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Summary.We present a Mizar formalization of chapter 4.4 of [6] devoted
to special orderings in additive monoids to be used for ordering terms in mul-
tivariate polynomials. We have extended the treatment to the case of infinite
number of variables. It turns out that in such case admissible orderings are not
necessarily well orderings.

MML Identifier: BAGORDER.

The notation and terminology used here are introduced in the following papers:

[21], [33], [18], [26], [7], [5], [11], [29], [8], [9], [1], [22], [30], [31], [2], [28], [24],

[25], [20], [14], [34], [36], [35], [17], [16], [32], [27], [19], [4], [12], [23], [3], [15],

[13], and [10].

1. Preliminaries

The following propositions are true:

(1) For all sets x, y, z such that z ∈ x and z ∈ y holds x \ {z} = y \ {z} iff

x = y.

(2) For all natural numbers n, k holds k ∈ Seg n iff k−1 is a natural number

and k − 1 < n.

Let f be a natural-yielding function and let X be a set. One can verify that

f↾X is natural-yielding.

Let f be a finite-support function and let X be a set. One can check that

f↾X is finite-support.

Next we state three propositions:

(3) For every function f and for every set x such that x ∈ dom f holds

f · 〈x〉 = 〈f(x)〉.
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(4) Let f , g, h be functions. Suppose dom f = dom g and rng f ⊆ domh

and rng g ⊆ domh and f and g are fiberwise equipotent. Then h · f and

h · g are fiberwise equipotent.

(5) For every finite sequence f1 of elements of N holds
∑

f1 = 0 iff f1 =

len f1 7→ 0.

Let n, i, j be natural numbers and let b be a many sorted set indexed by

n. The functor 〈b(i), . . . , b(j)〉 yields a many sorted set indexed by j −′ i and is

defined by:

(Def. 1) For every natural number k such that k ∈ j−′i holds 〈b(i), . . . , b(j)〉(k) =

b(i + k).

Let n, i, j be natural numbers and let b be a natural-yielding many sorted

set indexed by n. One can verify that 〈b(i), . . . , b(j)〉 is natural-yielding.

Let n, i, j be natural numbers and let b be a finite-support many sorted set

indexed by n. Note that 〈b(i), . . . , b(j)〉 is finite-support.

One can prove the following proposition

(6) Let n, i be natural numbers and a, b be many sorted sets indexed by n.

Then a = b if and only if the following conditions are satisfied:

(i) 〈a(0), . . . , a(i + 1)〉 = 〈b(0), . . . , b(i + 1)〉, and

(ii) 〈a(i + 1), . . . , a(n)〉 = 〈b(i + 1), . . . , b(n)〉.

Let x be a non empty set and let n be a non empty natural number. The

functor Fin(x, n) is defined as follows:

(Def. 2) Fin(x, n) = {y; y ranges over elements of 2x: y is finite ∧ y is non

empty ∧ y ¬ n}.

Let x be a non empty set and let n be a non empty natural number. Observe

that Fin(x, n) is non empty.

One can prove the following propositions:

(7) Let R be an antisymmetric transitive non empty relational structure and

X be a finite subset of the carrier of R. Suppose X 6= ∅. Then there exists

an element x of R such that x ∈ X and x is maximal w.r.t. X, the internal

relation of R.

(8) Let R be an antisymmetric transitive non empty relational structure and

X be a finite subset of the carrier of R. Suppose X 6= ∅. Then there exists

an element x of R such that x ∈ X and x is minimal w.r.t. X, the internal

relation of R.

(9) Let R be a non empty antisymmetric transitive relational structure and

f be a sequence of R. Suppose f is descending. Let j, i be natural numbers.

If i < j, then f(i) 6= f(j) and 〈〈f(j), f(i)〉〉 ∈ the internal relation of R.

Let R be a non empty relational structure and let s be a sequence of R. We

say that s is non-increasing if and only if:
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(Def. 3) For every natural number i holds 〈〈s(i + 1), s(i)〉〉 ∈ the internal relation

of R.

We now state three propositions:

(10) Let R be a non empty transitive relational structure and f be a sequence

of R. Suppose f is non-increasing. Let j, i be natural numbers. If i < j,

then 〈〈f(j), f(i)〉〉 ∈ the internal relation of R.

(11) Let R be a non empty transitive relational structure and s be a sequence

of R. Suppose R is well founded and s is non-increasing. Then there exists

a natural number p such that for every natural number r if p ¬ r, then

s(p) = s(r).

(12) Let X be a set, a be an element of X, A be a finite subset of X, and R be

an order inX. If A = {a} and R linearly orders A, then SgmX(R,A) = 〈a〉.

2. More About Bags

Let n be an ordinal number and let b be a bag of n. The functor TotDegree b

yielding a natural number is defined by:

(Def. 4) There exists a finite sequence f of elements of N such that TotDegree b =
∑

f and f = b · SgmX(⊆n, support b).

The following propositions are true:

(13) Let n be an ordinal number, b be a bag of n, s be a finite subset of n, and

f , g be finite sequences of elements of N. If f = b · SgmX(⊆n, support b)

and g = b · SgmX(⊆n, support b ∪ s), then
∑

f =
∑

g.

(14) For every ordinal number n and for all bags a, b of n holds TotDegree(a+

b) = TotDegree a + TotDegree b.

(15) For every ordinal number n and for all bags a, b of n such that b | a

holds TotDegree(a−′ b) = TotDegree a− TotDegree b.

(16) For every ordinal number n and for every bag b of n holds TotDegree b =

0 iff b = EmptyBagn.

(17) For all natural numbers i, j, n holds 〈(EmptyBagn)(i), . . . , (EmptyBagn)

(j)〉 = EmptyBag(j −′ i).

(18) For all natural numbers i, j, n and for all bags a, b of n holds 〈(a +

b)(i), . . . , (a + b)(j)〉 = 〈a(i), . . . , a(j)〉+ 〈b(i), . . . , b(j)〉.

(19) For every set X holds support EmptyBagX = ∅.

(20) For every set X and for every bag b of X such that support b = ∅ holds

b = EmptyBagX.

(21) For all ordinal numbers n, m and for every bag b of n such that m ∈ n

holds b↾m is a bag of m.
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(22) For every ordinal number n and for all bags a, b of n such that b | a

holds support b ⊆ support a.

3. Some Special Orders

Let n be an ordinal number and let o be an order in Bagsn. We say that o is

admissible if and only if the conditions (Def. 5) are satisfied.

(Def. 5)(i) o is strongly connected in Bagsn,

(ii) for every bag a of n holds 〈〈EmptyBagn, a〉〉 ∈ o, and

(iii) for all bags a, b, c of n such that 〈〈a, b〉〉 ∈ o holds 〈〈a + c, b + c〉〉 ∈ o.

Let n be an ordinal number. We introduce LexOrdern as a synonym of

BagOrdern.

One can prove the following propositions:

(23) For every ordinal number n holds LexOrdern is admissible.

(24) For every infinite ordinal number o holds LexOrder o is non well-ordering.

Let n be an ordinal number. The functor InvLexOrdern yields an order in

Bagsn and is defined by the condition (Def. 6).

(Def. 6) Let p, q be bags of n. Then 〈〈p, q〉〉 ∈ InvLexOrdern if and only if one of

the following conditions is satisfied:

(i) p = q, or

(ii) there exists an ordinal number i such that i ∈ n and p(i) < q(i) and

for every ordinal number k such that i ∈ k and k ∈ n holds p(k) = q(k).

The following propositions are true:

(25) For every ordinal number n holds InvLexOrdern is admissible.

(26) For every ordinal number o holds InvLexOrder o is well-ordering.

Let n be an ordinal number and let o be an order in Bagsn. Let us assume

that for all bags a, b, c of n such that 〈〈a, b〉〉 ∈ o holds 〈〈a + c, b + c〉〉 ∈ o. The

functor Graded o yields an order in Bagsn and is defined by:

(Def. 7) For all bags a, b of n holds 〈〈a, b〉〉 ∈ Graded o iff TotDegree a <

TotDegree b or TotDegree a = TotDegree b and 〈〈a, b〉〉 ∈ o.

The following proposition is true

(27) Let n be an ordinal number and o be an order in Bagsn. Suppose for

all bags a, b, c of n such that 〈〈a, b〉〉 ∈ o holds 〈〈a + c, b + c〉〉 ∈ o and o is

strongly connected in Bagsn. Then Graded o is admissible.

Let n be an ordinal number. The functor GrLexOrdern yielding an order in

Bagsn is defined as follows:

(Def. 8) GrLexOrdern = GradedLexOrdern.

The functor GrInvLexOrdern yielding an order in Bagsn is defined by:

(Def. 9) GrInvLexOrdern = Graded InvLexOrdern.
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Next we state four propositions:

(28) For every ordinal number n holds GrLexOrdern is admissible.

(29) For every infinite ordinal number o holds GrLexOrder o is non well-

ordering.

(30) For every ordinal number n holds GrInvLexOrdern is admissible.

(31) For every ordinal number o holds GrInvLexOrder o is well-ordering.

Let i, n be natural numbers, let o1 be an order in Bags(i + 1), and let o2 be

an order in Bags(n −′ (i + 1)). The functor BlockOrder(i, n, o1, o2) yielding an

order in Bagsn is defined by the condition (Def. 10).

(Def. 10) Let p, q be bags of n. Then 〈〈p, q〉〉 ∈ BlockOrder(i, n, o1, o2) if and only

if one of the following conditions is satisfied:

(i) 〈p(0), . . . , p(i + 1)〉 6= 〈q(0), . . . , q(i + 1)〉 and 〈〈〈p(0), . . . , p(i + 1)〉,

〈q(0), . . . , q(i + 1)〉〉〉 ∈ o1, or

(ii) 〈p(0), . . . , p(i+1)〉 = 〈q(0), . . . , q(i+1)〉 and 〈〈〈p(i+1), . . . , p(n)〉, 〈q(i+

1), . . . , q(n)〉〉〉 ∈ o2.

The following proposition is true

(32) Let i, n be natural numbers, o1 be an order in Bags(i+1), and o2 be an

order in Bags(n −′ (i + 1)). If o1 is admissible and o2 is admissible, then

BlockOrder(i, n, o1, o2) is admissible.

Let n be a natural number. The functor NaivelyOrderedBagsn yielding a

strict relational structure is defined by the conditions (Def. 11).

(Def. 11)(i) The carrier of NaivelyOrderedBagsn = Bagsn, and

(ii) for all bags x, y of n holds 〈〈x, y〉〉 ∈ the internal relation of

NaivelyOrderedBagsn iff x | y.

The following propositions are true:

(33) For every natural number n holds the carrier of
∏

(n 7−→

OrderedNAT) = Bagsn.

(34) For every natural number n holds NaivelyOrderedBagsn =
∏

(n 7−→

OrderedNAT).

(35) Let n be a natural number and o be an order in Bagsn. Suppose o is

admissible. Then the internal relation of NaivelyOrderedBagsn ⊆ o and o

is well-ordering.

4. Ordering of Finite Subsets

Let R be a connected non empty poset and let X be an element of Fin (the

carrier of R). Let us assume that X is non empty. The functor PosetMinX

yielding an element of R is defined as follows:
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(Def. 12) PosetMinX ∈ X and PosetMinX is minimal w.r.t. X, the internal re-

lation of R.

The functor PosetMaxX yields an element of R and is defined as follows:

(Def. 13) PosetMaxX ∈ X and PosetMaxX is maximal w.r.t. X, the internal

relation of R.

Let R be a connected non empty poset. The functor FinOrd-ApproxR yiel-

ding a function from N into 2[:Fin (the carrier of R), Fin (the carrier of R) :] is defined by

the conditions (Def. 14).

(Def. 14)(i) domFinOrd-ApproxR = N,

(ii) (FinOrd-ApproxR)(0) = {〈〈x, y〉〉; x ranges over elements of Fin (the

carrier of R), y ranges over elements of Fin (the carrier of R): x = ∅ ∨ x 6=

∅ ∧ y 6= ∅ ∧ PosetMaxx 6= PosetMax y ∧ 〈〈PosetMaxx, PosetMax y〉〉 ∈ the

internal relation of R}, and

(iii) for every element n of N holds (FinOrd-ApproxR)(n + 1) = {〈〈x, y〉〉;x

ranges over elements of Fin (the carrier of R), y ranges over elements of

Fin (the carrier of R): x 6= ∅ ∧ y 6= ∅ ∧ PosetMaxx = PosetMax y ∧

〈〈x \ {PosetMaxx}, y \ {PosetMax y}〉〉 ∈ (FinOrd-ApproxR)(n)}.

One can prove the following propositions:

(36) Let R be a connected non empty poset and x, y be elements of Fin (the

carrier of R). Then 〈〈x, y〉〉 ∈
⋃
rng FinOrd-ApproxR if and only if one of

the following conditions is satisfied:

(i) x = ∅, or

(ii) x 6= ∅ and y 6= ∅ and PosetMaxx 6= PosetMax y and 〈〈PosetMaxx,

PosetMax y〉〉 ∈ the internal relation of R, or

(iii) x 6= ∅ and y 6= ∅ and PosetMaxx = PosetMax y and 〈〈x\{PosetMaxx},

y \ {PosetMax y}〉〉 ∈
⋃
rng FinOrd-ApproxR.

(37) For every connected non empty poset R and for every element

x of Fin (the carrier of R) such that x 6= ∅ holds 〈〈x, ∅〉〉 /∈
⋃
rng FinOrd-ApproxR.

(38) Let R be a connected non empty poset and a be an element of Fin (the

carrier of R). Then a \ {PosetMax a} is an element of Fin (the carrier of

R).

(39) For every connected non empty poset R holds
⋃
rng FinOrd-ApproxR

is an order in Fin (the carrier of R).

Let R be a connected non empty poset. The functor FinOrdR yields an

order in Fin (the carrier of R) and is defined as follows:

(Def. 15) FinOrdR =
⋃
rng FinOrd-ApproxR.

Let R be a connected non empty poset. The functor FinPosetR yields a

poset and is defined by:

(Def. 16) FinPosetR = 〈Fin (the carrier of R), FinOrdR〉.
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Let R be a connected non empty poset. One can check that FinPosetR is

non empty.

The following proposition is true

(40) Let R be a connected non empty poset and a, b be elements of

FinPosetR. Then 〈〈a, b〉〉 ∈ the internal relation of FinPosetR if and only

if there exist elements x, y of Fin (the carrier of R) such that a = x but

b = y but x = ∅ or x 6= ∅ and y 6= ∅ and PosetMaxx 6= PosetMax y

and 〈〈PosetMaxx, PosetMax y〉〉 ∈ the internal relation of R or x 6= ∅

and y 6= ∅ and PosetMaxx = PosetMax y and 〈〈x \ {PosetMaxx},

y \ {PosetMax y}〉〉 ∈ FinOrdR.

Let R be a connected non empty poset. One can verify that FinPosetR is

connected.

Let R be a connected non empty relational structure and let C be a non

empty set. Let us assume that R is well founded and C ⊆ the carrier of R. The

functor MinElement(C, R) yields an element of R and is defined by:

(Def. 17) MinElement(C,R) ∈ C and MinElement(C, R) is minimal w.r.t. C, the

internal relation of R.

Let R be a non empty relational structure, let s be a sequence of R, and let

j be a natural number. The functor SeqShift(s, j) yields a sequence of R and is

defined by:

(Def. 18) For every natural number i holds (SeqShift(s, j))(i) = s(i + j).

One can prove the following propositions:

(41) Let R be a non empty relational structure, s be a sequence of R, and j

be a natural number. If s is descending, then SeqShift(s, j) is descending.

(42) For every connected non empty poset R such that R is well founded

holds FinPosetR is well founded.
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