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Preparing the Internal Approximations
of Simple Closed Curves!

Andrzej Trybulec
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Summary. We mean by an internal approximation of a simple closed curve
a special polygon disjoint with it but sufficiently close to it, i.e. such that it is
clock-wise oriented and its right cells meet the curve. We prove lemmas used in
the next article to construct a sequence of internal approximations.

MML Identifier: JORDAN11.

The articles [18], [5], [20], [11], [1], [16], [2], [21], [4], 3], [12], [17], [7], 8], [9],
[10], [13], [14], [15], [6], and [19] provide the terminology and notation for this
paper.

In this paper j, k, n are natural numbers and C' is a subset of 5% satisfying
conditions of simple closed curve.

Let us consider C. The functor ApproxIndex C' yielding a natural number is
defined by:

(Def. 1) ApproxIndex C' is sufficiently large for C' and for every j such that j is
sufficiently large for C' holds j > ApproxIndex C.

Next we state the proposition
(1) ApproxIndexC > 1.

Let us consider C. The functor Y-InitStart C' yields a natural number and
is defined as follows:

(Def. 2)  Y-InitStart C' < width Gauge(C, ApproxIndex C') and cell(Gauge(C,
ApproxIndex C), X-SpanStart(C, ApproxIndex C') —' 1, Y-InitStart C') C
BDD C and for every j such that j < width Gauge(C, ApproxIndex C') and
cell(Gauge(C, ApproxIndex C), X-SpanStart(C, ApproxIndex C) —' 1, j) C
BDD C holds j > Y-InitStart C.

!This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

@ 2002 University of Bialystok
85 ISSN 1426-2630



86 ANDRZEJ TRYBULEC

The following propositions are true:
(2) Y-InitStartC' > 1.
(3) Y-InitStart C' + 1 < width Gauge(C, ApproxIndex C').

Let us consider C, n. Let us assume that n is sufficiently large for C'. The
functor Y-SpanStart(C,n) yields a natural number and is defined by the condi-
tions (Def. 3).

(Def. 3)(i)  Y-SpanStart(C,n) < width Gauge(C,n),

(ii)  for every k such that Y-SpanStart(C,n) < k and k < 2"~ ApproxindexC,
(Y-InitStart C'—'2)+2 holds cell(Gauge(C, n), X-SpanStart(C,n)—"1, k) C
BDD C, and

(iii)  for every j such that j < widthGauge(C,n) and for every k
such that j < k and k < 27~ ApproxIndexC (Y. InjtStart ¢ —' 2) + 2
holds cell(Gauge(C, n), X-SpanStart(C,n) —' 1,k) € BDDC holds j >
Y-SpanStart(C, n).

One can prove the following propositions:

(4) If n is sufficiently large for C, then X-SpanStart(C,n) =
gn—"ApproxIndexC', (X-SpanStart(C, ApproxIndex C') — 2) + 2.
(5) If mn is sufficiently large for C, then Y-SpanStart(C,n) <
gn—'ApproxIndexC' . (Y TnitStart C' —' 2) + 2.
(6) Ifnissufficiently large for C, then cell(Gauge(C, n), X-SpanStart(C, n)—'
1, Y-SpanStart(C,n)) € BDD C.
(7) If n is sufficiently large for C, then 1 < Y-SpanStart(C,n) and
Y-SpanStart(C, n) < width Gauge(C, n).
(8) If n is sufficiently large for C, then
( X-SpanStart(C, n), Y-SpanStart(C,n)) € the indices of Gauge(C,n).
(9) If n is sufficiently large for C, then (X-SpanStart(C,n) —' 1,
Y-SpanStart(C,n)) € the indices of Gauge(C, n).
(10) If nis sufficiently large for C', then cell(Gauge(C, n), X-SpanStart(C, n)—'
1, Y-SpanStart(C,n) —' 1) meets C.
(11) If nis sufficiently large for C', then cell(Gauge(C, n), X-SpanStart(C, n)—'
1, Y-SpanStart(C, n)) misses C.
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