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Summary. Orthoposets are defined. The approach is the standard one via
order relation similar to common text books on algebra like [8].

MML Identifier: OPOSET 1.

The terminology and notation used in this paper are introduced in the following

papers: [11], [13], [5], [3], [4], [15], [14], [16], [12], [9], [7], [10], [2], [6], and [1].

1. General Notions and Properties

In this paper S, X denote non empty sets and R denotes a binary relation

on X.

We consider orthorelational structures, extensions of relational structure and

ComplStr, as systems

〈 a carrier, an internal relation, a complement operation 〉,

where the carrier is a set, the internal relation is a binary relation on the carrier,

and the complement operation is a unary operation on the carrier.

Let A, B be sets. The functor ∅A,B yields a relation between A and B and

is defined as follows:

(Def. 1) ∅A,B = ∅.

The functor ΩB(A) yields a relation between A and B and is defined by:

(Def. 2) ΩB(A) = [:A, B :].

1This work has been partially supported by the CALCULEMUS project (FP5 grant HPRN-

CT-2000-00102).
2This paper was worked out while the author was visiting the University of Białystok in

autumn 2002.
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We now state several propositions:

(1) field(idX) = X.

(2) id{∅} = {〈〈∅, ∅〉〉}.

(3) op1 = {〈〈∅, ∅〉〉}.

(4) Let L be a non empty reflexive antisymmetric relational structure and

x, y be elements of L. If x ¬ y, then sup{x, y} = y and inf{x, y} = x.

(5) domR ⊆ fieldR and rngR ⊆ fieldR.

(6) For all sets A, B holds field(∅A,B) = ∅.

Let Y be a set. Note that there exists a binary relation on Y which is

antisymmetric.

We now state a number of propositions:

(7) If R is reflexive in X, then R is reflexive and fieldR = X.

(8) If R is symmetric in X, then R is symmetric.

(9) If R is symmetric and fieldR ⊆ S, then R is symmetric in S.

(10) If R is antisymmetric and fieldR ⊆ S, then R is antisymmetric in S.

(11) If R is antisymmetric in X, then R is antisymmetric.

(12) If R is transitive and fieldR ⊆ S, then R is transitive in S.

(13) If R is transitive in X, then R is transitive.

(14) If R is asymmetric and fieldR ⊆ S, then R is asymmetric in S.

(15) If R is asymmetric in X, then R is asymmetric.

(16) If R is irreflexive and fieldR ⊆ S, then R is irreflexive in S.

(17) If R is irreflexive in X, then R is irreflexive.

Let X be a set. Observe that every binary relation on X which is equivalence

relation-like is also reflexive, symmetric, and transitive.

Let us consider X. One can check that there exists a binary relation on X

which is equivalence relation-like.

Let X be a set. Note that there exists a binary relation on X which is

irreflexive, asymmetric, and transitive.

The following proposition is true

(18) △∅ is antisymmetric.

Let us consider X, R and let C be a unary operation on X. Note that

〈X,R, C〉 is non empty.

Let us mention that there exists a orthorelational structure which is non

empty and strict.

Let us consider X and let f be a unary operation on X. We say that f is

dneg if and only if:

(Def. 3) For every element x of X holds f(f(x)) = x.

We introduce f is involutive as a synonym of f is dneg.
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One can prove the following two propositions:

(19) op1 is dneg.

(20) idX is dneg.

Let O be a non empty orthorelational structure and let f be a map from O

into O. We say that f is DNeg if and only if:

(Def. 4) f is dneg.

Let O be a non empty orthorelational structure. Observe that there exists a

map from O into O which is DNeg.

The strict orthorelational structure TrivOrthoRelStr is defined as follows:

(Def. 5) TrivOrthoRelStr = 〈{∅}, id{∅}, op1〉.

We introduce TrivPoset as a synonym of TrivOrthoRelStr.

Let us mention that TrivOrthoRelStr is non empty.

The strict orthorelational structure TrivAsymOrthoRelStr is defined by:

(Def. 6) TrivAsymOrthoRelStr = 〈{∅}, ∅{∅},{∅}, op1〉.

Let us mention that TrivAsymOrthoRelStr is non empty.

Let O be a non empty orthorelational structure. We say that O is Dneg if

and only if:

(Def. 7) There exists a map f from O into O such that f = the complement

operation of O and f is DNeg.

One can prove the following proposition

(21) TrivOrthoRelStr is Dneg.

Let us note that TrivOrthoRelStr is Dneg.

Let us observe that there exists a non empty orthorelational structure which

is Dneg.

In the sequel O is a non empty orthorelational structure.

Let R1, R2 be relational structures and let f be a map from R1 into R2. We

say that f is Antitone on R1, R2 if and only if:

(Def. 8) f is antitone.

Let R be a relational structure and let f be a map from R into R. We say

that f is Antitone on R if and only if:

(Def. 9) f is Antitone on R, R.

Let us consider O. We say that O is SubReFlexive if and only if:

(Def. 10) The internal relation of O is reflexive.

Let us consider O. We say that O is ReFlexive if and only if:

(Def. 11) The internal relation of O is reflexive in the carrier of O.

We now state two propositions:

(22) If O is ReFlexive, then O is SubReFlexive.

(23) TrivOrthoRelStr is ReFlexive.



204 markus moschner

Let us observe that TrivOrthoRelStr is ReFlexive.

One can verify that there exists a non empty orthorelational structure which

is ReFlexive and strict.

Let us consider O. We say that O is SubIrreFlexive if and only if:

(Def. 12) The internal relation of O is irreflexive.

We say that O is IrreFlexive if and only if:

(Def. 13) The internal relation of O is irreflexive in the carrier of O.

We now state two propositions:

(24) If O is IrreFlexive, then O is SubIrreFlexive.

(25) TrivAsymOrthoRelStr is IrreFlexive.

Let us note that every non empty orthorelational structure which is IrreFle-

xive is also SubIrreFlexive.

Let us observe that TrivAsymOrthoRelStr is IrreFlexive.

Let us note that there exists a non empty orthorelational structure which is

IrreFlexive and strict.

Let us consider O. We say that O is SubSymmetric if and only if:

(Def. 14) The internal relation of O is a symmetric binary relation on the carrier

of O.

Let us consider O. We say that O is Symmetric if and only if:

(Def. 15) The internal relation of O is symmetric in the carrier of O.

We now state two propositions:

(26) If O is Symmetric, then O is SubSymmetric.

(27) TrivOrthoRelStr is Symmetric.

Let us observe that every non empty orthorelational structure which is Sym-

metric is also SubSymmetric.

Let us note that there exists a non empty orthorelational structure which is

Symmetric and strict.

Let us consider O. We say that O is SubAntisymmetric if and only if:

(Def. 16) The internal relation of O is an antisymmetric binary relation on the

carrier of O.

Let us consider O. We say that O is Antisymmetric if and only if:

(Def. 17) The internal relation of O is antisymmetric in the carrier of O.

Next we state two propositions:

(28) If O is Antisymmetric, then O is SubAntisymmetric.

(29) TrivOrthoRelStr is Antisymmetric.

Let us observe that every non empty orthorelational structure which is An-

tisymmetric is also SubAntisymmetric.

One can verify that TrivOrthoRelStr is Symmetric and Antisymmetric.
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One can check that there exists a non empty orthorelational structure which

is Symmetric, Antisymmetric, and strict.

Let us consider O. We say that O is SubAsymmetric if and only if:

(Def. 18) The internal relation of O is an asymmetric binary relation on the carrier

of O.

Let us consider O. We say that O is Asymmetric if and only if:

(Def. 19) The internal relation of O is asymmetric in the carrier of O.

One can prove the following two propositions:

(30) If O is Asymmetric, then O is SubAsymmetric.

(31) TrivAsymOrthoRelStr is Asymmetric.

Let us mention that every non empty orthorelational structure which is

Asymmetric is also SubAsymmetric.

One can check that TrivAsymOrthoRelStr is Asymmetric.

Let us observe that there exists a non empty orthorelational structure which

is Asymmetric and strict.

Let us consider O. We say that O is SubTransitive if and only if:

(Def. 20) The internal relation of O is a transitive binary relation on the carrier

of O.

Let us consider O. We say that O is Transitive if and only if:

(Def. 21) The internal relation of O is transitive in the carrier of O.

Next we state two propositions:

(32) If O is Transitive, then O is SubTransitive.

(33) TrivOrthoRelStr is Transitive.

Let us observe that every non empty orthorelational structure which is

Transitive is also SubTransitive.

Let us observe that TrivOrthoRelStr is Transitive.

Let us observe that there exists a non empty orthorelational structure which

is ReFlexive, Symmetric, Antisymmetric, Transitive, and strict.

Next we state the proposition

(34) TrivAsymOrthoRelStr is Transitive.

Let us mention that TrivAsymOrthoRelStr is IrreFlexive, Asymmetric, and

Transitive.

Let us observe that there exists a non empty orthorelational structure which

is IrreFlexive, Asymmetric, Transitive, and strict.

Next we state four propositions:

(35) If O is SubSymmetric and SubTransitive, then O is SubReFlexive.

(36) If O is SubIrreFlexive and SubTransitive, then O is SubAsymmetric.

(37) If O is SubAsymmetric, then O is SubIrreFlexive.

(38) If O is ReFlexive and SubSymmetric, then O is Symmetric.
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One can check that every non empty orthorelational structure which is Re-

Flexive and SubSymmetric is also Symmetric.

Next we state the proposition

(39) If O is ReFlexive and SubAntisymmetric, then O is Antisymmetric.

Let us note that every non empty orthorelational structure which is ReFle-

xive and SubAntisymmetric is also Antisymmetric.

The following proposition is true

(40) If O is ReFlexive and SubTransitive, then O is Transitive.

Let us note that every non empty orthorelational structure which is ReFle-

xive and SubTransitive is also Transitive.

One can prove the following proposition

(41) If O is IrreFlexive and SubTransitive, then O is Transitive.

Let us observe that every non empty orthorelational structure which is Irre-

Flexive and SubTransitive is also Transitive.

Next we state the proposition

(42) If O is IrreFlexive and SubAsymmetric, then O is Asymmetric.

Let us note that every non empty orthorelational structure which is IrreFle-

xive and SubAsymmetric is also Asymmetric.

2. Basic Poset Notions

Let us consider O. We say that O is SubQuasiOrdered if and only if:

(Def. 22) O is SubReFlexive and SubTransitive.

We introduce O is SubQuasiordered, O is SubPreOrdered, O is SubPreordered,

and O is Subpreordered as synonyms of O is SubQuasiOrdered.

Let us consider O. We say that O is QuasiOrdered if and only if:

(Def. 23) O is ReFlexive and Transitive.

We introduce O is Quasiordered, O is PreOrdered, and O is Preordered as

synonyms of O is QuasiOrdered.

The following proposition is true

(43) If O is QuasiOrdered, then O is SubQuasiOrdered.

Let us observe that every non empty orthorelational structure which is Qu-

asiOrdered is also SubQuasiOrdered.

Let us note that TrivOrthoRelStr is QuasiOrdered.

Let us consider O. We say that O is QuasiPure if and only if:

(Def. 24) O is Dneg and QuasiOrdered.

Let us mention that there exists a non empty orthorelational structure which

is QuasiPure, Dneg, QuasiOrdered, and strict.

Let us note that TrivOrthoRelStr is QuasiPure.
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A QuasiPureOrthoRelStr is a QuasiPure non empty orthorelational struc-

ture.

Let us consider O. We say that O is SubPartialOrdered if and only if:

(Def. 25) O is ReFlexive, SubAntisymmetric, and SubTransitive.

We introduce O is SubPartialordered as a synonym of O is SubPartialOrdered.

Let us consider O. We say that O is PartialOrdered if and only if:

(Def. 26) O is ReFlexive, Antisymmetric, and Transitive.

We introduce O is Partialordered as a synonym of O is PartialOrdered.

We now state the proposition

(44) O is SubPartialOrdered iff O is PartialOrdered.

Let us note that every non empty orthorelational structure which is SubPar-

tialOrdered is also PartialOrdered and every non empty orthorelational struc-

ture which is PartialOrdered is also SubPartialOrdered.

Let us observe that every non empty orthorelational structure which is Par-

tialOrdered is also ReFlexive, Antisymmetric, and Transitive and every non

empty orthorelational structure which is ReFlexive, Antisymmetric, and Trans-

itive is also PartialOrdered.

Let us consider O. We say that O is Pure if and only if:

(Def. 27) O is Dneg and PartialOrdered.

Let us mention that there exists a non empty orthorelational structure which

is Pure, Dneg, PartialOrdered, and strict.

One can check that TrivOrthoRelStr is Pure.

A PureOrthoRelStr is a Pure non empty orthorelational structure.

Let us consider O. We say that O is SubStrictPartialOrdered if and only if:

(Def. 28) O is SubAsymmetric and SubTransitive.

Let us consider O. We say that O is StrictPartialOrdered if and only if:

(Def. 29) O is Asymmetric and Transitive.

We introduce O is Strictpartialordered, O is StrictOrdered, and O is Strictor-

dered as synonyms of O is StrictPartialOrdered.

The following proposition is true

(45) If O is StrictPartialOrdered, then O is SubStrictPartialOrdered.

Let us note that every non empty orthorelational structure which is Strict-

PartialOrdered is also SubStrictPartialOrdered.

One can prove the following proposition

(46) If O is SubStrictPartialOrdered, then O is SubIrreFlexive.

Let us note that every non empty orthorelational structure which is Sub-

StrictPartialOrdered is also SubIrreFlexive.

Next we state the proposition
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(47) If O is IrreFlexive and SubStrictPartialOrdered, then O is StrictPartia-

lOrdered.

Let us mention that every non empty orthorelational structure which is

IrreFlexive and SubStrictPartialOrdered is also StrictPartialOrdered.

We now state the proposition

(48) If O is StrictPartialOrdered, then O is IrreFlexive.

Let us note that every non empty orthorelational structure which is Strict-

PartialOrdered is also IrreFlexive.

One can check that TrivAsymOrthoRelStr is IrreFlexive and StrictPartia-

lOrdered.

Let us mention that there exists a non empty strict orthorelational structure

which is IrreFlexive and StrictPartialOrdered.

In the sequel P1 denotes a PartialOrdered non empty orthorelational struc-

ture and Q1 denotes a QuasiOrdered non empty orthorelational structure.

We now state the proposition

(49) If Q1 is SubAntisymmetric, then Q1 is PartialOrdered.

Let P1 be a PartialOrdered non empty orthorelational structure. Note that

the internal relation of P1 is ordering.

One can prove the following proposition

(50) P1 is a poset.

Let us note that every non empty orthorelational structure which is Partia-

lOrdered is also reflexive, transitive, and antisymmetric.

Let P2, P3 be PartialOrdered non empty orthorelational structures and let

f be a map from P2 into P3. We say that f is Antitone on P2, P3 if and only if:

(Def. 30) f is antitone.

Let P1 be a PartialOrdered non empty orthorelational structure and let f

be a map from P1 into P1. We say that f is Antitone on P1 if and only if:

(Def. 31) f is Antitone on P1, P1.

Let P2, P3 be PartialOrdered non empty orthorelational structures and let

f be a map from P2 into P3. We say that f is Antitone if and only if:

(Def. 32) f is Antitone on P2, P3.

Let P1 be a PartialOrdered non empty orthorelational structure. Note that

there exists a map from P1 into P1 which is Antitone.

Let us consider P1 and let f be a unary operation on the carrier of P1. We

say that f is Orderinvolutive if and only if:

(Def. 33) f is a DNeg map from P1 into P1 and an Antitone map from P1 into P1.

Let us consider P1. We say that P1 is OrderInvolutive if and only if:

(Def. 34) There exists a map f from P1 into P1 such that f = the complement

operation of P1 and f is Orderinvolutive.
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Next we state the proposition

(51) The complement operation of TrivOrthoRelStr is Orderinvolutive.

Let us observe that TrivOrthoRelStr is OrderInvolutive.

One can check that there exists a PartialOrdered non empty orthorelational

structure which is OrderInvolutive and Pure.

A PreOrthoPoset is an OrderInvolutive Pure PartialOrdered non empty or-

thorelational structure.

Let us consider P1 and let f be a unary operation on the carrier of P1. We

say that f is QuasiOrthoComplement on P1 if and only if:

(Def. 35) f is Orderinvolutive and for every element y of P1 holds sup {y, f(y)}

exists in P1 and inf {y, f(y)} exists in P1.

Let us consider P1. We say that P1 is QuasiOrthocomplemented if and only

if:

(Def. 36) There exists a map f from P1 into P1 such that f = the complement

operation of P1 and f is QuasiOrthoComplement on P1.

Next we state the proposition

(52) TrivOrthoRelStr is QuasiOrthocomplemented.

Let us consider P1 and let f be a unary operation on the carrier of P1. We

say that f is OrthoComplement on P1 if and only if the conditions (Def. 37) are

satisfied.

(Def. 37)(i) f is Orderinvolutive, and

(ii) for every element y of P1 holds sup {y, f(y)} exists in P1 and inf

{y, f(y)} exists in P1 and
⊔

P1
{y, f(y)} is a maximum of the carrier of P1

and ⌈−⌉P1
{y, f(y)} is a minimum of the carrier of P1.

We introduce f is OCompl on P1 as a synonym of f is OrthoComplement on

P1.

Let us consider P1. We say that P1 is Orthocomplemented if and only if:

(Def. 38) There exists a map f from P1 into P1 such that f = the complement

operation of P1 and f is OrthoComplement on P1.

We introduce P1 is Ocompl as a synonym of P1 is Orthocomplemented.

Next we state two propositions:

(53) Let f be a unary operation on the carrier of P1. If f is OrthoComplement

on P1, then f is QuasiOrthoComplement on P1.

(54) TrivOrthoRelStr is Orthocomplemented.

One can check that TrivOrthoRelStr is QuasiOrthocomplemented and Or-

thocomplemented.

Let us mention that there exists a PartialOrdered non empty orthorelational

structure which is Orthocomplemented and QuasiOrthocomplemented.
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A QuasiOrthoPoset is a QuasiOrthocomplemented PartialOrdered non

empty orthorelational structure. An orthoposet is an Orthocomplemented Par-

tialOrdered non empty orthorelational structure.
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