FORMALIZED MATHEMATICS Volume 11, Number 2, 2003 University of Białystok

Bessel's Inequality

Hiroshi Yamazaki Shinshu University Nagano Yasunari Shidama Shinshu University Nagano Yatsuka Nakamura Shinshu University Nagano

Summary. In this article we defined the operation of a set and proved Bessel's inequality. In the first section, we defined the sum of all results of an operation, in which the results are given by taking each element of a set. In the second section, we defined Orthogonal Family and Orthonormal Family. In the last section, we proved some properties of operation of set and Bessel's inequality.

 $\rm MML$ Identifier: $\tt BHSP_5.$

The articles [12], [16], [10], [7], [5], [6], [17], [15], [9], [13], [3], [8], [1], [11], [4], [2], and [14] provide the terminology and notation for this paper.

1. SUM OF THE RESULT OF OPERATION WITH EACH ELEMENT OF A SET

For simplicity, we adopt the following convention: X denotes a real unitary space, x, y, y_1, y_2 denote points of X, i, j denote natural numbers, D_1 denotes a non empty set, and p_1, p_2 denote finite sequences of elements of D_1 .

Next we state the proposition

(1) Suppose p_1 is one-to-one and p_2 is one-to-one and $\operatorname{rng} p_1 = \operatorname{rng} p_2$. Then dom $p_1 = \operatorname{dom} p_2$ and there exists a permutation P of dom p_1 such that $p_2 = p_1 \cdot P$ and dom $P = \operatorname{dom} p_1$ and $\operatorname{rng} P = \operatorname{dom} p_1$.

Let D_1 be a non empty set and let f be a binary operation on D_1 . Let us assume that f is commutative and associative and has a unity. Let Y be a finite subset of D_1 . The functor $f \oplus Y$ yields an element of D_1 and is defined as follows:

(Def. 1) There exists a finite sequence p of elements of D_1 such that p is one-toone and $\operatorname{rng} p = Y$ and $f \oplus Y = f \odot p$.

Let us consider X and let Y be a finite subset of the carrier of X. The functor $\operatorname{SetopSum}(Y, X)$ is defined as follows:

C 2003 University of Białystok ISSN 1426-2630 (Def. 2) SetopSum $(Y, X) = \begin{cases} \text{(the addition of } X) \oplus Y, \text{ if } Y \neq \emptyset, \\ 0_X, \text{ otherwise.} \end{cases}$

Let us consider X, x, let p be a finite sequence, and let us consider i. The functor PO(i, p, x) is defined by:

(Def. 3) PO(i, p, x) = (the scalar product of X)($\langle x, p(i) \rangle$).

Let D_2 , D_1 be non empty sets, let F be a function from D_1 into D_2 , and let p be a finite sequence of elements of D_1 . The functor $\operatorname{FuncSeq}(F, p)$ yielding a finite sequence of elements of D_2 is defined as follows:

(Def. 4) FuncSeq
$$(F, p) = F \cdot p$$
.

Let D_2 , D_1 be non empty sets and let f be a binary operation on D_2 . Let us assume that f is commutative and associative and has a unity. Let Y be a finite subset of D_1 and let F be a function from D_1 into D_2 . Let us assume that $Y \subseteq \text{dom } F$. The functor setopfunc (Y, D_1, D_2, F, f) yielding an element of D_2 is defined by:

(Def. 5) There exists a finite sequence p of elements of D_1 such that p is one-toone and rng p = Y and setopfunc $(Y, D_1, D_2, F, f) = f \odot \operatorname{FuncSeq}(F, p)$.

Let us consider X, x and let Y be a finite subset of the carrier of X. The functor SetopPreProd(x, Y, X) yields a real number and is defined by the condition (Def. 6).

(Def. 6) There exists a finite sequence p of elements of the carrier of X such that

- (i) p is one-to-one,
- (ii) $\operatorname{rng} p = Y$, and
- (iii) there exists a finite sequence q of elements of \mathbb{R} such that dom q = dom p and for every i such that $i \in \text{dom } q$ holds q(i) = PO(i, p, x) and $\text{SetopPreProd}(x, Y, X) = +_{\mathbb{R}} \odot q$.

Let us consider X, x and let Y be a finite subset of the carrier of X. The functor SetopProd(x, Y, X) yielding a real number is defined as follows:

(Def. 7) SetopProd
$$(x, Y, X) = \begin{cases} SetopPreProd $(x, Y, X), \text{ if } Y \neq \emptyset, \\ 0, \text{ otherwise.} \end{cases}$$$

2. ORTHOGONAL FAMILY AND ORTHONORMAL FAMILY

Let us consider X. A subset of the carrier of X is said to be an orthogonal family of X if:

(Def. 8) For all x, y such that $x \in \text{it and } y \in \text{it and } x \neq y \text{ holds } (x|y) = 0.$

The following proposition is true

(2) \emptyset is an orthogonal family of X.

Let us consider X. Observe that there exists an orthogonal family of X which is finite.

170

Let us consider X. A subset of the carrier of X is said to be an orthonormal family of X if:

(Def. 9) It is an orthogonal family of X and for every x such that $x \in$ it holds (x|x) = 1.

One can prove the following proposition

(3) \emptyset is an orthonormal family of X.

Let us consider X. One can check that there exists an orthonormal family of X which is finite.

The following proposition is true

(4) $x = 0_X$ iff for every y holds (x|y) = 0.

3. Bessel's Inequality

We now state a number of propositions:

- (5) $||x+y||^2 + ||x-y||^2 = 2 \cdot ||x||^2 + 2 \cdot ||y||^2$.
- (6) If x, y are orthogonal, then $||x + y||^2 = ||x||^2 + ||y||^2$.
- (7) Let p be a finite sequence of elements of the carrier of X. Suppose len $p \ge 1$ and for all i, j such that $i \in \text{dom } p$ and $j \in \text{dom } p$ and $i \ne j$ holds (the scalar product of X)($\langle p(i), p(j) \rangle$) = 0. Let q be a finite sequence of elements of \mathbb{R} . Suppose dom p = dom q and for every i such that $i \in \text{dom } q$ holds $q(i) = (\text{the scalar product of } X)(\langle p(i), p(i) \rangle)$. Then ((the addition of $X \odot p$))(the addition of $X \odot p$)) = $+_{\mathbb{R}} \odot q$.
- (8) Let p be a finite sequence of elements of the carrier of X. Suppose len p ≥
 1. Let q be a finite sequence of elements of R. Suppose dom p = dom q and for every i such that i ∈ dom q holds q(i) = (the scalar product of X)(⟨x, p(i)⟩). Then (x|(the addition of X ⊙ p)) = +_R ⊙ q.
- (9) Let S be a finite non empty subset of the carrier of X and F be a function from the carrier of X into the carrier of X. Suppose S ⊆ dom F and for all y₁, y₂ such that y₁ ∈ S and y₂ ∈ S and y₁ ≠ y₂ holds (the scalar product of X)(⟨F(y₁), F(y₂)⟩) = 0. Let H be a function from the carrier of X into ℝ. Suppose S ⊆ dom H and for every y such that y ∈ S holds H(y) = (the scalar product of X)(⟨F(y), F(y)⟩). Let p be a finite sequence of elements of the carrier of X. Suppose p is one-to-one and rng p = S. Then (the scalar product of X)(⟨the addition of X ⊙ FuncSeq(F, p), the addition of X ⊙ FuncSeq(F, p)⟩) = +_ℝ ⊙ FuncSeq(H, p).
- (10) Let S be a finite non empty subset of the carrier of X and F be a function from the carrier of X into the carrier of X. Suppose $S \subseteq \text{dom } F$. Let H be a function from the carrier of X into \mathbb{R} . Suppose $S \subseteq \text{dom } H$ and for every y such that $y \in S$ holds $H(y) = (\text{the scalar product of } X)(\langle x, F(y) \rangle)$. Let

p be a finite sequence of elements of the carrier of X. Suppose p is oneto-one and rng p = S. Then (the scalar product of X)($\langle x, the addition of X \odot \operatorname{FuncSeq}(F, p) \rangle$) = $+_{\mathbb{R}} \odot \operatorname{FuncSeq}(H, p)$.

- (11) Let given X. Suppose the addition of X is commutative and associative and the addition of X has a unity. Let given x and S be a finite orthonormal family of X. Suppose S is non empty. Let H be a function from the carrier of X into \mathbb{R} . Suppose $S \subseteq \text{dom } H$ and for every y such that $y \in S$ holds $H(y) = (x|y)^2$. Let F be a function from the carrier of X into the carrier of X. Suppose $S \subseteq \text{dom } F$ and for every y such that $y \in S$ holds $F(y) = (x|y) \cdot y$. Then (x| setopfunc(S, the carrier of X, the carrier of X,F, the addition of X)) = setopfunc $(S, \text{the carrier of } X, \mathbb{R}, H, +_{\mathbb{R}})$.
- (12) Let given X. Suppose the addition of X is commutative and associative and the addition of X has a unity. Let given x and S be a finite orthonormal family of X. Suppose S is non empty. Let F be a function from the carrier of X into the carrier of X. Suppose $S \subseteq \text{dom } F$ and for every y such that $y \in S$ holds $F(y) = (x|y) \cdot y$. Let H be a function from the carrier of X into \mathbb{R} . Suppose $S \subseteq \text{dom } H$ and for every y such that $y \in S$ holds $H(y) = (x|y)^2$. Then (setopfunc(S, the carrier of X, the carrier of X, F, the addition of X)| setopfunc(S, the carrier of X, the carrier of X, F, the addition of X)) = setopfunc(S, the carrier of X, $\mathbb{R}, H, +_{\mathbb{R}}$).
- (13) Let given X. Suppose the addition of X is commutative and associative and the addition of X has a unity. Let given x and S be a finite orthonormal family of X. Suppose S is non empty. Let H be a function from the carrier of X into \mathbb{R} . Suppose $S \subseteq \text{dom } H$ and for every y such that $y \in S$ holds $H(y) = (x|y)^2$. Then setopfunc(S, the carrier of X, $\mathbb{R}, H, +_{\mathbb{R}}) \leq ||x||^2$.
- (14) Let D_2 , D_1 be non empty sets and f be a binary operation on D_2 . Suppose f is commutative and associative and has a unity. Let Y_1 , Y_2 be finite subsets of D_1 . Suppose Y_1 misses Y_2 . Let F be a function from D_1 into D_2 . Suppose $Y_1 \subseteq \text{dom } F$ and $Y_2 \subseteq \text{dom } F$. Let Z be a finite subset of D_1 . If $Z = Y_1 \cup Y_2$, then $\text{setopfunc}(Z, D_1, D_2, F, f) = f(\text{setopfunc}(Y_1, D_1, D_2, F, f), \text{setopfunc}(Y_2, D_1, D_2, F, f)).$

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153–164, 1990.
- [6] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.

- [7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [9] Jan Popiołek. Introduction to Banach and Hilbert spaces part I. Formalized Mathematics, 2(4):511-516, 1991.
- [10] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
- [11] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369–376, 1990.
- [12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [13] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [14] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979–981, 1990.
- [15] Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(2):291–296, 1990.
- [16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received January 30, 2003