The Ordering of Points on a Curve. Part \mathbf{IV}^1

Artur Korniłowicz University of Białystok

MML Identifier: JORDAN18.

The notation and terminology used in this paper are introduced in the following articles: [19], [21], [22], [2], [3], [10], [20], [13], [14], [18], [6], [17], [5], [11], [1], [7], [8], [4], [9], [16], [12], and [15].

1. Preliminaries

For simplicity, we adopt the following rules: n denotes an element of \mathbb{N} , V denotes a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^n$, s, s_1 , s_2 , t, t_1 , t_2 denote points of $\mathcal{E}_{\mathrm{T}}^n$, C denotes a simple closed curve, P denotes a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, and a, p, p_1 , p_2 , q, q_1 , q_2 denote points of $\mathcal{E}_{\mathrm{T}}^2$.

Next we state several propositions:

- (1) For all real numbers a, b holds $(a-b)^2 = (b-a)^2$.
- (2) Let S, T be non empty topological spaces, f be a map from S into T, and A be a subset of T. If f is a homeomorphism and A is connected, then $f^{-1}(A)$ is connected.
- (3) Let S, T be non empty topological structures, f be a map from S into T, and A be a subset of T. If f is a homeomorphism and A is compact, then $f^{-1}(A)$ is compact.
- (4) $\operatorname{proj2^{\circ} NorthHalfline} a$ is lower bounded.
- (5) $\operatorname{proj}2^{\circ}$ SouthHalfline *a* is upper bounded.
- (6) $\operatorname{proj1^{\circ}WestHalfline} a$ is upper bounded.
- (7) $\operatorname{proj1^{\circ} EastHalfline} a$ is lower bounded.

C 2002 University of Białystok ISSN 1426-2630

¹This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

ARTUR KORNIŁOWICZ

Let us consider a. One can verify the following observations:

- * $\operatorname{proj2^{\circ}NorthHalfline} a$ is non empty,
- * $\operatorname{proj2^{\circ}SouthHalfline} a$ is non empty,
- * proj1° WestHalfline a is non empty, and
- * $\operatorname{proj1^{\circ}EastHalfline} a$ is non empty.

Next we state four propositions:

- (8) $\inf(\operatorname{proj2^{\circ} NorthHalfline} a) = a_2.$
- (9) $\sup(\operatorname{proj2^{\circ} SouthHalfline} a) = a_2.$
- (10) $\sup(\operatorname{proj1^{\circ}WestHalfline} a) = a_1.$
- (11) $\inf(\operatorname{proj1}^{\circ}\operatorname{EastHalfline} a) = a_1.$

Let us consider a. One can verify the following observations:

- * NorthHalfline a is closed,
- * SouthHalfline a is closed,
- * EastHalfline a is closed, and
- * WestHalfline a is closed.

One can prove the following propositions:

- (12) If $a \in BDD P$, then NorthHalfline $a \not\subseteq UBD P$.
- (13) If $a \in BDD P$, then SouthHalfline $a \not\subseteq UBD P$.
- (14) If $a \in BDD P$, then EastHalfline $a \not\subseteq UBD P$.
- (15) If $a \in \text{BDD} P$, then WestHalfline $a \not\subseteq \text{UBD} P$.
- (16) Let P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2, q be points of $\mathcal{E}_{\mathrm{T}}^2$. If P is an arc from p_1 to p_2 and $q \neq p_2$, then $p_2 \notin \mathrm{LSegment}(P, p_1, p_2, q)$.
- (17) Let P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1, p_2, q be points of $\mathcal{E}_{\mathrm{T}}^2$. If P is an arc from p_1 to p_2 and $q \neq p_1$, then $p_1 \notin \mathrm{RSegment}(P, p_1, p_2, q)$.
- (18) Let C be a simple closed curve, P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$, and p_1, p_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose P is an arc from p_1 to p_2 and $P \subseteq C$. Then there exists a non empty subset R of $\mathcal{E}_{\mathrm{T}}^2$ such that R is an arc from p_1 to p_2 and $P \cup R = C$ and $P \cap R = \{p_1, p_2\}$.
- (19) Let P be a subset of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ and p_1 , p_2 , q_1 , q_2 be points of $\mathcal{E}_{\mathrm{T}}^2$. Suppose P is an arc from p_1 to p_2 and $q_1 \in P$ and $q_2 \in P$ and $q_1 \neq p_1$ and $q_1 \neq p_2$ and $q_2 \neq p_1$ and $q_2 \neq p_2$ and $q_1 \neq q_2$. Then there exists a non empty subset Q of $\mathcal{E}_{\mathrm{T}}^2$ such that Q is an arc from q_1 to q_2 and $Q \subseteq P$ and Q misses $\{p_1, p_2\}$.

2. Two Special Points on a Simple Closed Curve

Let us consider p, P. The functor North-Bound(p, P) yields a point of $\mathcal{E}_{\mathrm{T}}^2$ and is defined by:

174

(Def. 1) North-Bound $(p, P) = [p_1, \inf(\operatorname{proj2^{\circ}}(P \cap \operatorname{NorthHalfline} p))].$

The functor South-Bound(p, P) yields a point of $\mathcal{E}_{\mathrm{T}}^2$ and is defined by:

- (Def. 2) South-Bound $(p, P) = [p_1, \sup(\operatorname{proj2}^{\circ}(P \cap \operatorname{SouthHalfline} p))].$ One can prove the following propositions:
 - (20) $(\text{North-Bound}(p, P))_1 = p_1 \text{ and } (\text{South-Bound}(p, P))_1 = p_1.$
 - (21) (North-Bound(p, P))₂ = inf(proj2°($P \cap$ NorthHalflinep)) and (South-Bound(p, P))₂ = sup(proj2°($P \cap$ SouthHalflinep)).
 - (22) For every compact subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that $p \in \mathrm{BDD}\,C$ holds North-Bound $(p, C) \in C$ and North-Bound $(p, C) \in \mathrm{NorthHalfline}\,p$ and South-Bound $(p, C) \in C$ and South-Bound $(p, C) \in \mathrm{SouthHalfline}\,p$.
 - (23) For every compact subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that $p \in \mathrm{BDD} C$ holds (South-Bound(p, C))₂ < p_2 and p_2 < (North-Bound(p, C))₂.
 - (24) For every compact subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that $p \in \mathrm{BDD}\,C$ holds $\inf(\mathrm{proj2}^{\circ}(C \cap \mathrm{NorthHalfline}\,p)) > \sup(\mathrm{proj2}^{\circ}(C \cap \mathrm{SouthHalfline}\,p)).$
 - (25) For every compact subset C of $\mathcal{E}^2_{\mathrm{T}}$ such that $p \in \mathrm{BDD}C$ holds South-Bound $(p, C) \neq \mathrm{North}$ -Bound(p, C).
 - (26) For every subset C of the carrier of $\mathcal{E}_{\mathrm{T}}^2$ holds $\mathcal{L}(\mathrm{North}\operatorname{-Bound}(p,C), \mathrm{South}\operatorname{-Bound}(p,C))$ is vertical.
 - (27) For every compact subset C of $\mathcal{E}_{\mathrm{T}}^2$ such that $p \in \mathrm{BDD}\,C$ holds $\mathcal{L}(\mathrm{North}\operatorname{-Bound}(p,C), \mathrm{South}\operatorname{-Bound}(p,C)) \cap C = \{\mathrm{North}\operatorname{-Bound}(p,C), \mathrm{South}\operatorname{-Bound}(p,C)\}.$
 - (28) Let C be a compact subset of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $p \in \mathrm{BDD}C$ and $q \in \mathrm{BDD}C$ and $p_1 \neq q_1$. Then North-Bound(p, C), South-Bound(q, C), North-Bound(q, C), South-Bound(p, C) are mutually different.

3. AN ORDER OF POINTS ON A SIMPLE CLOSED CURVE

Let us consider n, V, s_1, s_2, t_1, t_2 . We say that s_1, s_2 separate t_1, t_2 on V if and only if:

- (Def. 3) For every subset A of the carrier of \mathcal{E}^n_T such that A is an arc from s_1 to s_2 and $A \subseteq V$ holds A meets $\{t_1, t_2\}$.
 - We introduce s_1 , s_2 are neighbours wrt t_1 , t_2 on V as an antonym of s_1 , s_2 separate t_1 , t_2 on V.

We now state a number of propositions:

- (29) t, t separate s_1, s_2 on V.
- (30) If s_1 , s_2 separate t_1 , t_2 on V, then s_2 , s_1 separate t_1 , t_2 on V.
- (31) If s_1 , s_2 separate t_1 , t_2 on V, then s_1 , s_2 separate t_2 , t_1 on V.
- (32) s, t_1 separate s, t_2 on V.
- (33) t_1 , s separate t_2 , s on V.

ARTUR KORNIŁOWICZ

- (34) t_1 , s separate s, t_2 on V.
- (35) s, t_1 separate t_2, s on V.
- (36) Let p_1, p_2, q be points of $\mathcal{E}^2_{\mathrm{T}}$. Suppose $q \in C$ and $p_1 \in C$ and $p_2 \in C$ and $p_1 \neq p_2$ and $p_1 \neq q$ and $p_2 \neq q$. Then p_1, p_2 are neighbours wrt q, q on C.
- (37) If $p_1 \neq p_2$ and $p_1 \in C$ and $p_2 \in C$, then if p_1 , p_2 separate q_1 , q_2 on C, then q_1 , q_2 separate p_1 , p_2 on C.
- (38) Suppose $p_1 \in C$ and $p_2 \in C$ and $q_1 \in C$ and $p_1 \neq p_2$ and $q_1 \neq p_1$ and $q_1 \neq p_2$ and $q_2 \neq p_1$ and $q_2 \neq p_2$. Then p_1, p_2 are neighbours wrt q_1, q_2 on C or p_1, q_1 are neighbours wrt p_2, q_2 on C.

References

- Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [2] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [4] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E². Formalized Mathematics, 6(3):427-440, 1997.
- [5] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [6] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [8] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.
- [9] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}_{T}^{2} . Simple closed curves. Formalized Mathematics, 2(5):663–664, 1991.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
- [12] Artur Korniłowicz, Robert Milewski, Adam Naumowicz, and Andrzej Trybulec. Gauges and cages. Part I. Formalized Mathematics, 9(3):501–509, 2001.
- [13] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477–481, 1990.
- [14] Wojciech Leończuk and Krzysztof Prażmowski. Incidence projective spaces. Formalized Mathematics, 2(2):225–232, 1991.
- [15] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and the order of their points. *Formalized Mathematics*, 6(4):563–572, 1997.
- [16] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. *Formalized Mathematics*, 8(1):1–13, 1999.
- [17] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
- [18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [20] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

176

[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received September 16, 2002