $f \in \langle a', b' \rangle$ iff [@] f is directed-sups-preserving.

Let W be a set with a non-empty element. The functor SUP_W^0 yields a strict non empty subcategory of SUP_W and is defined by the conditions (Def. 11).

- (Def. 11)(i) Every object of SUP_W is an object of SUP_W^0 , and
 - (ii) for all objects a, b of SUP_W and for all objects a', b' of SUP⁰_W such that a' = a and b' = b and ⟨a,b⟩ ≠ Ø and for every morphism f from a to b holds f ∈ ⟨a', b'⟩ iff the upper adjoint of [@]f is directed-sups-preserving.

The following propositions are true:

- (44) Let S be a non empty relational structure, T be a non empty reflexive antisymmetric relational structure, t be an element of T, and X be a non empty subset of S. Then $S \mapsto t$ preserves sup of X and $S \mapsto t$ preserves inf of X.
- (45) Let S be a non empty relational structure and T be a lower-bounded non empty reflexive antisymmetric relational structure. Then $S \mapsto \perp_T$ is sups-preserving.
- (46) Let S be a non empty relational structure and T be an upper-bounded non empty reflexive antisymmetric relational structure. Then $S \mapsto \top_T$ is infs-preserving.

Let S be a non empty relational structure and let T be an upper-bounded non empty reflexive antisymmetric relational structure. Observe that $S \mapsto \top_T$ is directed-sups-preserving and infs-preserving.

Let S be a non empty relational structure and let T be a lower-bounded non empty reflexive antisymmetric relational structure. Observe that $S \mapsto \perp_T$ is filtered-infs-preserving and sups-preserving.

Let S be a non empty relational structure and let T be an upper-bounded non empty reflexive antisymmetric relational structure. Note that there exists a map from S into T which is directed-sups-preserving and infs-preserving.

Let S be a non empty relational structure and let T be a lower-bounded non empty reflexive antisymmetric relational structure. One can check that there exists a map from S into T which is filtered-infs-preserving and sups-preserving.

Next we state several propositions:

- (47) Let W be a set with a non-empty element and L be a lattice. Then L is an object of INF_W^{\uparrow} if and only if L is strict and complete and the carrier of $L \in W$.
- (48) Let W be a set with a non-empty element, a, b be objects of INF_W^{\dagger} , and f be a set. Then $f \in \langle a, b \rangle$ if and only if f is a directed-sups-preserving infs-preserving map from \mathbb{L}_a into \mathbb{L}_b .
- (49) Let W be a set with a non-empty element and L be a lattice. Then L is an object of SUP_W^0 if and only if L is strict and complete and the carrier of $L \in W$.
- (50) Let W be a set with a non-empty element, a, b be objects of SUP_W^0 , and f be a set. Then $f \in \langle a, b \rangle$ if and only if there exists a sups-preserving map g from \mathbb{L}_a into \mathbb{L}_b such that g = f and the upper adjoint of g is directed-sups-preserving.
- (51) For every set W with a non-empty element holds $INF_W^{\uparrow} =$ Intersect (INF_W, UPS_W) .

Let W be a set with a non-empty element. The functor CL_W yielding a strict full non empty subcategory of INF_W^{\uparrow} is defined as follows:

(Def. 12) For every object a of INF_W^{\uparrow} holds a is an object of CL_W iff \mathbb{L}_a is continuous.

Let W be a set with a non-empty element. Observe that CL_W has complete lattices.

One can prove the following two propositions:

- (52) Let W be a set with a non-empty element and L be a lattice. Suppose the carrier of $L \in W$. Then L is an object of CL_W if and only if L is strict, complete, and continuous.
- (53) Let W be a set with a non-empty element, a, b be objects of CL_W , and f be a set. Then $f \in \langle a, b \rangle$ if and only if f is an infs-preserving directed-sups-preserving map from \mathbb{L}_a into \mathbb{L}_b .

Let W be a set with a non-empty element. The functor CL_W^{op} yields a strict full non empty subcategory of SUP_W^0 and is defined by:

(Def. 13) For every object a of SUP_W^0 holds a is an object of CL_W^{op} iff \mathbb{L}_a is continuous.

Next we state several propositions:

- (54) Let W be a set with a non-empty element and L be a lattice. Suppose the carrier of $L \in W$. Then L is an object of CL_W^{op} if and only if L is strict, complete, and continuous.
- (55) Let W be a set with a non-empty element, a, b be objects of CL_W^{op} , and f be a set. Then $f \in \langle a, b \rangle$ if and only if there exists a sups-preserving map g from \mathbb{L}_a into \mathbb{L}_b such that g = f and the upper adjoint of g is directed-sups-preserving.

774

- (56) For every set W with a non-empty element holds INF_W^{\dagger} and SUP_W^{0} are anti-isomorphic under LowerAdj_W.
- (57) For every set W with a non-empty element holds SUP_W^0 and INF_W^{\uparrow} are anti-isomorphic under UpperAdj_W.
- (58) For every set W with a non-empty element holds CL_W and CL_W^{op} are anti-isomorphic under LowerAdj_W.
- (59) For every set W with a non-empty element holds CL_W^{op} and CL_W are anti-isomorphic under UpperAdj_W.
 - 4. Compact Preserving Maps and Sup-semilattices Morphisms

Let S, T be non empty reflexive relational structures and let f be a map from S into T. We say that f is compact-preserving if and only if:

- (Def. 14) For every element s of S such that s is compact holds f(s) is compact. One can prove the following propositions:
 - (60) Let S, T be complete lattices and d be a sups-preserving map from T into S. If d is waybelow-preserving, then d is compact-preserving.
 - (61) Let S, T be complete lattices and d be a sups-preserving map from T into S. Suppose T is algebraic and d is compact-preserving. Then d is waybelow-preserving.
 - (62) Let R, S, T be non empty relational structures, X be a subset of R, f be a map from R into S, and g be a map from S into T. Suppose f preserves sup of X and g preserves sup of $f^{\circ}X$. Then $g \cdot f$ preserves sup of X.

Let S, T be non empty relational structures and let f be a map from S into T. We say that f is finite-sups-preserving if and only if:

(Def. 15) For every finite subset X of S holds f preserves sup of X.

We say that f is bottom-preserving if and only if:

(Def. 16) f preserves sup of \emptyset_S .

Next we state the proposition

(63) Let R, S, T be non empty relational structures, f be a map from R into S, and g be a map from S into T. Suppose f is finite-sups-preserving and g is finite-sups-preserving. Then $g \cdot f$ is finite-sups-preserving.

Let S, T be non empty antisymmetric lower-bounded relational structures and let f be a map from S into T. Let us observe that f is bottom-preserving if and only if:

(Def. 17) $f(\perp_S) = \perp_T$.

Let L be a non empty relational structure and let S be a relational substructure of L. We say that S is finite-sups-inheriting if and only if:

(Def. 18) For every finite subset X of S such that sup X exists in L holds $\bigsqcup_L X \in$ the carrier of S.

We say that S is bottom-inheriting if and only if:

(Def. 19) $\perp_L \in$ the carrier of S.

Let S, T be non empty relational structures. Observe that every map from S into T which is sups-preserving is also bottom-preserving.

Let L be a lower-bounded antisymmetric non empty relational structure. Note that every relational substructure of L which is finite-sups-inheriting is also bottom-inheriting and join-inheriting.

Let L be a non empty relational structure. One can check that every relational substructure of L which is sups-inheriting is also finite-sups-inheriting.

Let S, T be lower-bounded non empty posets. One can verify that there exists a map from S into T which is sups-preserving.

Let L be a lower-bounded antisymmetric non empty relational structure. Observe that every full relational substructure of L which is bottom-inheriting is also non empty and lower-bounded.

Let L be a lower-bounded antisymmetric non empty relational structure. Note that there exists a relational substructure of L which is non empty, supsinheriting, finite-sups-inheriting, bottom-inheriting, and full.

Next we state the proposition

(64) Let L be a lower-bounded antisymmetric non empty relational structure and S be a non empty bottom-inheriting full relational substructure of L. Then $\perp_S = \perp_L$.

Let L be a lower-bounded non empty poset with l.u.b.'s. Note that every full relational substructure of L which is bottom-inheriting and join-inheriting is also finite-sups-inheriting.

Next we state two propositions:

- (65) Let S, T be non empty relational structures and f be a map from S into T. Suppose f is finite-sups-preserving. Then f is join-preserving and bottom-preserving.
- (66) Let S, T be lower-bounded posets with l.u.b.'s and f be a map from S into T. Suppose f is join-preserving and bottom-preserving. Then f is finite-sups-preserving.

Let S, T be non empty relational structures. One can check that every map from S into T which is sups-preserving is also finite-sups-preserving and every map from S into T which is finite-sups-preserving is also join-preserving and bottom-preserving.

Let S be a non empty relational structure and let T be a lower-bounded non empty reflexive antisymmetric relational structure. Observe that there exists a map from S into T which is sups-preserving and finite-sups-preserving. Let L be a lower-bounded non empty poset. One can check that CompactSublatt(L) is lower-bounded.

One can prove the following propositions:

- (67) Let S be a relational structure, T be a non empty relational structure, f be a map from S into T, S' be a relational substructure of S, and T' be a relational substructure of T. Suppose f° (the carrier of S') \subseteq the carrier of T'. Then $f \upharpoonright$ the carrier of S' is a map from S' into T'.
- (68) Let S, T be lattices, f be a join-preserving map from S into T, S' be a non empty join-inheriting full relational substructure of S, T' be a non empty join-inheriting full relational substructure of T, and g be a map from S' into T'. If $g = f \upharpoonright$ the carrier of S', then g is join-preserving.
- (69) Let S, T be lower-bounded lattices, f be a finite-sups-preserving map from S into T, S' be a non empty finite-sups-inheriting full relational substructure of S, T' be a non empty finite-sups-inheriting full relational substructure of T, and g be a map from S' into T'. If $g = f \upharpoonright$ the carrier of S', then g is finite-sups-preserving.

Let L be a complete lattice. One can verify that CompactSublatt(L) is finitesups-inheriting.

Next we state two propositions:

- (70) Let S, T be complete lattices and d be a sups-preserving map from T into S. Then d is compact-preserving if and only if d the carrier of CompactSublatt(T) is a finite-sups-preserving map from CompactSublatt(T) into CompactSublatt(S).
- (71) Let S, T be complete lattices. Suppose T is algebraic. Let g be an infspreserving map from S into T. Then g is directed-sups-preserving if and only if (the lower adjoint of g) the carrier of CompactSublatt(T) is a finitesups-preserving map from CompactSublatt(T) into CompactSublatt(S).

References

- [1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
- [2] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathematics, 6(1):81–91, 1997.
- [3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics, 6(1):93–107, 1997.
- [4] Grzegorz Bancerek. The "way-below" relation. Formalized Mathematics, 6(1):169–176, 1997.
 [5] Grzegorz Bancerek. Bases and refinements of topologies. Formalized Mathematics,
- [5] Grzegorz Bancerek. Bases and refinements of topologies. Formalized Mathematics, 7(1):35-43, 1998.
- [6] Grzegorz Bancerek. Categorial background for duality theory. Formalized Mathematics, 9(4):755-765, 2001.
- [7] Grzegorz Bancerek. Miscellaneous facts about functors. Formalized Mathematics, 9(4):745-754, 2001.
- [8] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.

- [10] Czesław Byliński. Galois connections. Formalized Mathematics, 6(1):131–143, 1997.
- Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. [11] Formalized Mathematics, 1(2):257–261, 1990.
- [12] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
 [13] Jarosław Gryko. Injective spaces. Formalized Mathematics, 7(1):57–62, 1998.
- [14] Beata Madras. On the concept of the triangulation. Formalized Mathematics, 5(3):457-462, 1996.
- [15]Robert Milewski. Algebraic lattices. Formalized Mathematics, 6(2):249-254, 1997.
- Michał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563-571, 1991. [16]
- [17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, [18]1990.
- [19] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
- [20] Andrzej Trybulec. Categories without uniqueness of cod and dom. Formalized Mathematics, 5(2):259-267, 1996.
- [21]Andrzej Trybulec. Functors for alternative categories. Formalized Mathematics, 5(4):595– 608. 1996.
- Andrzej Trybulec. Scott topology. Formalized Mathematics, 6(2):311–319, 1997. [22]
- [23] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319, 1990.[24]
- Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [25]Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181–186, 1990.[26]Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices
- and maps. Formalized Mathematics, 6(1):123–130, 1997.
- Mariusz Żynel and Adam Guzowski. T_0 topological spaces. Formalized Mathematics, [27]5(1):75-77, 1996.

Received August 8, 2001