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Summary. In this article we defined the operation of a set and proved
Bessel’s inequality. In the first section, we defined the sum of all results of an

operation, in which the results are given by taking each element of a set. In the

second section, we defined Orthogonal Family and Orthonormal Family. In the

last section, we proved some properties of operation of set and Bessel’s inequality.

MML Identifier: BHSP 5.

The articles [12], [16], [10], [7], [5], [6], [17], [15], [9], [13], [3], [8], [1], [11], [4],

[2], and [14] provide the terminology and notation for this paper.

1. Sum of the Result of Operation with Each Element of a Set

For simplicity, we adopt the following convention: X denotes a real unitary

space, x, y, y1, y2 denote points of X, i, j denote natural numbers, D1 denotes

a non empty set, and p1, p2 denote finite sequences of elements of D1.

Next we state the proposition

(1) Suppose p1 is one-to-one and p2 is one-to-one and rng p1 = rng p2. Then

dom p1 = dom p2 and there exists a permutation P of dom p1 such that

p2 = p1 · P and domP = dom p1 and rngP = dom p1.

Let D1 be a non empty set and let f be a binary operation on D1. Let us

assume that f is commutative and associative and has a unity. Let Y be a finite

subset of D1. The functor f⊕Y yields an element of D1 and is defined as follows:

(Def. 1) There exists a finite sequence p of elements of D1 such that p is one-to-

one and rng p = Y and f ⊕ Y = f ⊙ p.

Let us consider X and let Y be a finite subset of the carrier of X. The

functor SetopSum(Y,X) is defined as follows:
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(Def. 2) SetopSum(Y, X) =

{

(the addition of X)⊕ Y, if Y 6= ∅,

0X , otherwise.

Let us consider X, x, let p be a finite sequence, and let us consider i. The

functor PO(i, p, x) is defined by:

(Def. 3) PO(i, p, x) = (the scalar product of X)(〈〈x, p(i)〉〉).

Let D2, D1 be non empty sets, let F be a function from D1 into D2, and let

p be a finite sequence of elements of D1. The functor FuncSeq(F, p) yielding a

finite sequence of elements of D2 is defined as follows:

(Def. 4) FuncSeq(F, p) = F · p.

Let D2, D1 be non empty sets and let f be a binary operation on D2. Let

us assume that f is commutative and associative and has a unity. Let Y be a

finite subset of D1 and let F be a function from D1 into D2. Let us assume that

Y ⊆ domF. The functor setopfunc(Y,D1, D2, F, f) yielding an element of D2 is

defined by:

(Def. 5) There exists a finite sequence p of elements of D1 such that p is one-to-

one and rng p = Y and setopfunc(Y, D1, D2, F, f) = f ⊙ FuncSeq(F, p).

Let us consider X, x and let Y be a finite subset of the carrier of X. The

functor SetopPreProd(x, Y, X) yields a real number and is defined by the con-

dition (Def. 6).

(Def. 6) There exists a finite sequence p of elements of the carrier of X such that

(i) p is one-to-one,

(ii) rng p = Y, and

(iii) there exists a finite sequence q of elements of R such that dom q =

dom p and for every i such that i ∈ dom q holds q(i) = PO(i, p, x) and

SetopPreProd(x, Y,X) = +R ⊙ q.

Let us consider X, x and let Y be a finite subset of the carrier of X. The

functor SetopProd(x, Y,X) yielding a real number is defined as follows:

(Def. 7) SetopProd(x, Y, X) =

{

SetopPreProd(x, Y, X), if Y 6= ∅,

0, otherwise.

2. Orthogonal Family and Orthonormal Family

Let us consider X. A subset of the carrier of X is said to be an orthogonal

family of X if:

(Def. 8) For all x, y such that x ∈ it and y ∈ it and x 6= y holds (x|y) = 0.

The following proposition is true

(2) ∅ is an orthogonal family of X.

Let us considerX. Observe that there exists an orthogonal family ofX which

is finite.
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Let us consider X. A subset of the carrier of X is said to be an orthonormal

family of X if:

(Def. 9) It is an orthogonal family of X and for every x such that x ∈ it holds

(x|x) = 1.

One can prove the following proposition

(3) ∅ is an orthonormal family of X.

Let us consider X. One can check that there exists an orthonormal family

of X which is finite.

The following proposition is true

(4) x = 0X iff for every y holds (x|y) = 0.

3. Bessel’s Inequality

We now state a number of propositions:

(5) ‖x + y‖2 + ‖x− y‖2 = 2 · ‖x‖2 + 2 · ‖y‖2.

(6) If x, y are orthogonal, then ‖x + y‖2 = ‖x‖2 + ‖y‖2.

(7) Let p be a finite sequence of elements of the carrier of X. Suppose len p 

1 and for all i, j such that i ∈ dom p and j ∈ dom p and i 6= j holds

(the scalar product of X)(〈〈p(i), p(j)〉〉) = 0. Let q be a finite sequence of

elements of R. Suppose dom p = dom q and for every i such that i ∈ dom q

holds q(i) = (the scalar product of X)(〈〈p(i), p(i)〉〉). Then ((the addition

of X ⊙ p)|(the addition of X ⊙ p)) = +R ⊙ q.

(8) Let p be a finite sequence of elements of the carrier of X. Suppose len p 

1. Let q be a finite sequence of elements of R. Suppose dom p = dom q and

for every i such that i ∈ dom q holds q(i) = (the scalar product of X)(〈〈x,

p(i)〉〉). Then (x|(the addition of X ⊙ p)) = +R ⊙ q.

(9) Let S be a finite non empty subset of the carrier ofX and F be a function

from the carrier of X into the carrier of X. Suppose S ⊆ domF and for all

y1, y2 such that y1 ∈ S and y2 ∈ S and y1 6= y2 holds (the scalar product

of X)(〈〈F (y1), F (y2)〉〉) = 0. Let H be a function from the carrier of X into

R. Suppose S ⊆ domH and for every y such that y ∈ S holds H(y) = (the

scalar product of X)(〈〈F (y), F (y)〉〉). Let p be a finite sequence of elements

of the carrier of X. Suppose p is one-to-one and rng p = S. Then (the

scalar product of X)(〈〈the addition of X ⊙ FuncSeq(F, p), the addition of

X ⊙ FuncSeq(F, p)〉〉) = +R ⊙ FuncSeq(H, p).

(10) Let S be a finite non empty subset of the carrier ofX and F be a function

from the carrier of X into the carrier of X. Suppose S ⊆ domF. Let H be

a function from the carrier of X into R. Suppose S ⊆ domH and for every

y such that y ∈ S holds H(y) = (the scalar product of X)(〈〈x, F (y)〉〉). Let
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p be a finite sequence of elements of the carrier of X. Suppose p is one-

to-one and rng p = S. Then (the scalar product of X)(〈〈x, the addition of

X ⊙ FuncSeq(F, p)〉〉) = +R ⊙ FuncSeq(H, p).

(11) Let given X. Suppose the addition of X is commutative and associative

and the addition of X has a unity. Let given x and S be a finite orthonor-

mal family of X. Suppose S is non empty. Let H be a function from the

carrier of X into R. Suppose S ⊆ domH and for every y such that y ∈ S

holds H(y) = (x|y)2. Let F be a function from the carrier of X into the

carrier of X. Suppose S ⊆ domF and for every y such that y ∈ S holds

F (y) = (x|y) · y. Then (x| setopfunc(S, the carrier of X, the carrier of X,

F, the addition of X)) = setopfunc(S, the carrier of X, R,H,+R).

(12) Let given X. Suppose the addition of X is commutative and associative

and the addition of X has a unity. Let given x and S be a finite ortho-

normal family of X. Suppose S is non empty. Let F be a function from

the carrier of X into the carrier of X. Suppose S ⊆ domF and for every

y such that y ∈ S holds F (y) = (x|y) · y. Let H be a function from the

carrier of X into R. Suppose S ⊆ domH and for every y such that y ∈ S

holds H(y) = (x|y)2. Then (setopfunc(S, the carrier of X, the carrier of

X, F, the addition of X)| setopfunc(S, the carrier of X, the carrier of X,

F, the addition of X)) = setopfunc(S, the carrier of X, R,H,+R).

(13) Let given X. Suppose the addition of X is commutative and associa-

tive and the addition of X has a unity. Let given x and S be a finite

orthonormal family of X. Suppose S is non empty. Let H be a function

from the carrier of X into R. Suppose S ⊆ domH and for every y such

that y ∈ S holds H(y) = (x|y)2. Then setopfunc(S, the carrier of X,

R,H, +R) ¬ ‖x‖2.

(14) Let D2, D1 be non empty sets and f be a binary operation on D2. Sup-

pose f is commutative and associative and has a unity. Let Y1, Y2 be

finite subsets of D1. Suppose Y1 misses Y2. Let F be a function from

D1 into D2. Suppose Y1 ⊆ domF and Y2 ⊆ domF. Let Z be a fi-

nite subset of D1. If Z = Y1 ∪ Y2, then setopfunc(Z, D1, D2, F, f) =

f(setopfunc(Y1, D1, D2, F, f), setopfunc(Y2, D1, D2, F, f)).
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