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Summary. In the paper, we investigate the duality of categories of com-
plete lattices and maps preserving suprema or infima according to [12, p. 179–183;
1.1–1.12]. The duality is based on the concept of the Galois connection.
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The papers [20], [8], [19], [21], [9], [16], [1], [23], [17], [25], [24], [18], [11], [14],

[27], [22], [13], [3], [10], [4], [15], [7], [6], [2], [26], and [5] provide the terminology

and notation for this paper.

1. Infs-preserving and Sups-preserving Maps

Let S, T be complete lattices. One can check that there exists a connection

between S and T which is Galois.

Next we state the proposition

(1) Let S, T , S′, T ′ be non empty relational structures. Suppose that

(i) the relational structure of S = the relational structure of S′, and

(ii) the relational structure of T = the relational structure of T ′.

Let c be a connection between S and T and c′ be a connection between S′

and T ′. If c = c′, then if c is Galois, then c′ is Galois.

Let S, T be lattices and let g be a map from S into T . Let us assume that

S is complete and T is complete and g is infs-preserving. The lower adjoint of g

is a map from T into S and is defined as follows:

(Def. 1) 〈〈g, the lower adjoint of g〉〉 is Galois.
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Let S, T be lattices and let d be a map from T into S. Let us assume that

S is complete and T is complete and d is sups-preserving. The upper adjoint of

d is a map from S into T and is defined as follows:

(Def. 2) 〈〈the upper adjoint of d, d〉〉 is Galois.

Let S, T be complete lattices and let g be an infs-preserving map from S

into T . One can verify that the lower adjoint of g is lower adjoint.

Let S, T be complete lattices and let d be a sups-preserving map from T

into S. One can check that the upper adjoint of d is upper adjoint.

The following two propositions are true:

(2) Let S, T be complete lattices, g be an infs-preserving map from S into T ,

and t be an element of T . Then (the lower adjoint of g)(t) = inf(g−1(↑t)).

(3) Let S, T be complete lattices, d be a sups-preserving map from T into S,

and s be an element of S. Then (the upper adjoint of d)(s) = sup(d−1(↓s)).

Let S, T be relational structures and let f be a function from the carrier

of S into the carrier of T . The functor fop yielding a map from Sop into T op is

defined as follows:

(Def. 3) fop = f.

Let S, T be complete lattices and let g be an infs-preserving map from S

into T . One can verify that gop is lower adjoint.

Let S, T be complete lattices and let d be a sups-preserving map from S

into T . Observe that dop is upper adjoint.

We now state several propositions:

(4) Let S, T be complete lattices and g be an infs-preserving map from S

into T . Then the lower adjoint of g = the upper adjoint of gop.

(5) Let S, T be complete lattices and d be a sups-preserving map from S

into T . Then the lower adjoint of dop = the upper adjoint of d.

(6) For every non empty relational structure L holds 〈〈idL, idL〉〉 is Galois.

(7) For every complete lattice L holds the lower adjoint of idL = idL and

the upper adjoint of idL = idL.

(8) Let L1, L2, L3 be complete lattices, g1 be an infs-preserving map from

L1 into L2, and g2 be an infs-preserving map from L2 into L3. Then the

lower adjoint of g2 · g1 = (the lower adjoint of g1) · (the lower adjoint of

g2).

(9) Let L1, L2, L3 be complete lattices, d1 be a sups-preserving map from

L1 into L2, and d2 be a sups-preserving map from L2 into L3. Then the

upper adjoint of d2 · d1 = (the upper adjoint of d1) · (the upper adjoint of

d2).

(10) Let S, T be complete lattices and g be an infs-preserving map from S

into T . Then the upper adjoint of the lower adjoint of g = g.
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(11) Let S, T be complete lattices and d be a sups-preserving map from S

into T . Then the lower adjoint of the upper adjoint of d = d.

(12) Let C be a non empty category structure and a, b, f be sets. Suppose

f ∈ (the arrows of C)(a, b). Then there exist objects o1, o2 of C such that

o1 = a and o2 = b and f ∈ 〈o1, o2〉 and f is a morphism from o1 to o2.

Let W be a non empty set. Let us assume that there exists an element w

of W such that w is non empty. The functor INFW yields a lattice-wise strict

category and is defined by the conditions (Def. 4).

(Def. 4)(i) For every lattice x holds x is an object of INFW iff x is strict and

complete and the carrier of x ∈W, and

(ii) for all objects a, b of INFW and for every monotone map f from La

into Lb holds f ∈ 〈a, b〉 iff f is infs-preserving.

Let W be a non empty set. Let us assume that there exists an element w

of W such that w is non empty. The functor SUPW yields a lattice-wise strict

category and is defined by the conditions (Def. 5).

(Def. 5)(i) For every lattice x holds x is an object of SUPW iff x is strict and

complete and the carrier of x ∈W, and

(ii) for all objects a, b of SUPW and for every monotone map f from La

into Lb holds f ∈ 〈a, b〉 iff f is sups-preserving.

LetW be a set with a non-empty element. Observe that INFW has complete

lattices and SUPW has complete lattices.

One can prove the following propositions:

(13) Let W be a set with a non-empty element and L be a lattice. Then L is

an object of INFW if and only if L is strict and complete and the carrier

of L ∈W.

(14) Let W be a set with a non-empty element, a, b be objects of INFW , and

f be a set. Then f ∈ 〈a, b〉 if and only if f is an infs-preserving map from

La into Lb.

(15) Let W be a set with a non-empty element and L be a lattice. Then L is

an object of SUPW if and only if L is strict and complete and the carrier

of L ∈W.

(16) LetW be a set with a non-empty element, a, b be objects of SUPW , and

f be a set. Then f ∈ 〈a, b〉 if and only if f is a sups-preserving map from

La into Lb.

(17) For every set W with a non-empty element holds the carrier of INFW =

the carrier of SUPW .

Let W be a set with a non-empty element. The functor LowerAdjW yields

a contravariant strict functor from INFW to SUPW and is defined by the con-

ditions (Def. 6).

(Def. 6)(i) For every object a of INFW holds LowerAdjW (a) = La, and
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(ii) for all objects a, b of INFW such that 〈a, b〉 6= ∅ and for every morphism

f from a to b holds LowerAdjW (f) = the lower adjoint of @f.

The functor UpperAdjW yields a contravariant strict functor from SUPW to

INFW and is defined by the conditions (Def. 7).

(Def. 7)(i) For every object a of SUPW holds UpperAdjW (a) = La, and

(ii) for all objects a, b of SUPW such that 〈a, b〉 6= ∅ and for every morphism

f from a to b holds UpperAdjW (f) = the upper adjoint of @f.

Let W be a set with a non-empty element. Observe that LowerAdjW is

bijective and UpperAdjW is bijective.

We now state several propositions:

(18) For every set W with a non-empty element holds (LowerAdjW )−1 =

UpperAdjW and (UpperAdjW )−1 = LowerAdjW .

(19) For every setW with a non-empty element holds LowerAdjW ·UpperAdjW
= idSUPW

and UpperAdjW ·LowerAdjW = idINFW
.

(20) For every set W with a non-empty element holds INFW , SUPW are

anti-isomorphic.

(21) For every set W with a non-empty element holds INFW and SUPW are

anti-isomorphic under LowerAdjW .

(22) For every set W with a non-empty element holds SUPW and INFW are

anti-isomorphic under UpperAdjW .

2. Scott Continuous Maps and Continuous Lattices

Next we state the proposition

(23) Let S, T be complete lattices and g be an infs-preserving map from S

into T . Then g is directed-sups-preserving if and only if for every Scott

topological augmentation X of T and for every Scott topological augmen-

tation Y of S and for every open subset V of X holds ↑((the lower adjoint

of g)◦V ) is an open subset of Y .

Let S, T be non empty reflexive relational structures and let f be a map

from S into T . We say that f is waybelow-preserving if and only if:

(Def. 8) For all elements x, y of S such that x≪ y holds f(x)≪ f(y).

We now state two propositions:

(24) Let S, T be complete lattices and g be an infs-preserving map from S

into T . Suppose g is directed-sups-preserving. Then the lower adjoint of g

is waybelow-preserving.

(25) Let S be a complete lattice, T be a complete continuous lattice, and g

be an infs-preserving map from S into T . Suppose the lower adjoint of g

is waybelow-preserving. Then g is directed-sups-preserving.
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Let S, T be topological spaces and let f be a map from S into T . We say

that f is relatively open if and only if:

(Def. 9) For every open subset V of S holds f◦V is an open subset of T ↾ rng f.

One can prove the following propositions:

(26) Let X, Y be non empty topological spaces and d be a map from X into

Y . Then d is relatively open if and only if d◦ is open.

(27) Let S, T be complete lattices, g be an infs-preserving map from S into

T , X be a Scott topological augmentation of T , Y be a Scott topological

augmentation of S, and V be an open subset of X. Then (the lower adjoint

of g)◦V = rng (the lower adjoint of g) ∩ ↑((the lower adjoint of g)◦V ).

(28) Let S, T be complete lattices, g be an infs-preserving map from S into T ,

X be a Scott topological augmentation of T , and Y be a Scott topological

augmentation of S. Suppose that for every open subset V ofX holds ↑((the

lower adjoint of g)◦V ) is an open subset of Y . Let d be a map from X into

Y . If d = the lower adjoint of g, then d is relatively open.

Let X, Y be complete lattices and let f be a sups-preserving map from X

into Y . One can check that Im f is complete.

Next we state four propositions:

(29) Let S, T be complete lattices, g be an infs-preserving map from S into

T , X be a Scott topological augmentation of T , Y be a Scott topological

augmentation of S, Z be a Scott topological augmentation of Im (the lower

adjoint of g), d be a map from X into Y , and d′ be a map from X into

Z. Suppose d = the lower adjoint of g and d′ = d. If d is relatively open,

then d′ is open.

(30) Let T1, T2, S1, S2 be topological structures. Suppose that

(i) the topological structure of T1 = the topological structure of T2, and

(ii) the topological structure of S1 = the topological structure of S2.

If S1 is a subspace of T1, then S2 is a subspace of T2.

(31) For every topological structure T holds T ↾ΩT = the topological structure

of T .

(32) Let S, T be complete lattices and g be an infs-preserving map from S into

T . Suppose g is one-to-one. Let X be a Scott topological augmentation of

T , Y be a Scott topological augmentation of S, and d be a map fromX into

Y . Suppose d = the lower adjoint of g. Then g is directed-sups-preserving

if and only if d is open.

Let X be a complete lattice and let f be a projection map from X into X.

One can verify that Im f is complete.

We now state a number of propositions:

(33) Let L be a complete lattice and k be a kernel map from L into L. Then

(i) k◦ is infs-preserving,
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(ii) k◦ is sups-preserving,

(iii) the lower adjoint of k◦ = k◦, and

(iv) the upper adjoint of k◦ = k◦.

(34) Let L be a complete lattice and k be a kernel map from L into L. Then

k is directed-sups-preserving if and only if k◦ is directed-sups-preserving.

(35) Let L be a complete lattice and k be a kernel map from L into L.

Then k is directed-sups-preserving if and only if for every Scott topological

augmentation X of Im k and for every Scott topological augmentation Y

of L and for every subset V of L such that V is an open subset of X holds

↑V is an open subset of Y .

(36) Let L be a complete lattice, S be a sups-inheriting non empty full rela-

tional substructure of L, x, y be elements of L, and a, b be elements of S.

If a = x and b = y, then if x≪ y, then a≪ b.

(37) Let L be a complete lattice and k be a kernel map from L into L.

Suppose k is directed-sups-preserving. Let x, y be elements of L and a, b

be elements of Im k. If a = x and b = y, then x≪ y iff a≪ b.

(38) Let L be a complete lattice and k be a kernel map from L into L. Suppose

that

(i) Im k is continuous, and

(ii) for all elements x, y of L and for all elements a, b of Im k such that

a = x and b = y holds x≪ y iff a≪ b.

Then k is directed-sups-preserving.

(39) Let L be a complete lattice and c be a closure map from L into L. Then

(i) c◦ is sups-preserving,

(ii) c◦ is infs-preserving,

(iii) the upper adjoint of c◦ = c◦, and

(iv) the lower adjoint of c◦ = c◦.

(40) Let L be a complete lattice and c be a closure map from L into L. Then

Im c is directed-sups-inheriting if and only if c◦ is directed-sups-preserving.

(41) Let L be a complete lattice and c be a closure map from L into L. Then

Im c is directed-sups-inheriting if and only if for every Scott topological

augmentation X of Im c and for every Scott topological augmentation Y

of L and for every map f from Y into X such that f = c holds f is open.

(42) Let L be a complete lattice and c be a closure map from L into L. If

Im c is directed-sups-inheriting, then c◦ is waybelow-preserving.

(43) Let L be a continuous complete lattice and c be a closure map from L

into L. If c◦ is waybelow-preserving, then Im c is directed-sups-inheriting.
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3. Duality of Subcategories of INF and SUP

Let W be a non empty set. The functor INF ↑
W
yielding a strict non empty

subcategory of INFW is defined by the conditions (Def. 10).

(Def. 10)(i) Every object of INFW is an object of INF
↑
W
, and

(ii) for all objects a, b of INFW and for all objects a′, b′ of INF ↑
W
such

that a′ = a and b′ = b and 〈a, b〉 6= ∅ and for every morphism f from a to

b holds f ∈ 〈a′, b′〉 iff @f is directed-sups-preserving.

LetW be a set with a non-empty element. The functor SUP0
W yields a strict

non empty subcategory of SUPW and is defined by the conditions (Def. 11).

(Def. 11)(i) Every object of SUPW is an object of SUP
0
W , and

(ii) for all objects a, b of SUPW and for all objects a′, b′ of SUP0
W such

that a′ = a and b′ = b and 〈a, b〉 6= ∅ and for every morphism f from a to

b holds f ∈ 〈a′, b′〉 iff the upper adjoint of @f is directed-sups-preserving.

The following propositions are true:

(44) Let S be a non empty relational structure, T be a non empty reflexive

antisymmetric relational structure, t be an element of T , and X be a non

empty subset of S. Then S 7−→ t preserves sup of X and S 7−→ t preserves

inf of X.

(45) Let S be a non empty relational structure and T be a lower-bounded

non empty reflexive antisymmetric relational structure. Then S 7−→ ⊥T is

sups-preserving.

(46) Let S be a non empty relational structure and T be an upper-bounded

non empty reflexive antisymmetric relational structure. Then S 7−→ ⊤T is

infs-preserving.

Let S be a non empty relational structure and let T be an upper-bounded

non empty reflexive antisymmetric relational structure. Observe that S 7−→ ⊤T

is directed-sups-preserving and infs-preserving.

Let S be a non empty relational structure and let T be a lower-bounded non

empty reflexive antisymmetric relational structure. Observe that S 7−→ ⊥T is

filtered-infs-preserving and sups-preserving.

Let S be a non empty relational structure and let T be an upper-bounded

non empty reflexive antisymmetric relational structure. Note that there exists

a map from S into T which is directed-sups-preserving and infs-preserving.

Let S be a non empty relational structure and let T be a lower-bounded non

empty reflexive antisymmetric relational structure. One can check that there

exists a map from S into T which is filtered-infs-preserving and sups-preserving.

Next we state several propositions:
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(47) Let W be a set with a non-empty element and L be a lattice. Then L is

an object of INF ↑
W
if and only if L is strict and complete and the carrier

of L ∈W.

(48) Let W be a set with a non-empty element, a, b be objects of INF ↑
W
, and

f be a set. Then f ∈ 〈a, b〉 if and only if f is a directed-sups-preserving

infs-preserving map from La into Lb.

(49) Let W be a set with a non-empty element and L be a lattice. Then L is

an object of SUP0
W if and only if L is strict and complete and the carrier

of L ∈W.

(50) LetW be a set with a non-empty element, a, b be objects of SUP0
W , and

f be a set. Then f ∈ 〈a, b〉 if and only if there exists a sups-preserving

map g from La into Lb such that g = f and the upper adjoint of g is

directed-sups-preserving.

(51) For every set W with a non-empty element holds INF ↑
W

=

Intersect(INFW ,UPSW ).

LetW be a set with a non-empty element. The functor CLW yielding a strict

full non empty subcategory of INF ↑
W
is defined as follows:

(Def. 12) For every object a of INF ↑
W
holds a is an object of CLW iff La is conti-

nuous.

Let W be a set with a non-empty element. Observe that CLW has complete

lattices.

One can prove the following two propositions:

(52) Let W be a set with a non-empty element and L be a lattice. Suppose

the carrier of L ∈W. Then L is an object of CLW if and only if L is strict,

complete, and continuous.

(53) Let W be a set with a non-empty element, a, b be objects of CLW , and

f be a set. Then f ∈ 〈a, b〉 if and only if f is an infs-preserving directed-

sups-preserving map from La into Lb.

Let W be a set with a non-empty element. The functor CLop
W
yields a strict

full non empty subcategory of SUP0
W and is defined by:

(Def. 13) For every object a of SUP0
W holds a is an object of CLop

W
iff La is conti-

nuous.

Next we state several propositions:

(54) Let W be a set with a non-empty element and L be a lattice. Suppose

the carrier of L ∈W. Then L is an object of CLop
W
if and only if L is strict,

complete, and continuous.

(55) Let W be a set with a non-empty element, a, b be objects of CLop
W
, and

f be a set. Then f ∈ 〈a, b〉 if and only if there exists a sups-preserving

map g from La into Lb such that g = f and the upper adjoint of g is

directed-sups-preserving.
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(56) For every set W with a non-empty element holds INF ↑
W
and SUP0

W are

anti-isomorphic under LowerAdjW .

(57) For every set W with a non-empty element holds SUP0
W and INF

↑
W
are

anti-isomorphic under UpperAdjW .

(58) For every set W with a non-empty element holds CLW and CL
op

W
are

anti-isomorphic under LowerAdjW .

(59) For every set W with a non-empty element holds CLop
W
and CLW are

anti-isomorphic under UpperAdjW .

4. Compact Preserving Maps and Sup-semilattices Morphisms

Let S, T be non empty reflexive relational structures and let f be a map

from S into T . We say that f is compact-preserving if and only if:

(Def. 14) For every element s of S such that s is compact holds f(s) is compact.

One can prove the following propositions:

(60) Let S, T be complete lattices and d be a sups-preserving map from T

into S. If d is waybelow-preserving, then d is compact-preserving.

(61) Let S, T be complete lattices and d be a sups-preserving map from T

into S. Suppose T is algebraic and d is compact-preserving. Then d is

waybelow-preserving.

(62) Let R, S, T be non empty relational structures, X be a subset of R, f be

a map from R into S, and g be a map from S into T . Suppose f preserves

sup of X and g preserves sup of f◦X. Then g · f preserves sup of X.

Let S, T be non empty relational structures and let f be a map from S into

T . We say that f is finite-sups-preserving if and only if:

(Def. 15) For every finite subset X of S holds f preserves sup of X.

We say that f is bottom-preserving if and only if:

(Def. 16) f preserves sup of ∅S .

Next we state the proposition

(63) Let R, S, T be non empty relational structures, f be a map from R into

S, and g be a map from S into T . Suppose f is finite-sups-preserving and

g is finite-sups-preserving. Then g · f is finite-sups-preserving.

Let S, T be non empty antisymmetric lower-bounded relational structures

and let f be a map from S into T . Let us observe that f is bottom-preserving

if and only if:

(Def. 17) f(⊥S) = ⊥T .

Let L be a non empty relational structure and let S be a relational substruc-

ture of L. We say that S is finite-sups-inheriting if and only if:
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(Def. 18) For every finite subset X of S such that sup X exists in L holds
⊔

L
X ∈

the carrier of S.

We say that S is bottom-inheriting if and only if:

(Def. 19) ⊥L ∈ the carrier of S.

Let S, T be non empty relational structures. Observe that every map from

S into T which is sups-preserving is also bottom-preserving.

Let L be a lower-bounded antisymmetric non empty relational structure.

Note that every relational substructure of L which is finite-sups-inheriting is

also bottom-inheriting and join-inheriting.

Let L be a non empty relational structure. One can check that every rela-

tional substructure of L which is sups-inheriting is also finite-sups-inheriting.

Let S, T be lower-bounded non empty posets. One can verify that there

exists a map from S into T which is sups-preserving.

Let L be a lower-bounded antisymmetric non empty relational structure.

Observe that every full relational substructure of L which is bottom-inheriting

is also non empty and lower-bounded.

Let L be a lower-bounded antisymmetric non empty relational structure.

Note that there exists a relational substructure of L which is non empty, sups-

inheriting, finite-sups-inheriting, bottom-inheriting, and full.

Next we state the proposition

(64) Let L be a lower-bounded antisymmetric non empty relational structure

and S be a non empty bottom-inheriting full relational substructure of L.

Then ⊥S = ⊥L.

Let L be a lower-bounded non empty poset with l.u.b.’s. Note that every

full relational substructure of L which is bottom-inheriting and join-inheriting

is also finite-sups-inheriting.

Next we state two propositions:

(65) Let S, T be non empty relational structures and f be a map from S

into T . Suppose f is finite-sups-preserving. Then f is join-preserving and

bottom-preserving.

(66) Let S, T be lower-bounded posets with l.u.b.’s and f be a map from

S into T . Suppose f is join-preserving and bottom-preserving. Then f is

finite-sups-preserving.

Let S, T be non empty relational structures. One can check that every map

from S into T which is sups-preserving is also finite-sups-preserving and every

map from S into T which is finite-sups-preserving is also join-preserving and

bottom-preserving.

Let S be a non empty relational structure and let T be a lower-bounded non

empty reflexive antisymmetric relational structure. Observe that there exists a

map from S into T which is sups-preserving and finite-sups-preserving.
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Let L be a lower-bounded non empty poset. One can check that

CompactSublatt(L) is lower-bounded.

One can prove the following propositions:

(67) Let S be a relational structure, T be a non empty relational structure,

f be a map from S into T , S′ be a relational substructure of S, and T ′ be

a relational substructure of T . Suppose f◦(the carrier of S′) ⊆ the carrier

of T ′. Then f↾the carrier of S′ is a map from S′ into T ′.

(68) Let S, T be lattices, f be a join-preserving map from S into T , S′ be

a non empty join-inheriting full relational substructure of S, T ′ be a non

empty join-inheriting full relational substructure of T , and g be a map

from S′ into T ′. If g = f↾the carrier of S′, then g is join-preserving.

(69) Let S, T be lower-bounded lattices, f be a finite-sups-preserving map

from S into T , S′ be a non empty finite-sups-inheriting full relational

substructure of S, T ′ be a non empty finite-sups-inheriting full relational

substructure of T , and g be a map from S′ into T ′. If g = f↾the carrier of

S′, then g is finite-sups-preserving.

Let L be a complete lattice. One can verify that CompactSublatt(L) is finite-

sups-inheriting.

Next we state two propositions:

(70) Let S, T be complete lattices and d be a sups-preserving map

from T into S. Then d is compact-preserving if and only if d↾the

carrier of CompactSublatt(T ) is a finite-sups-preserving map from

CompactSublatt(T ) into CompactSublatt(S).

(71) Let S, T be complete lattices. Suppose T is algebraic. Let g be an infs-

preserving map from S into T . Then g is directed-sups-preserving if and

only if (the lower adjoint of g)↾the carrier of CompactSublatt(T ) is a finite-

sups-preserving map from CompactSublatt(T ) into CompactSublatt(S).
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