Free Order Sorted Universal Algebra¹

Josef Urban Charles University Praha

Summary. Free Order Sorted Universal Algebra — the general construction for any locally directed signatures.

 MML Identifier: <code>OSAFREE</code>.

The papers [21], [13], [27], [32], [33], [11], [22], [12], [7], [10], [4], [18], [2], [20], [26], [14], [5], [3], [6], [1], [8], [25], [23], [17], [24], [9], [15], [16], [29], [31], [28], [30], and [19] provide the terminology and notation for this paper.

1. Preliminaries

In this paper S is an order sorted signature.

Let S be an order sorted signature and let U_0 be an order sorted algebra of S. A subset of U_0 is called an order sorted generator set of U_0 if:

(Def. 1) For every OSSubset O of U_0 such that O = OSClit holds the sorts of OSGen O = the sorts of U_0 .

The following proposition is true

(1) Let S be an order sorted signature, U_0 be a strict non-empty order sorted algebra of S, and A be a subset of U_0 . Then A is an order sorted generator set of U_0 if and only if for every OSSubset O of U_0 such that O = OSClA holds $OSGen O = U_0$.

Let us consider S, let U_0 be a monotone order sorted algebra of S, and let I_1 be an order sorted generator set of U_0 . We say that I_1 is osfree if and only if the condition (Def. 2) is satisfied.

C 2002 University of Białystok ISSN 1426-2630

¹This work was done during author's research visit in Bialystok, funded by the CALCU-LEMUS grant HPRN-CT-2000-00102.

(Def. 2) Let U_1 be a monotone non-empty order sorted algebra of S and f be a many sorted function from I_1 into the sorts of U_1 . Then there exists a many sorted function h from U_0 into U_1 such that h is a homomorphism of U_0 into U_1 and order-sorted and $h \upharpoonright I_1 = f$.

Let S be an order sorted signature and let I_1 be a monotone order sorted algebra of S. We say that I_1 is osfree if and only if:

(Def. 3) There exists an order sorted generator set of I_1 which is osfree.

2. Construction of Free Order Sorted Algebras for Given Signature

Let S be an order sorted signature and let X be a many sorted set indexed by S. The functor OSREL X yields a relation between [the operation symbols of S, {the carrier of S}] $\cup \bigcup \operatorname{coprod}(X)$ and ([the operation symbols of S, {the carrier of S}] $\cup \bigcup \operatorname{coprod}(X)$)* and is defined by the condition (Def. 4).

(Def. 4) Let a be an element of [the operation symbols of S,

{the carrier of S} $\downarrow \cup \bigcup \operatorname{coprod}(X)$ and b be an element of ([the operation symbols of S, {the carrier of S} $\downarrow \cup \bigcup \operatorname{coprod}(X)$)*. Then $\langle a, b \rangle \in \operatorname{OSREL} X$ if and only if the following conditions are satisfied:

- (i) $a \in [$: the operation symbols of S, {the carrier of S}], and
- (ii) for every operation symbol o of S such that $\langle o,$ the carrier of $S \rangle = a$ holds len b = len Arity(o) and for every set x such that $x \in$ dom b holds if $b(x) \in$ [the operation symbols of S, { the carrier of S], then for every operation symbol o_1 of S such that $\langle o_1$, the carrier of $S \rangle = b(x)$ holds the result sort of $o_1 \leq$ Arity $(o)_x$ and if $b(x) \in \bigcup$ coprod(X), then there exists an element i of the carrier of S such that $i \leq$ Arity $(o)_x$ and $b(x) \in$ coprod(i, X).

In the sequel S is an order sorted signature, X is a many sorted set indexed by S, o is an operation symbol of S, and b is an element of ([the operation symbols of S, {the carrier of S}] $\cup \bigcup \operatorname{coprod}(X)$)*.

One can prove the following proposition

- (2) $\langle \langle o, \text{ the carrier of } S \rangle, b \rangle \in \text{OSREL } X \text{ if and only if the following conditions are satisfied:}$
- (i) $\operatorname{len} b = \operatorname{len} \operatorname{Arity}(o)$, and
- (ii) for every set x such that $x \in \text{dom } b$ holds if $b(x) \in [$ the operation symbols of S, {the carrier of S}], then for every operation symbol o_1 of S such that $\langle o_1$, the carrier of $S \rangle = b(x)$ holds the result sort of $o_1 \leq \text{Arity}(o)_x$ and if $b(x) \in \bigcup \text{coprod}(X)$, then there exists an element i of the carrier of S such that $i \leq \text{Arity}(o)_x$ and $b(x) \in \text{coprod}(i, X)$.

Let S be an order sorted signature and let X be a many sorted set indexed by S. The functor DTConOSA X yielding a tree construction structure is defined by:

(Def. 5) DTConOSA $X = \langle [\text{the operation symbols of } S, \{ \text{the carrier of } S \}] \cup \bigcup \operatorname{coprod}(X), \operatorname{OSREL} X \rangle.$

Let S be an order sorted signature and let X be a many sorted set indexed by S. Note that DTConOSA X is strict and non empty.

The following proposition is true

(3) Let S be an order sorted signature and X be a non-empty many sorted set indexed by S. Then the nonterminals of DTConOSA X = [the operation symbols of S, {the carrier of S}] and the terminals of DTConOSA X = ∪ coprod(X).

Let S be an order sorted signature and let X be a non-empty many sorted set indexed by S. Note that DTConOSA X has terminals, nonterminals, and useful nonterminals.

The following proposition is true

(4) Let S be an order sorted signature, X be a non-empty many sorted set indexed by S, and t be a set. Then $t \in$ the terminals of DTConOSA X if and only if there exists an element s of the carrier of S and there exists a set x such that $x \in X(s)$ and $t = \langle x, s \rangle$.

Let S be an order sorted signature, let X be a non-empty many sorted set indexed by S, and let o be an operation symbol of S. The functor OSSym(o, X) yielding a symbol of DTConOSA X is defined as follows:

(Def. 6) $OSSym(o, X) = \langle o, \text{ the carrier of } S \rangle.$

Let S be an order sorted signature, let X be a non-empty many sorted set indexed by S, and let s be an element of the carrier of S. The functor ParsedTerms(X, s) yielding a subset of TS(DTConOSAX) is defined by the condition (Def. 7).

(Def. 7) ParsedTerms $(X, s) = \{a; a \text{ ranges over elements of TS}(\text{DTConOSA} X):$ $\bigvee_{s_1:\text{element of the carrier of } S \bigvee_{x:\text{set}} (s_1 \leq s \land x \in X(s_1) \land a = \text{the root tree}$ of $\langle x, s_1 \rangle) \lor \bigvee_{o:\text{operation symbol of } S} (\langle o, \text{ the carrier of } S \rangle = a(\emptyset) \land \text{ the}$ result sort of $o \leq s$).

Let S be an order sorted signature, let X be a non-empty many sorted set indexed by S, and let s be an element of the carrier of S. Note that ParsedTerms(X, s) is non empty.

Let S be an order sorted signature and let X be a non-empty many sorted set indexed by S. The functor ParsedTerms X yields an order sorted set of S and is defined by:

(Def. 8) For every element s of the carrier of S holds $(\operatorname{ParsedTerms} X)(s) = \operatorname{ParsedTerms}(X, s)$.

Let S be an order sorted signature and let X be a non-empty many sorted set indexed by S. One can verify that ParsedTerms X is non-empty.

The following four propositions are true:

- (5) Let S be an order sorted signature, X be a non-empty many sorted set indexed by S, o be an operation symbol of S, and x be a set. Suppose $x \in ((\operatorname{ParsedTerms} X)^{\#} \cdot \operatorname{the arity of} S)(o)$. Then x is a finite sequence of elements of TS(DTConOSA X).
- (6) Let S be an order sorted signature, X be a non-empty many sorted set indexed by S, o be an operation symbol of S, and p be a finite sequence of elements of TS(DTConOSA X). Then p ∈ ((ParsedTerms X)[#] · the arity of S)(o) if and only if dom p = dom Arity(o) and for every natural number n such that n ∈ dom p holds p(n) ∈ ParsedTerms(X, Arity(o)_n).
- (7) Let S be an order sorted signature, X be a non-empty many sorted set indexed by S, o be an operation symbol of S, and p be a finite sequence of elements of TS(DTConOSA X). Then $OSSym(o, X) \Rightarrow$ the roots of p if and only if $p \in ((ParsedTerms X)^{\#} \cdot \text{the arity of } S)(o).$
- (8) For every order sorted signature S and for every non-empty many sorted set X indexed by S holds \bigcup rng ParsedTerms X = TS(DTConOSA X).

Let S be an order sorted signature, let X be a non-empty many sorted set indexed by S, and let o be an operation symbol of S. The functor PTDenOp(o, X) yields a function from $((ParsedTerms X)^{\#} \cdot \text{the arity of } S)(o)$ into $(ParsedTerms X \cdot \text{the result sort of } S)(o)$ and is defined as follows:

(Def. 9) For every finite sequence p of elements of TS(DTConOSA X) such that $OSSym(o, X) \Rightarrow$ the roots of p holds (PTDenOp(o, X))(p) = OSSym(o, X)-tree(p).

Let S be an order sorted signature and let X be a non-empty many sorted set indexed by S. The functor PTOper X yields a many sorted function from (ParsedTerms X)[#] · the arity of S into ParsedTerms X · the result sort of S and is defined by:

(Def. 10) For every operation symbol o of S holds (PTOper X)(o) = PTDenOp(o, X).

Let S be an order sorted signature and let X be a non-empty many sorted set indexed by S. The functor ParsedTermsOSA X yielding an order sorted algebra of S is defined as follows:

(Def. 11) ParsedTermsOSA $X = \langle \text{ParsedTerms } X, \text{PTOper } X \rangle$.

Let S be an order sorted signature and let X be a non-empty many sorted set indexed by S. One can check that ParsedTermsOSA X is strict and non-empty.

Let S be an order sorted signature, let X be a non-empty many sorted set indexed by S, and let o be an operation symbol of S. Then OSSym(o, X) is a nonterminal of DTConOSA X.

Next we state several propositions:

- (9) Let S be an order sorted signature, X be a non-empty many sorted set indexed by S, and s be an element of the carrier of S. Then (the sorts of ParsedTermsOSA X)(s) = {a; a ranges over elements of TS(DTConOSA X): $\bigvee_{s_1:\text{element of the carrier of } S} \bigvee_{x:\text{set}} (s_1 \leq s \land x \in X(s_1) \land a = \text{the root tree of } \langle x, s_1 \rangle) \lor \bigvee_{o:\text{operation symbol of } S} (\langle o, \text{ the carrier of } S \rangle = a(\emptyset) \land \text{ the result sort of } o \leq s)$ }.
- (10) Let S be an order sorted signature, X be a non-empty many sorted set indexed by S, s, s_1 be elements of the carrier of S, and x be a set. Suppose $x \in X(s)$. Then
 - (i) the root tree of $\langle x, s \rangle$ is an element of TS(DTConOSA X),
 - (ii) for every set z holds $\langle z, \text{ the carrier of } S \rangle \neq (\text{the root tree of } \langle x, s \rangle)(\emptyset)$, and
- (iii) the root tree of $\langle x, s \rangle \in (\text{the sorts of ParsedTermsOSA } X)(s_1) \text{ iff } s \leq s_1.$
- (11) Let S be an order sorted signature, X be a non-empty many sorted set indexed by S, t be an element of TS(DTConOSAX), and o be an operation symbol of S. Suppose $t(\emptyset) = \langle o, \text{ the carrier of } S \rangle$. Then
 - (i) there exists a subtree sequence p joinable by OSSym(o, X) such that t = OSSym(o, X)-tree(p) and $OSSym(o, X) \Rightarrow$ the roots of p and $p \in Args(o, ParsedTermsOSA X)$ and t = (Den(o, ParsedTermsOSA X))(p),
 - (ii) for every element s_2 of the carrier of S and for every set x holds $t \neq$ the root tree of $\langle x, s_2 \rangle$, and
- (iii) for every element s_1 of the carrier of S holds $t \in$ (the sorts of ParsedTermsOSA X) $(s_1$) iff the result sort of $o \leq s_1$.
- (12) Let S be an order sorted signature, X be a non-empty many sorted set indexed by S, n_1 be a symbol of DTConOSA X, and t_1 be a finite sequence of elements of TS(DTConOSA X). Suppose $n_1 \Rightarrow$ the roots of t_1 . Then
 - (i) $n_1 \in$ the nonterminals of DTConOSA X,
 - (ii) n_1 -tree $(t_1) \in TS(DTCONOSAX)$, and
- (iii) there exists an operation symbol o of S such that $n_1 = \langle o,$ the carrier of $S \rangle$ and $t_1 \in \operatorname{Args}(o, \operatorname{ParsedTermsOSA} X)$ and n_1 -tree $(t_1) = (\operatorname{Den}(o, \operatorname{ParsedTermsOSA} X))(t_1)$ and for every element s_1 of the carrier of S holds n_1 -tree $(t_1) \in ($ the sorts of ParsedTermsOSA $X)(s_1)$ iff the result sort of $o \leq s_1$.
- (13) Let S be an order sorted signature, X be a non-empty many sorted set indexed by S, o be an operation symbol of S, and x be a finite sequence. Then $x \in \operatorname{Args}(o, \operatorname{ParsedTermsOSA} X)$ if and only if the following conditions are satisfied:
 - (i) x is a finite sequence of elements of TS(DTConOSA X), and
- (ii) $OSSym(o, X) \Rightarrow$ the roots of x.
- (14) Let S be an order sorted signature, X be a non-empty many sorted set

indexed by S, and t be an element of TS(DTConOSA X). Then there exists a sort symbol s of S such that $t \in (\text{the sorts of ParsedTermsOSA } X)(s)$ and for every element s_1 of the carrier of S such that $t \in (\text{the sorts of ParsedTermsOSA } X)(s_1)$ holds $s \leq s_1$.

Let S be an order sorted signature, let X be a non-empty many sorted set indexed by S, and let t be an element of TS(DTConOSAX). The functor LeastSort t yields a sort symbol of S and is defined by the conditions (Def. 12).

(Def. 12)(i) $t \in (\text{the sorts of ParsedTermsOSA } X)(\text{LeastSort } t), \text{ and }$

(ii) for every element s_1 of the carrier of S such that $t \in$ (the sorts of ParsedTermsOSA X) (s_1) holds LeastSort $t \leq s_1$.

Let S be a non-empty non void many sorted signature and let A be a non-empty algebra over S.

(Def. 13) An element of \bigcup (the sorts of A) is said to be an element of A.

We now state four propositions:

- (15) Let S be an order sorted signature, X be a non-empty many sorted set indexed by S, and x be a set. Then x is an element of ParsedTermsOSA X if and only if x is an element of TS(DTConOSA X).
- (16) Let S be an order sorted signature, X be a non-empty many sorted set indexed by S, s be an element of the carrier of S, and x be a set. If $x \in (\text{the sorts of ParsedTermsOSA} X)(s)$, then x is an element of TS(DTConOSA X).
- (17) Let S be an order sorted signature, X be a non-empty many sorted set indexed by S, s be an element of the carrier of S, and x be a set. Suppose $x \in X(s)$. Let t be an element of TS(DTConOSA X). If t = the root tree of $\langle x, s \rangle$, then LeastSort t = s.
- (18) Let S be an order sorted signature, X be a non-empty many sorted set indexed by S, o be an operation symbol of S, x be an element of $\operatorname{Args}(o, \operatorname{ParsedTermsOSA} X)$, and t be an element of $\operatorname{TS}(\operatorname{DTConOSA} X)$. If $t = (\operatorname{Den}(o, \operatorname{ParsedTermsOSA} X))(x)$, then $\operatorname{LeastSort} t =$ the result sort of o.

Let S be an order sorted signature, let X be a non-empty many sorted set indexed by S, and let o_2 be an operation symbol of S. Note that $\operatorname{Args}(o_2, \operatorname{ParsedTermsOSA} X)$ is non empty.

Let S be a locally directed order sorted signature, let X be a nonempty many sorted set indexed by S, and let x be a finite sequence of elements of TS(DTConOSA X). The functor LeastSorts x yielding an element of (the carrier of S)^{*} is defined as follows:

(Def. 14) dom LeastSorts x = dom x and for every natural number y such that $y \in \text{dom } x$ there exists an element t of TS(DTConOSA X) such that t = x(y) and (LeastSorts x)(y) = LeastSort t.

We now state the proposition

(19) Let S be a locally directed order sorted signature, X be a non-empty many sorted set indexed by S, o be an operation symbol of S, and x be a finite sequence of elements of TS(DTConOSA X). Then LeastSorts $x \leq Arity(o)$ if and only if $x \in Args(o, ParsedTermsOSA X)$.

Let us note that there exists a monotone order sorted signature which is locally directed and regular.

Let S be a locally directed regular monotone order sorted signature, let X be a non-empty many sorted set indexed by S, let o be an operation symbol of S, and let x be a finite sequence of elements of TS(DTConOSA X). Let us assume that OSSym(LBound(o, LeastSorts x), X) \Rightarrow the roots of x. The functor $\pi_x o$ yields an element of TS(DTConOSA X) and is defined by:

(Def. 15) $\pi_x o = \text{OSSym}(\text{LBound}(o, \text{LeastSorts} x), X)$ -tree(x).

Let S be a locally directed order sorted signature, let X be a non-empty many sorted set indexed by S, and let t be a symbol of DTConOSA X. Let us assume that there exists a finite sequence p such that $t \Rightarrow p$. The functor ^(a)(X, t) yields an operation symbol of S and is defined by:

(Def. 16) $\langle ^{@}(X,t), \text{ the carrier of } S \rangle = t.$

Let S be an order sorted signature, let X be a non-empty many sorted set indexed by S, and let t be a symbol of DTConOSA X. Let us assume that $t \in$ the terminals of DTConOSA X. The functor $\prod t$ yielding an element of TS(DTConOSA X) is defined by:

(Def. 17) $\prod t$ = the root tree of t.

Let S be a locally directed order sorted signature and let X be a non-empty many sorted set indexed by S. The functor LCongruence X yielding a monotone order sorted congruence of ParsedTermsOSA X is defined by:

(Def. 18) For every monotone order sorted congruence R of ParsedTermsOSA X holds LCongruence $X \subseteq R$.

Let S be a locally directed order sorted signature and let X be a non-empty many sorted set indexed by S. The functor FreeOSAX yielding a strict nonempty monotone order sorted algebra of S is defined by:

(Def. 19) FreeOSA X =QuotOSAlg(ParsedTermsOSA X, LCongruence X).

Let S be an order sorted signature, let X be a non-empty many sorted set indexed by S, and let t be a symbol of DTConOSA X. The functor [@]t yields a subset of [TS(DTConOSA X), the carrier of S] and is defined by the condition (Def. 20).

(Def. 20) ^(a) $t = \{ \langle \text{the root tree of } t, s_1 \rangle; s_1 \text{ ranges over elements of the carrier of } S: \bigvee_{s: \text{element of the carrier of } S} \bigvee_{x: \text{set}} (x \in X(s) \land t = \langle x, s \rangle \land s \leq s_1) \}.$

Let S be an order sorted signature, let X be a non-empty many sorted set indexed by S, let n_1 be a symbol of DTConOSA X, and let x be a finite sequence of elements of $2^{[TS(DTConOSA X), \text{the carrier of } S]}$. The functor (n_1, x) yielding a subset of [TS(DTConOSA X), the carrier of S] is defined by the condition (Def. 21).

(Def. 21) [@] $(n_1, x) = \{ \langle (Den(o_2, ParsedTermsOSA X))(x_2), s_3 \rangle; o_2 \text{ ranges over operation symbols of } S, x_2 \text{ ranges over elements of} \}$

Args(o_2 , ParsedTermsOSA X), s_3 ranges over elements of the carrier of $S: \bigvee_{o_1:\text{operation symbol of } S} (n_1 = \langle o_1, \text{ the carrier of } S \rangle \land o_1 \cong o_2 \land$ len Arity(o_1) = len Arity(o_2) \land the result sort of $o_1 \leq s_3 \land$ the result sort of $o_2 \leq s_3$) $\land \bigvee_{w_3:\text{element of (the carrier of } S)^*} (\text{dom } w_3 = \text{dom } x \land$ $\bigwedge_{y:\text{natural number}} (y \in \text{dom } x \Rightarrow \langle x_2(y), (w_3)_y \rangle \in x(y)))$ }.

Let S be a locally directed order sorted signature and let X be a non-empty many sorted set indexed by S. The functor PTClasses X yielding a function from TS(DTConOSA X) into $2^{[TS(DTConOSA X), \text{ the carrier of } S]}$ is defined by the conditions (Def. 22).

- (Def. 22)(i) For every symbol t of DTConOSA X such that $t \in$ the terminals of DTConOSA X holds (PTClasses X)(the root tree of t) = [@]t, and
 - (ii) for every symbol n_1 of DTConOSA X and for every finite sequence t_1 of elements of TS(DTConOSA X) and for every finite sequence r_1 such that r_1 = the roots of t_1 and $n_1 \Rightarrow r_1$ and for every finite sequence x of elements of $2^{[TS(DTConOSA X), \text{the carrier of } S]}$ such that $x = \text{PTClasses } X \cdot t_1$ holds (PTClasses X)(n_1 -tree(t_1)) = [@](n_1, x).

One can prove the following four propositions:

- (20) Let S be a locally directed order sorted signature, X be a non-empty many sorted set indexed by S, and t be an element of TS(DTConOSAX). Then
 - (i) for every element s of the carrier of S holds $t \in$ (the sorts of ParsedTermsOSA X)(s) iff $\langle t, s \rangle \in$ (PTClasses X)(t), and
 - (ii) for every element s of the carrier of S and for every element y of TS(DTConOSA X) such that $\langle y, s \rangle \in (PTClasses X)(t)$ holds $\langle t, s \rangle \in (PTClasses X)(y)$.
- (21) Let S be a locally directed order sorted signature, X be a non-empty many sorted set indexed by S, t be an element of TS(DTConOSAX), and s be an element of the carrier of S. If there exists an element y of TS(DTConOSAX) such that $\langle y, s \rangle \in (PTClassesX)(t)$, then $\langle t, s \rangle \in (PTClassesX)(t)$.
- (22) Let S be a locally directed order sorted signature, X be a non-empty many sorted set indexed by S, x, y be elements of TS(DTConOSA X), and s_1, s_2 be elements of the carrier of S. Suppose $s_1 \leq s_2$ and $x \in (\text{the sorts of ParsedTermsOSA X})(s_1)$ and $y \in (\text{the sorts of ParsedTermsOSA X})(s_1)$. Then $\langle y, s_1 \rangle \in (\text{PTClasses X})(x)$ if and only if $\langle y, s_2 \rangle \in (\text{PTClasses X})(x)$.

(23) Let S be a locally directed order sorted signature, X be a non-empty many sorted set indexed by S, x, y, z be elements of TS(DTConOSAX), and s be an element of the carrier of S. If $\langle y, s \rangle \in (PTClasses X)(x)$ and $\langle z, s \rangle \in (PTClasses X)(y)$, then $\langle x, s \rangle \in (PTClasses X)(z)$.

Let S be a locally directed order sorted signature and let X be a nonempty many sorted set indexed by S. The functor PTCongruence X yielding an equivalence order sorted relation of ParsedTermsOSA X is defined by the condition (Def. 23).

(Def. 23) Let *i* be a set. Suppose $i \in$ the carrier of *S*. Then (PTCongruence *X*)(*i*) = $\{\langle x, y \rangle; x \text{ ranges over elements of TS(DTConOSA X), y ranges over elements of TS(DTConOSA X): <math>\langle x, i \rangle \in (\text{PTClasses } X)(y)\}.$

One can prove the following propositions:

- (24) Let S be a locally directed order sorted signature, X be a nonempty many sorted set indexed by S, and x, y, s be sets. If $\langle x, s \rangle \in (\operatorname{PTClasses} X)(y)$, then $x \in \operatorname{TS}(\operatorname{DTConOSA} X)$ and $y \in \operatorname{TS}(\operatorname{DTConOSA} X)$ and $s \in$ the carrier of S.
- (25) Let S be a locally directed order sorted signature, X be a non-empty many sorted set indexed by S, C be a component of S, and x, y be sets. Then $\langle x, y \rangle \in \text{CompClass}(\text{PTCongruence } X, C)$ if and only if there exists an element s_1 of the carrier of S such that $s_1 \in C$ and $\langle x, s_1 \rangle \in$ (PTClasses X)(y).
- (26) Let S be a locally directed order sorted signature, X be a non-empty many sorted set indexed by S, s be an element of the carrier of S, and x be an element of (the sorts of ParsedTermsOSAX)(s). Then OSClass(PTCongruence X, x) = $\pi_1((PTClasses X)(x))$.
- (27) Let S be a locally directed order sorted signature, X be a non-empty many sorted set indexed by S, and R be a many sorted relation indexed by ParsedTermsOSA X. Then R = PTCongruence X if and only if the following conditions are satisfied:
 - (i) for all elements s_1 , s_2 of the carrier of S and for every set x such that $x \in X(s_1)$ holds if $s_1 \leq s_2$, then (the root tree of $\langle x, s_1 \rangle$), the root tree of $\langle x, s_1 \rangle \rangle \in R(s_2)$ and for every set y such that (the root tree of $\langle x, s_1 \rangle$), $y \geq R(s_2)$ or (y, the root tree of $\langle x, s_1 \rangle \rangle \in R(s_2)$ holds $s_1 \leq s_2$ and y = the root tree of $\langle x, s_1 \rangle$, and
 - (ii) for all operation symbols o_1 , o_2 of S and for every element x_1 of $\operatorname{Args}(o_1, \operatorname{ParsedTermsOSA} X)$ and for every element x_2 of $\operatorname{Args}(o_2, \operatorname{ParsedTermsOSA} X)$ and for every element s_3 of the carrier of S holds $\langle (\operatorname{Den}(o_1, \operatorname{ParsedTermsOSA} X))(x_1), (\operatorname{Den}(o_2, \operatorname{ParsedTermsOSA} X))(x_2) \rangle \in R(s_3)$ iff $o_1 \cong o_2$ and $\operatorname{lenArity}(o_1) =$ $\operatorname{lenArity}(o_2)$ and the result sort of $o_1 \leqslant s_3$ and the result sort of $o_2 \leqslant s_3$ and there exists an element w_3 of (the carrier of S)* such that

dom $w_3 = \operatorname{dom} x_1$ and for every natural number y such that $y \in \operatorname{dom} w_3$ holds $\langle x_1(y), x_2(y) \rangle \in R((w_3)_y)$.

(28) Let S be a locally directed order sorted signature and X be a non-empty many sorted set indexed by S. Then PTCongruence X is monotone.

Let S be a locally directed order sorted signature and let X be a non-empty many sorted set indexed by S. Observe that PTCongruence X is monotone.

Let S be a locally directed order sorted signature, let X be a non-empty many sorted set indexed by S, and let s be an element of the carrier of S. The functor PTVars(s, X) yields a subset of (the sorts of ParsedTermsOSA X)(s) and is defined by:

(Def. 24) For every set x holds $x \in \text{PTVars}(s, X)$ iff there exists a set a such that $a \in X(s)$ and x = the root tree of $\langle a, s \rangle$.

Let S be a locally directed order sorted signature, let X be a non-empty many sorted set indexed by S, and let s be an element of the carrier of S. One can check that PTVars(s, X) is non empty.

We now state the proposition

(29) Let S be a locally directed order sorted signature, X be a non-empty many sorted set indexed by S, and s be an element of the carrier of S. Then $\operatorname{PTVars}(s, X) = \{\text{the root tree of } t; t \text{ ranges over symbols of} DTConOSA X : t \in \text{the terminals of DTConOSA X } \land t_2 = s\}.$

Let S be a locally directed order sorted signature and let X be a nonempty many sorted set indexed by S. The functor $\operatorname{PTVars} X$ yielding a subset of $\operatorname{ParsedTermsOSA} X$ is defined by:

(Def. 25) For every element s of the carrier of S holds $(\operatorname{PTVars} X)(s) = \operatorname{PTVars}(s, X)$.

The following proposition is true

(30) Let S be a locally directed order sorted signature and X be a non-empty many sorted set indexed by S. Then PTVars X is non-empty.

Let S be a locally directed order sorted signature, let X be a non-empty many sorted set indexed by S, and let s be an element of the carrier of S. The functor OSFreeGen(s, X) yields a subset of (the sorts of FreeOSA X)(s) and is defined by:

(Def. 26) For every set x holds $x \in \text{OSFreeGen}(s, X)$ iff there exists a set a such that $a \in X(s)$ and x = (OSNatHom(ParsedTermsOSA X, LCongruence X))(s)(the root tree of $\langle a, s \rangle$).

Let S be a locally directed order sorted signature, let X be a non-empty many sorted set indexed by S, and let s be an element of the carrier of S. Note that OSFreeGen(s, X) is non empty.

We now state the proposition

(31) Let S be a locally directed order sorted signature, X be a non-empty many sorted set indexed by S, and s be an element of the carrier of S. Then OSFreeGen $(s, X) = \{(OSNatHom(ParsedTermsOSA X, LCongruence X)) (s)(the root tree of t); t ranges over symbols of DTConOSA X : t \in the terminals of DTConOSA X \land t_2 = s\}.$

Let S be a locally directed order sorted signature and let X be a non-empty many sorted set indexed by S. The functor OSFreeGen X yielding an order sorted generator set of FreeOSA X is defined by:

(Def. 27) For every element s of the carrier of S holds (OSFreeGen X)(s) = OSFreeGen(s, X).

The following proposition is true

(32) Let S be a locally directed order sorted signature and X be a non-empty many sorted set indexed by S. Then OSFreeGen X is non-empty.

Let S be a locally directed order sorted signature and let X be a non-empty many sorted set indexed by S. Observe that OSFreeGen X is non-empty.

Let S be a locally directed order sorted signature, let X be a nonempty many sorted set indexed by S, let R be an order sorted congruence of ParsedTermsOSA X, and let t be an element of TS(DTConOSA X). The functor OSClass(R, t) yielding an element of OSClass(R, LeastSort t) is defined by the condition (Def. 28).

- (Def. 28) Let s be an element of the carrier of S and x be an element of (the sorts of ParsedTermsOSA X)(s). If t = x, then OSClass(R, t) = OSClass(R, x). We now state several propositions:
 - (33) Let S be a locally directed order sorted signature, X be a non-empty many sorted set indexed by S, R be an order sorted congruence of ParsedTermsOSA X, and t be an element of TS(DTConOSA X). Then $t \in OSClass(R, t)$.
 - (34) Let S be a locally directed order sorted signature, X be a non-empty many sorted set indexed by S, s be an element of the carrier of S, t be an element of TS(DTConOSA X), and x, x_1 be sets. Suppose $x \in X(s)$ and t = the root tree of $\langle x, s \rangle$. Then $x_1 \in OSClass(PTCongruence X, t)$ if and only if $x_1 = t$.
 - (35) Let S be a locally directed order sorted signature, X be a non-empty many sorted set indexed by S, R be an order sorted congruence of ParsedTermsOSA X, and t_2 , t_3 be elements of TS(DTConOSA X). Then $t_3 \in OSClass(R, t_2)$ if and only if $OSClass(R, t_2) = OSClass(R, t_3)$.
 - (36) Let S be a locally directed order sorted signature, X be a non-empty many sorted set indexed by S, R_1 , R_2 be order sorted congruences of ParsedTermsOSA X, and t be an element of TS(DTConOSA X). If $R_1 \subseteq R_2$, then OSClass $(R_1, t) \subseteq$ OSClass (R_2, t) .

(37) Let S be a locally directed order sorted signature, X be a non-empty many sorted set indexed by S, s be an element of the carrier of S, t be an element of TS(DTConOSA X), and x, x_1 be sets. Suppose $x \in X(s)$ and t = the root tree of $\langle x, s \rangle$. Then $x_1 \in OSClass(LCongruence X, t)$ if and only if $x_1 = t$.

Let S be a locally directed order sorted signature, let X be a non-empty many sorted set indexed by S, let A be a non-empty many sorted set indexed by the carrier of S, let F be a many sorted function from PTVars X into A, and let t be a symbol of DTConOSA X. Let us assume that $t \in$ the terminals of DTConOSA X. The functor $\pi(F, A, t)$ yields an element of $\bigcup A$ and is defined as follows:

(Def. 29) For every function f such that $f = F(t_2)$ holds $\pi(F, A, t) = f$ (the root tree of t).

Next we state the proposition

(38) Let S be a locally directed order sorted signature, X be a non-empty many sorted set indexed by S, U_1 be a monotone non-empty order sorted algebra of S, and f be a many sorted function from PTVars X into the sorts of U_1 . Then there exists a many sorted function h from ParsedTermsOSA X into U_1 such that h is a homomorphism of ParsedTermsOSA X into U_1 and order-sorted and $h \upharpoonright \text{PTVars } X = f$.

Let S be a locally directed order sorted signature, let X be a non-empty many sorted set indexed by S, and let s be an element of the carrier of S. The functor NHReverse(s, X) yields a function from OSFreeGen(s, X) into PTVars(s, X)and is defined by the condition (Def. 30).

(Def. 30) Let t be a symbol of DTConOSA X.

Suppose (OSNatHom(ParsedTermsOSA X, LCongruence X))(s)(the root tree of t) \in OSFreeGen(s, X). Then (NHReverse(s, X))((OSNatHom (ParsedTermsOSA X, LCongruence X))(s)(the root tree of t)) = the root tree of t.

Let S be a locally directed order sorted signature and let X be a non-empty many sorted set indexed by S. The functor NHReverse X yielding a many sorted function from OSFreeGen X into PTVars X is defined as follows:

(Def. 31) For every element s of the carrier of S holds (NHReverse X)(s) = NHReverse(s, X).

Next we state two propositions:

- (39) Let S be a locally directed order sorted signature and X be a non-empty many sorted set indexed by S. Then OSFreeGen X is osfree.
- (40) Let S be a locally directed order sorted signature and X be a non-empty many sorted set indexed by S. Then FreeOSA X is osfree.

222

Let S be a locally directed order sorted signature. Note that there exists a non-empty monotone order sorted algebra of S which is osfree and strict.

3. MINIMAL TERMS

Let S be a locally directed regular monotone order sorted signature and let X be a non-empty many sorted set indexed by S. The functor PTMin X yields a function from TS(DTConOSA X) into TS(DTConOSA X) and is defined by the conditions (Def. 32).

- (Def. 32)(i) For every symbol t of DTConOSA X such that $t \in$ the terminals of DTConOSA X holds (PTMin X)(the root tree of t) = $\prod t$, and
 - (ii) for every symbol n_1 of DTConOSA X and for every finite sequence t_1 of elements of TS(DTConOSA X) and for every finite sequence r_1 such that r_1 = the roots of t_1 and $n_1 \Rightarrow r_1$ and for every finite sequence x of elements of TS(DTConOSA X) such that $x = \text{PTMin } X \cdot t_1$ holds $(\text{PTMin } X)(n_1\text{-tree}(t_1)) = \pi_x(^{\textcircled{0}}(X, n_1)).$

Next we state several propositions:

- (41) Let S be a locally directed regular monotone order sorted signature, X be a non-empty many sorted set indexed by S, and t be an element of TS(DTConOSA X). Then
 - (i) $(\operatorname{PTMin} X)(t) \in \operatorname{OSClass}(\operatorname{PTCongruence} X, t),$
 - (ii) LeastSort(PTMin X) $(t) \leq LeastSort t$,
- (iii) for every element s of the carrier of S and for every set x such that $x \in X(s)$ and t = the root tree of $\langle x, s \rangle$ holds $(\operatorname{PTMin} X)(t) = t$, and
- (iv) for every operation symbol o of S and for every finite sequence t_1 of elements of TS(DTConOSA X) such that $OSSym(o, X) \Rightarrow$ the roots of t_1 and t = OSSym(o, X)-tree (t_1) holds $LeastSorts PTMin X \cdot t_1 \leqslant Arity(o)$ and $OSSym(o, X) \Rightarrow$ the roots of $PTMin X \cdot t_1$ and $OSSym(LBound(o, LeastSorts PTMin X \cdot t_1), X) \Rightarrow$ the roots of $PTMin X \cdot t_1$ and $(PTMin X)(t) = OSSym(LBound(o, LeastSorts PTMin X \cdot t_1), X)$ -tree $(PTMin X \cdot t_1)$.
- (42) Let S be a locally directed regular monotone order sorted signature, X be a non-empty many sorted set indexed by S, and t, t_2 be elements of TS(DTConOSA X). If $t_2 \in OSClass(PTCongruence X, t)$, then $(PTMin X)(t_2) = (PTMin X)(t)$.
- (43) Let S be a locally directed regular monotone order sorted signature, X be a non-empty many sorted set indexed by S, and t_2 , t_3 be elements of TS(DTConOSA X). Then $t_3 \in OSClass(PTCongruence X, t_2)$ if and only if $(PTMin X)(t_3) = (PTMin X)(t_2)$.
- (44) Let S be a locally directed regular monotone order sorted signature, X be a non-empty many sorted set indexed by S, and t_2 be

an element of TS(DTConOSA X). Then $(PTMin X)((PTMin X)(t_2)) = (PTMin X)(t_2)$.

- (45) Let S be a locally directed regular monotone order sorted signature, X be a non-empty many sorted set indexed by S, R be a monotone equivalence order sorted relation of ParsedTermsOSA X, and t be an element of TS(DTConOSA X). Then $\langle t, (PTMin X)(t) \rangle \in R(\text{LeastSort } t)$.
- (46) Let S be a locally directed regular monotone order sorted signature, X be a non-empty many sorted set indexed by S, and R be a monotone equivalence order sorted relation of ParsedTermsOSAX. Then PTCongruence $X \subseteq R$.
- (47) Let S be a locally directed regular monotone order sorted signature and X be a non-empty many sorted set indexed by S. Then LCongruence X = PTCongruence X.

Let S be a locally directed regular monotone order sorted signature and let X be a non-empty many sorted set indexed by S. An element of TS(DTConOSAX) is called a minimal term of S, X if:

(Def. 33) $(\operatorname{PTMin} X)(\operatorname{it}) = \operatorname{it}.$

Let S be a locally directed regular monotone order sorted signature and let X be a non-empty many sorted set indexed by S. The functor MinTerms X yields a subset of TS(DTConOSA X) and is defined by:

(Def. 34) MinTerms $X = \operatorname{rng} \operatorname{PTMin} X$.

The following proposition is true

(48) Let S be a locally directed regular monotone order sorted signature, X be a non-empty many sorted set indexed by S, and x be a set. Then x is a minimal term of S, X if and only if $x \in \text{MinTerms } X$.

Acknowledgments

Thanks to Joseph Goguen, for providing me with his articles on osas, and Andrzej Trybulec, for suggesting and funding this work in Bialystok.

References

- [1] Grzegorz Bancerek. Curried and uncurried functions. *Formalized Mathematics*, 1(3):537–541, 1990.
- [2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [3] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547– 552, 1991.
- [4] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397-402, 1991.
- [5] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized Mathematics, 3(2):195–204, 1992.
- [6] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77–82, 1993.
- [7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.

- [8] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91–101, 1993.
- [9] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formalized Mathematics, 5(1):47-54, 1996.
- [10] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [11] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [12] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [13] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990
- [14] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar part 1. Formalized Mathematics, 2(5):683–687, 1991.
- [15] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61–65, 1996.
- [16] Małgorzata Korolkiewicz. Many sorted quotient algebra. Formalized Mathematics, 5(1):79–84, 1996.
- [17] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103– 108, 1993.
- [18] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [19] Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1):67– 74, 1996.
- [20] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.
- [21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [22] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [23] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [24] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
 [25] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,
- [26] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
- [26] Wojeten R. Tybulee. Figure for principle. Formalized Mathematics, 1(9):576–575, 1990.
 [27] Zinaida Trybulee. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [28] Josef Urban. Homomorphisms of order sorted algebras. *Formalized Mathematics*, 10(3):197–200, 2002.
- [29] Josef Urban. Order sorted algebras. Formalized Mathematics, 10(3):179–188, 2002.
- [30] Josef Urban. Order sorted quotient algebra. *Formalized Mathematics*, 10(3):201–210, 2002.
- [31] Josef Urban. Subalgebras of an order sorted algebra. Lattice of subalgebras. Formalized Mathematics, 10(3):189–196, 2002.
- [32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [33] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received September 19, 2002