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Summary. Left and right half open intervals in the real line are defined.
Their properties are investigated. A class of all finite union of such intervals are,
in a sense, closed by operations of union, intersection and the difference of sets.
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The terminology and notation used here are introduced in the following articles:

[5], [1], [3], [4], and [2].

In this paper s, g, h, r, p, p1, p2, q, q1, q2, x, y, z denote real numbers.

The following two propositions are true:

(1) x < y and x < z iff x < min(y, z).

(2) y < x and z < x iff max(y, z) < x.

Let g, s be real numbers. The functor [g, s[ yielding a subset of R is defined

as follows:

(Def. 1) [g, s[= {r; r ranges over real numbers: g ¬ r ∧ r < s}.

The functor ]g, s] yields a subset of R and is defined as follows:

(Def. 2) ]g, s] = {r; r ranges over real numbers: g < r ∧ r ¬ s}.

Next we state a number of propositions:

(3) r ∈ [p, q[ iff p ¬ r and r < q.

(4) r ∈ ]p, q] iff p < r and r ¬ q.

(5) For all g, s such that g < s holds [g, s[= ]g, s[ ∪ {g}.

(6) For all g, s such that g < s holds ]g, s] = ]g, s[ ∪ {s}.

(7) [g, g[= ∅.

(8) ]g, g] = ∅.

(9) If p ¬ g, then [g, p[= ∅.

21
c© 2002 University of Białystok

ISSN 1426–2630



22 yatsuka nakamura

(10) If p ¬ g, then ]g, p] = ∅.

(11) If g ¬ p and p ¬ h, then [g, p[∪[p, h[= [g, h[.

(12) If g ¬ p and p ¬ h, then ]g, p] ∪ ]p, h] = ]g, h].

(13) If g ¬ p1 and g ¬ p2 and p1 ¬ h and p2 ¬ h, then [g, h] = [g, p1[∪[p1, p2]∪

]p2, h].

(14) If g < p1 and g < p2 and p1 < h and p2 < h, then ]g, h[ = ]g, p1] ∪

]p1, p2[ ∪ [p2, h[.

(15) [q1, q2[∩[p1, p2[= [max(q1, p1),min(q2, p2)[.

(16) ]q1, q2] ∩ ]p1, p2] = ]max(q1, p1),min(q2, p2)].

(17) ]p, q[ ⊆ [p, q[ and ]p, q[ ⊆ ]p, q] and [p, q[⊆ [p, q] and ]p, q] ⊆ [p, q].

(18) If r ∈ [p, g[ and s ∈ [p, g[, then [r, s] ⊆ [p, g[.

(19) If r ∈ ]p, g] and s ∈ ]p, g], then [r, s] ⊆ ]p, g].

(20) If p ¬ q and q ¬ r, then [p, q] ∪ ]q, r] = [p, r].

(21) If p ¬ q and q ¬ r, then [p, q[∪[q, r] = [p, r].

(22) If [q1, q2[ meets [p1, p2[, then q2 ­ p1.

(23) If ]q1, q2] meets ]p1, p2], then q2 ­ p1.

(24) If [q1, q2[ meets [p1, p2[, then [q1, q2[∪[p1, p2[= [min(q1, p1),max(q2, p2)[.

(25) If ]q1, q2] meets ]p1, p2], then ]q1, q2]∪ ]p1, p2] = ]min(q1, p1),max(q2, p2)].

(26) If [p1, p2[ meets [q1, q2[, then [p1, p2[\[q1, q2[= [p1, q1[∪[q2, p2[.

(27) If ]p1, p2] meets ]q1, q2], then ]p1, p2] \ ]q1, q2] = ]p1, q1] ∪ ]q2, p2].
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