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Summary. Here we will prove Fashoda meet theorem for the unit circle
and for a square, when 4 points on the boundary are ordered cyclically. Also, the
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The articles [8], [22], [26], [3], [4], [25], [1], [9], [2], [6], [13], [23], [19], [18], [16],

[17], [11], [24], [7], [14], [15], [21], [20], [10], [5], and [12] provide the notation

and terminology for this paper.

1. Preliminaries

One can prove the following propositions:

(2)1 For all real numbers a, b, r such that 0 ¬ r and r ¬ 1 and a ¬ b holds

a ¬ (1− r) · a + r · b and (1− r) · a + r · b ¬ b.

(3) For all real numbers a, b such that a ­ 0 and b > 0 or a > 0 and b ­ 0

holds a + b > 0.

(4) For all real numbers a, b such that −1 ¬ a and a ¬ 1 and −1 ¬ b and

b ¬ 1 holds a2 · b2 ¬ 1.

(5) For all real numbers a, b such that a ­ 0 and b ­ 0 holds a·
√

b =
√

a2 · b.
(6) For all real numbers a, b such that −1 ¬ a and a ¬ 1 and −1 ¬ b and

b ¬ 1 holds (−b) ·
√

1 + a2 ¬
√

1 + b2 and −
√

1 + b2 ¬ b ·
√

1 + a2.

1The proposition (1) has been removed.
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(7) For all real numbers a, b such that −1 ¬ a and a ¬ 1 and −1 ¬ b and

b ¬ 1 holds b ·
√

1 + a2 ¬
√

1 + b2.

(8) For all real numbers a, b such that a ­ b holds a ·
√

1 + b2 ­ b ·
√

1 + a2.

(9) Let a, c, d be real numbers and p be a point of E2

T
. If c ¬ d and p ∈ L([a,

c], [a, d]), then p1 = a and c ¬ p2 and p2 ¬ d.

(10) For all real numbers a, c, d and for every point p of E2

T
such that c < d

and p1 = a and c ¬ p2 and p2 ¬ d holds p ∈ L([a, c], [a, d]).

(11) Let a, b, d be real numbers and p be a point of E2

T
. If a ¬ b and p ∈ L([a,

d], [b, d]), then p2 = d and a ¬ p1 and p1 ¬ b.

(12) For all real numbers a, b and for every subset B of I such that B = [a, b]

holds B is closed.

(13) Let X be a topological structure, Y , Z be non empty topological struc-

tures, f be a map from X into Y , and g be a map from X into Z. Then

dom f = dom g and dom f = the carrier of X and dom f = ΩX .

(14) Let X be a non empty topological space and B be a non empty subset

of X. Then there exists a map f from X↾B into X such that for every

point p of X↾B holds f(p) = p and f is continuous.

(15) Let X be a non empty topological space, f1 be a map from X into R
1,

and a be a real number. Suppose f1 is continuous. Then there exists a

map g from X into R
1 such that for every point p of X and for every real

number r1 such that f1(p) = r1 holds g(p) = r1 − a and g is continuous.

(16) Let X be a non empty topological space, f1 be a map from X into R
1,

and a be a real number. Suppose f1 is continuous. Then there exists a

map g from X into R
1 such that for every point p of X and for every real

number r1 such that f1(p) = r1 holds g(p) = a− r1 and g is continuous.

(17) Let X be a non empty topological space, n be a natural number, p be

a point of En
T
, and f be a map from X into R

1. Suppose f is continuous.

Then there exists a map g from X into En
T
such that for every point r of

X holds g(r) = f(r) · p and g is continuous.

(18) SqCirc([−1, 0]) = [−1, 0].

(19) For every compact non empty subset P of E2

T
such that P = {p; p ranges

over points of E2

T
: |p| = 1} holds SqCirc([−1, 0]) =W-minP.

(20) Let X be a non empty topological space, n be a natural number, and g1,

g2 be maps from X into En
T
. Suppose g1 is continuous and g2 is continuous.

Then there exists a map g from X into En
T
such that for every point r of

X holds g(r) = g1(r) + g2(r) and g is continuous.

(21) Let X be a non empty topological space, n be a natural number, p1,

p2 be points of En
T
, and f1, f2 be maps from X into R

1. Suppose f1 is

continuous and f2 is continuous. Then there exists a map g from X into

En
T
such that for every point r of X holds g(r) = f1(r) · p1 + f2(r) · p2 and
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g is continuous.

(22) For every function f and for every set A such that f is one-to-one and

A ⊆ dom f holds (f−1)◦f◦A = A.

2. General Fashoda Theorem for Unit Circle

In the sequel p, p1, p2, p3, q, q1, q2 are points of E2

T
.

One can prove the following propositions:

(23) Let f , g be maps from I into E2

T
, C0, K1, K2, K3, K4 be subsets of

E2

T
, and O, I be points of I. Suppose that O = 0 and I = 1 and f is

continuous and one-to-one and g is continuous and one-to-one and C0 =

{p : |p| ¬ 1} and K1 = {q1; q1 ranges over points of E2

T
: |q1| = 1 ∧ (q1)2 ¬

(q1)1 ∧ (q1)2 ­ −(q1)1} and K2 = {q2; q2 ranges over points of E2

T
:

|q2| = 1 ∧ (q2)2 ­ (q2)1 ∧ (q2)2 ¬ −(q2)1} and K3 = {q3; q3 ranges over

points of E2

T
: |q3| = 1 ∧ (q3)2 ­ (q3)1 ∧ (q3)2 ­ −(q3)1} and K4 = {q4; q4

ranges over points of E2

T
: |q4| = 1 ∧ (q4)2 ¬ (q4)1 ∧ (q4)2 ¬ −(q4)1} and

f(O) ∈ K1 and f(I) ∈ K2 and g(O) ∈ K3 and g(I) ∈ K4 and rng f ⊆ C0

and rng g ⊆ C0. Then rng f meets rng g.

(24) Let f , g be maps from I into E2

T
, C0, K1, K2, K3, K4 be subsets of

E2

T
, and O, I be points of I. Suppose that O = 0 and I = 1 and f is

continuous and one-to-one and g is continuous and one-to-one and C0 =

{p : |p| ¬ 1} and K1 = {q1; q1 ranges over points of E2

T
: |q1| = 1 ∧ (q1)2 ¬

(q1)1 ∧ (q1)2 ­ −(q1)1} and K2 = {q2; q2 ranges over points of E2

T
:

|q2| = 1 ∧ (q2)2 ­ (q2)1 ∧ (q2)2 ¬ −(q2)1} and K3 = {q3; q3 ranges over

points of E2

T
: |q3| = 1 ∧ (q3)2 ­ (q3)1 ∧ (q3)2 ­ −(q3)1} and K4 = {q4; q4

ranges over points of E2

T
: |q4| = 1 ∧ (q4)2 ¬ (q4)1 ∧ (q4)2 ¬ −(q4)1} and

f(O) ∈ K1 and f(I) ∈ K2 and g(O) ∈ K4 and g(I) ∈ K3 and rng f ⊆ C0

and rng g ⊆ C0. Then rng f meets rng g.

(25) Let p1, p2, p3, p4 be points of E2

T
, P be a compact non empty subset of

E2

T
, and C0 be a subset of E2

T
. Suppose P = {p; p ranges over points of E2

T
:

|p| = 1} and LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ). Let f , g

be maps from I into E2

T
. Suppose that f is continuous and one-to-one and

g is continuous and one-to-one and C0 = {p8; p8 ranges over points of E2

T
:

|p8| ¬ 1} and f(0) = p3 and f(1) = p1 and g(0) = p2 and g(1) = p4 and

rng f ⊆ C0 and rng g ⊆ C0. Then rng f meets rng g.

(26) Let p1, p2, p3, p4 be points of E2

T
, P be a compact non empty subset of

E2

T
, and C0 be a subset of E2

T
. Suppose P = {p; p ranges over points of E2

T
:

|p| = 1} and LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ). Let f , g

be maps from I into E2

T
. Suppose that f is continuous and one-to-one and

g is continuous and one-to-one and C0 = {p8; p8 ranges over points of E2

T
:
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|p8| ¬ 1} and f(0) = p3 and f(1) = p1 and g(0) = p4 and g(1) = p2 and

rng f ⊆ C0 and rng g ⊆ C0. Then rng f meets rng g.

(27) Let p1, p2, p3, p4 be points of E2

T
, P be a compact non empty subset of

E2

T
, and C0 be a subset of E2

T
. Suppose P = {p; p ranges over points of E2

T
:

|p| = 1} and p1, p2, p3, p4 are in this order on P . Let f , g be maps from I

into E2

T
. Suppose that f is continuous and one-to-one and g is continuous

and one-to-one and C0 = {p8; p8 ranges over points of E2

T
: |p8| ¬ 1} and

f(0) = p1 and f(1) = p3 and g(0) = p2 and g(1) = p4 and rng f ⊆ C0 and

rng g ⊆ C0. Then rng f meets rng g.

3. General Rectangles and Circles

Let a, b, c, d be real numbers. The functor Rectangle(a, b, c, d) yielding a

subset of E2

T
is defined by the condition (Def. 1).

(Def. 1) Rectangle(a, b, c, d) = {p : p1 = a ∧ c ¬ p2 ∧ p2 ¬ d ∨ p2 = d ∧ a ¬
p1 ∧ p1 ¬ b ∨ p1 = b ∧ c ¬ p2 ∧ p2 ¬ d ∨ p2 = c ∧ a ¬ p1 ∧ p1 ¬ b}.
The following proposition is true

(28) Let a, b, c, d be real numbers and p be a point of E2

T
. If a ¬ b and c ¬ d

and p ∈ Rectangle(a, b, c, d), then a ¬ p1 and p1 ¬ b and c ¬ p2 and

p2 ¬ d.

Let a, b, c, d be real numbers. The functor InsideOfRectangle(a, b, c, d) yields

a subset of E2

T
and is defined as follows:

(Def. 2) InsideOfRectangle(a, b, c, d) = {p : a < p1 ∧ p1 < b ∧ c < p2 ∧ p2 < d}.
Let a, b, c, d be real numbers. The functor ClosedInsideOfRectangle(a, b, c, d)

yielding a subset of E2

T
is defined as follows:

(Def. 3) ClosedInsideOfRectangle(a, b, c, d) = {p : a ¬ p1 ∧ p1 ¬ b ∧ c ¬
p2 ∧ p2 ¬ d}.
Let a, b, c, d be real numbers. The functor OutsideOfRectangle(a, b, c, d)

yields a subset of E2

T
and is defined by:

(Def. 4) OutsideOfRectangle(a, b, c, d) = {p : a 6¬ p1 ∨ p1 6¬ b ∨ c 6¬ p2 ∨ p2 6¬
d}.
Let a, b, c, d be real numbers. The functor ClosedOutsideOfRectangle(a, b, c, d)

yielding a subset of E2

T
is defined by:

(Def. 5) ClosedOutsideOfRectangle(a, b, c, d) = {p : a 6< p1 ∨ p1 6< b ∨ c 6<
p2 ∨ p2 6< d}.
Next we state four propositions:

(29) Let a, b, r be real numbers and K5, C1 be subsets of E2

T
. Suppose r ­ 0

and K5 = {q : |q| = 1} and C1 = {p2; p2 ranges over points of E2

T
: |p2− [a,

b]| = r}. Then (AffineMap(r, a, r, b))◦K5 = C1.
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(30) Let P , Q be subsets of E2

T
. Suppose there exists a map from E2

T
↾P into

E2

T
↾Q which is a homeomorphism and P is a simple closed curve. Then Q

is a simple closed curve.

(31) For every subset P of E2

T
such that P satisfies conditions of simple closed

curve holds P is compact.

(32) Let a, b, r be real numbers and C1 be a subset of E2

T
. Suppose r > 0 and

C1 = {p; p ranges over points of E2

T
: |p− [a, b]| = r}. Then C1 is a simple

closed curve.

Let a, b, r be real numbers. Let us assume that r > 0. The functor Circle(a, b, r)

yielding a compact non empty subset of E2

T
is defined as follows:

(Def. 6) Circle(a, b, r) = {p; p ranges over points of E2

T
: |p− [a, b]| = r}.

Let a, b, r be real numbers. The functor InsideOfCircle(a, b, r) yielding a

subset of E2

T
is defined by:

(Def. 7) InsideOfCircle(a, b, r) = {p; p ranges over points of E2

T
: |p− [a, b]| < r}.

Let a, b, r be real numbers. The functor ClosedInsideOfCircle(a, b, r) yields

a subset of E2

T
and is defined as follows:

(Def. 8) ClosedInsideOfCircle(a, b, r) = {p; p ranges over points of E2

T
: |p − [a,

b]| ¬ r}.
Let a, b, r be real numbers. The functor OutsideOfCircle(a, b, r) yielding a

subset of E2

T
is defined by:

(Def. 9) OutsideOfCircle(a, b, r) = {p; p ranges over points of E2

T
: |p− [a, b]| > r}.

Let a, b, r be real numbers. The functor ClosedOutsideOfCircle(a, b, r) yiel-

ding a subset of E2

T
is defined as follows:

(Def. 10) ClosedOutsideOfCircle(a, b, r) = {p; p ranges over points of E2

T
: |p − [a,

b]| ­ r}.
One can prove the following propositions:

(33) Let r be a real number. Then InsideOfCircle(0, 0, r) = {p : |p| < r} and if
r > 0, then Circle(0, 0, r) = {p2 : |p2| = r} and OutsideOfCircle(0, 0, r) =

{p3 : |p3| > r} and ClosedInsideOfCircle(0, 0, r) = {q : |q| ¬ r} and
ClosedOutsideOfCircle(0, 0, r) = {q2 : |q2| ­ r}.

(34) Let K5, C1 be subsets of E2

T
. Suppose K5 = {p : −1 < p1 ∧ p1 <

1 ∧ −1 < p2 ∧ p2 < 1} and C1 = {p2; p2 ranges over points of E2

T
:

|p2| < 1}. Then SqCirc◦K5 = C1.

(35) Let K5, C1 be subsets of E2

T
. Suppose K5 = {p : −1 6¬ p1 ∨ p1 6¬

1 ∨ −1 6¬ p2 ∨ p2 6¬ 1} and C1 = {p2; p2 ranges over points of E2

T
:

|p2| > 1}. Then SqCirc◦K5 = C1.

(36) Let K5, C1 be subsets of E2

T
. Suppose K5 = {p : −1 ¬ p1 ∧ p1 ¬

1 ∧ −1 ¬ p2 ∧ p2 ¬ 1} and C1 = {p2; p2 ranges over points of E2

T
:

|p2| ¬ 1}. Then SqCirc◦K5 = C1.
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(37) Let K5, C1 be subsets of E2

T
. Suppose K5 = {p : −1 6< p1 ∨ p1 6<

1 ∨ −1 6< p2 ∨ p2 6< 1} and C1 = {p2; p2 ranges over points of E2

T
:

|p2| ­ 1}. Then SqCirc◦K5 = C1.

(38) Let P0, P1, P2, P11, K0, K6, K7, K11 be subsets of E2

T
, P , K be non

empty compact subsets of E2

T
, and f be a map from E2

T
into E2

T
. Sup-

pose that P = Circle(0, 0, 1) and P0 = InsideOfCircle(0, 0, 1) and P1 =

OutsideOfCircle(0, 0, 1) and P2 = ClosedInsideOfCircle(0, 0, 1) and P11 =

ClosedOutsideOfCircle(0, 0, 1) and K = Rectangle(−1, 1,−1, 1) and K0 =

InsideOfRectangle(−1, 1,−1, 1) andK6 = OutsideOfRectangle(−1, 1,−1, 1)

and K7 = ClosedInsideOfRectangle(−1, 1,−1, 1) and

K11 = ClosedOutsideOfRectangle(−1, 1,−1, 1) and f = SqCirc . Then

f◦K = P and (f−1)◦P = K and f◦K0 = P0 and (f−1)◦P0 = K0 and

f◦K6 = P1 and (f−1)◦P1 = K6 and f◦K7 = P2 and f◦K11 = P11 and

(f−1)◦P2 = K7 and (f−1)◦P11 = K11.

4. Order of Points on Rectangle

The following propositions are true:

(39) Let a, b, c, d be real numbers. Suppose a ¬ b and c ¬ d. Then

(i) L([a, c], [a, d]) = {p1 : (p1)1 = a ∧ (p1)2 ¬ d ∧ (p1)2 ­ c},
(ii) L([a, d], [b, d]) = {p2 : (p2)1 ¬ b ∧ (p2)1 ­ a ∧ (p2)2 = d},
(iii) L([a, c], [b, c]) = {q1 : (q1)1 ¬ b ∧ (q1)1 ­ a ∧ (q1)2 = c}, and
(iv) L([b, c], [b, d]) = {q2 : (q2)1 = b ∧ (q2)2 ¬ d ∧ (q2)2 ­ c}.
(40) Let a, b, c, d be real numbers. Suppose a ¬ b and c ¬ d. Then {p : p1 =

a ∧ c ¬ p2 ∧ p2 ¬ d ∨ p2 = d ∧ a ¬ p1 ∧ p1 ¬ b ∨ p1 = b ∧ c ¬
p2 ∧ p2 ¬ d ∨ p2 = c ∧ a ¬ p1 ∧ p1 ¬ b} = L([a, c], [a, d])∪L([a, d], [b,

d]) ∪ (L([a, c], [b, c]) ∪ L([b, c], [b, d])).

(41) For all real numbers a, b, c, d such that a ¬ b and c ¬ d holds L([a,

c], [a, d]) ∩ L([a, c], [b, c]) = {[a, c]}.
(42) For all real numbers a, b, c, d such that a ¬ b and c ¬ d holds L([a, c], [b,

c]) ∩ L([b, c], [b, d]) = {[b, c]}.
(43) For all real numbers a, b, c, d such that a ¬ b and c ¬ d holds L([a, d], [b,

d]) ∩ L([b, c], [b, d]) = {[b, d]}.
(44) For all real numbers a, b, c, d such that a ¬ b and c ¬ d holds L([a,

c], [a, d]) ∩ L([a, d], [b, d]) = {[a, d]}.
(45) {q : −1 = q1 ∧ −1 ¬ q2 ∧ q2 ¬ 1 ∨ q1 = 1 ∧ −1 ¬ q2 ∧ q2 ¬

1 ∨ −1 = q2 ∧ −1 ¬ q1 ∧ q1 ¬ 1 ∨ 1 = q2 ∧ −1 ¬ q1 ∧ q1 ¬ 1} = {p :

p1 = −1 ∧ −1 ¬ p2 ∧ p2 ¬ 1 ∨ p2 = 1 ∧ −1 ¬ p1 ∧ p1 ¬ 1 ∨ p1 =

1 ∧ −1 ¬ p2 ∧ p2 ¬ 1 ∨ p2 = −1 ∧ −1 ¬ p1 ∧ p1 ¬ 1}.
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(46) Let K be a non empty compact subset of E2

T
and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then

W-boundK = a.

(47) Let K be a non empty compact subset of E2

T
and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then

N-boundK = d.

(48) Let K be a non empty compact subset of E2

T
and a, b, c, d be real num-

bers. IfK = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then E-boundK = b.

(49) Let K be a non empty compact subset of E2

T
and a, b, c, d be real num-

bers. IfK = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then S-boundK = c.

(50) Let K be a non empty compact subset of E2

T
and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then

NW-cornerK = [a, d].

(51) Let K be a non empty compact subset of E2

T
and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then

NE-cornerK = [b, d].

(52) Let K be a non empty compact subset of E2

T
and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then

SW-cornerK = [a, c].

(53) Let K be a non empty compact subset of E2

T
and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then

SE-cornerK = [b, c].

(54) Let K be a non empty compact subset of E2

T
and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then

W-mostK = L([a, c], [a, d]).

(55) Let K be a non empty compact subset of E2

T
and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then

E-mostK = L([b, c], [b, d]).

(56) Let K be a non empty compact subset of E2

T
and a, b, c, d be real num-

bers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then W-minK = [a,

c] and E-maxK = [b, d].

(57) Let K be a non empty compact subset of E2

T
and a, b, c, d be real

numbers. Suppose K = Rectangle(a, b, c, d) and a < b and c < d. Then

L([a, c], [a, d]) ∪ L([a, d], [b, d]) is an arc from W-minK to E-maxK and

L([a, c], [b, c]) ∪ L([b, c], [b, d]) is an arc from E-maxK to W-minK.

(58) Let P , P1, P3 be subsets of E2

T
, a, b, c, d be real numbers, f1, f2 be finite

sequences of elements of E2

T
, and p0, p1, p5, p10 be points of E2

T
. Suppose

that a < b and c < d and P = {p : p1 = a ∧ c ¬ p2 ∧ p2 ¬ d ∨ p2 =

d ∧ a ¬ p1 ∧ p1 ¬ b ∨ p1 = b ∧ c ¬ p2 ∧ p2 ¬ d ∨ p2 =

c ∧ a ¬ p1 ∧ p1 ¬ b} and p0 = [a, c] and p1 = [b, d] and p5 = [a,
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d] and p10 = [b, c] and f1 = 〈p0, p5, p1〉 and f2 = 〈p0, p10, p1〉. Then f1 is

a special sequence and L̃(f1) = L(p0, p5) ∪ L(p5, p1) and f2 is a special

sequence and L̃(f2) = L(p0, p10) ∪ L(p10, p1) and P = L̃(f1) ∪ L̃(f2) and

L̃(f1) ∩ L̃(f2) = {p0, p1} and (f1)1 = p0 and (f1)len f1
= p1 and (f2)1 = p0

and (f2)len f2
= p1.

(59) Let P , P1, P3 be subsets of E2

T
, a, b, c, d be real numbers, f1, f2 be finite

sequences of elements of E2

T
, and p1, p2 be points of E2

T
. Suppose that a < b

and c < d and P = {p : p1 = a ∧ c ¬ p2 ∧ p2 ¬ d ∨ p2 = d ∧ a ¬
p1 ∧ p1 ¬ b ∨ p1 = b ∧ c ¬ p2 ∧ p2 ¬ d ∨ p2 = c ∧ a ¬ p1 ∧ p1 ¬ b}
and p1 = [a, c] and p2 = [b, d] and f1 = 〈[a, c], [a, d], [b, d]〉 and f2 = 〈[a,

c], [b, c], [b, d]〉 and P1 = L̃(f1) and P3 = L̃(f2). Then P1 is an arc from p1

to p2 and P3 is an arc from p1 to p2 and P1 is non empty and P3 is non

empty and P = P1 ∪ P3 and P1 ∩ P3 = {p1, p2}.
(60) For all real numbers a, b, c, d such that a < b and c < d holds

Rectangle(a, b, c, d) is a simple closed curve.

(61) Let K be a non empty compact subset of E2

T
and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a < b and c < d, then

UpperArcK = L([a, c], [a, d]) ∪ L([a, d], [b, d]).

(62) Let K be a non empty compact subset of E2

T
and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a < b and c < d, then

LowerArcK = L([a, c], [b, c]) ∪ L([b, c], [b, d]).

(63) Let K be a non empty compact subset of E2

T
, a, b, c, d be real numbers,

and p1, p2 be points of E2

T
. Suppose K = Rectangle(a, b, c, d) and a < b

and c < d. Then there exists a map f from I into (E2

T
)↾UpperArcK such

that

f is a homeomorphism and f(0) = W-minK and f(1) = E-maxK and

rng f = UpperArcK and for every real number r such that r ∈ [0, 1

2
] holds

f(r) = (1− 2 · r) · [a, c] + 2 · r · [a, d] and for every real number r such that

r ∈ [1
2
, 1] holds f(r) = (1− (2 · r−1)) · [a, d]+(2 ·r−1) · [b, d] and for every

point p of E2

T
such that p ∈ L([a, c], [a, d]) holds 0 ¬

p2−c

d−c

2
and

p2−c

d−c

2
¬ 1

and f(
p2−c

d−c

2
) = p and for every point p of E2

T
such that p ∈ L([a, d], [b, d])

holds 0 ¬
p1−a

b−a

2
+ 1

2
and

p1−a

b−a

2
+ 1

2
¬ 1 and f(

p1−a

b−a

2
+ 1

2
) = p.

(64) Let K be a non empty compact subset of E2

T
, a, b, c, d be real numbers,

and p1, p2 be points of E2

T
. Suppose K = Rectangle(a, b, c, d) and a < b

and c < d. Then there exists a map f from I into (E2

T
)↾LowerArcK such

that

f is a homeomorphism and f(0) = E-maxK and f(1) = W-minK and

rng f = LowerArcK and for every real number r such that r ∈ [0, 1

2
] holds

f(r) = (1− 2 · r) · [b, d] + 2 · r · [b, c] and for every real number r such that

r ∈ [1
2
, 1] holds f(r) = (1− (2 · r−1)) · [b, c]+ (2 · r−1) · [a, c] and for every
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point p of E2

T
such that p ∈ L([b, d], [b, c]) holds 0 ¬

p2−d

c−d

2
and

p2−d

c−d

2
¬ 1

and f(
p2−d

c−d

2
) = p and for every point p of E2

T
such that p ∈ L([b, c], [a, c])

holds 0 ¬
p1−b

a−b

2
+ 1

2
and

p1−b

a−b

2
+ 1

2
¬ 1 and f(

p1−b

a−b

2
+ 1

2
) = p.

(65) Let K be a non empty compact subset of E2

T
, a, b, c, d be real numbers,

and p1, p2 be points of E2

T
. SupposeK = Rectangle(a, b, c, d) and a < b and

c < d and p1 ∈ L([a, c], [a, d]) and p2 ∈ L([a, c], [a, d]). Then LE(p1, p2, K)

if and only if (p1)2 ¬ (p2)2.

(66) Let K be a non empty compact subset of E2

T
, a, b, c, d be real numbers,

and p1, p2 be points of E2

T
. SupposeK = Rectangle(a, b, c, d) and a < b and

c < d and p1 ∈ L([a, d], [b, d]) and p2 ∈ L([a, d], [b, d]). Then LE(p1, p2, K)

if and only if (p1)1 ¬ (p2)1.

(67) Let K be a non empty compact subset of E2

T
, a, b, c, d be real numbers,

and p1, p2 be points of E2

T
. SupposeK = Rectangle(a, b, c, d) and a < b and

c < d and p1 ∈ L([b, c], [b, d]) and p2 ∈ L([b, c], [b, d]). Then LE(p1, p2, K)

if and only if (p1)2 ­ (p2)2.

(68) Let K be a non empty compact subset of E2

T
, a, b, c, d be real numbers,

and p1, p2 be points of E2

T
. SupposeK = Rectangle(a, b, c, d) and a < b and

c < d and p1 ∈ L([a, c], [b, c]) and p2 ∈ L([a, c], [b, c]). Then LE(p1, p2, K)

and p1 6=W-minK if and only if (p1)1 ­ (p2)1 and p2 6=W-minK.

(69) Let K be a non empty compact subset of E2

T
, a, b, c, d be real numbers,

and p1, p2 be points of E2

T
. Suppose K = Rectangle(a, b, c, d) and a < b

and c < d and p1 ∈ L([a, c], [a, d]). Then LE(p1, p2,K) if and only if one

of the following conditions is satisfied:

(i) p2 ∈ L([a, c], [a, d]) and (p1)2 ¬ (p2)2, or

(ii) p2 ∈ L([a, d], [b, d]), or

(iii) p2 ∈ L([b, d], [b, c]), or

(iv) p2 ∈ L([b, c], [a, c]) and p2 6=W-minK.

(70) Let K be a non empty compact subset of E2

T
, a, b, c, d be real numbers,

and p1, p2 be points of E2

T
. Suppose K = Rectangle(a, b, c, d) and a < b

and c < d and p1 ∈ L([a, d], [b, d]). Then LE(p1, p2,K) if and only if one

of the following conditions is satisfied:

(i) p2 ∈ L([a, d], [b, d]) and (p1)1 ¬ (p2)1, or

(ii) p2 ∈ L([b, d], [b, c]), or

(iii) p2 ∈ L([b, c], [a, c]) and p2 6=W-minK.

(71) Let K be a non empty compact subset of E2

T
, a, b, c, d be real numbers,

and p1, p2 be points of E2

T
. Suppose K = Rectangle(a, b, c, d) and a < b

and c < d and p1 ∈ L([b, d], [b, c]). Then LE(p1, p2,K) if and only if one of

the following conditions is satisfied:

(i) p2 ∈ L([b, d], [b, c]) and (p1)2 ­ (p2)2, or
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(ii) p2 ∈ L([b, c], [a, c]) and p2 6=W-minK.

(72) Let K be a non empty compact subset of E2

T
, a, b, c, d be real numbers,

and p1, p2 be points of E2

T
. Suppose K = Rectangle(a, b, c, d) and a < b

and c < d and p1 ∈ L([b, c], [a, c]) and p1 6=W-minK. Then LE(p1, p2,K)

if and only if the following conditions are satisfied:

(i) p2 ∈ L([b, c], [a, c]),

(ii) (p1)1 ­ (p2)1, and

(iii) p2 6=W-minK.

(73) Let x be a set and a, b, c, d be real numbers. Suppose x ∈
Rectangle(a, b, c, d) and a < b and c < d. Then x ∈ L([a, c], [a, d]) or

x ∈ L([a, d], [b, d]) or x ∈ L([b, d], [b, c]) or x ∈ L([b, c], [a, c]).

5. General Fashoda Theorem for Square

The following propositions are true:

(74) Let p1, p2 be points of E2

T
and K be a non empty compact subset of E2

T
.

Suppose K = Rectangle(−1, 1,−1, 1) and LE(p1, p2, K) and p1 ∈ L([−1,

−1], [−1, 1]). Then p2 ∈ L([−1,−1], [−1, 1]) and (p2)2 ­ (p1)2 or p2 ∈
L([−1, 1], [1, 1]) or p2 ∈ L([1, 1], [1,−1]) or p2 ∈ L([1,−1], [−1,−1]) and

p2 6= [−1,−1].

(75) Let p1, p2 be points of E2

T
, P , K be non empty compact subsets of

E2

T
, and f be a map from E2

T
into E2

T
. Suppose P = Circle(0, 0, 1) and

K = Rectangle(−1, 1,−1, 1) and f = SqCirc and p1 ∈ L([−1,−1], [−1, 1])

and (p1)2 ­ 0 and LE(p1, p2,K). Then LE(f(p1), f(p2), P ).

(76) Let p1, p2, p3 be points of E2

T
, P , K be non empty compact subsets of

E2

T
, and f be a map from E2

T
into E2

T
. Suppose P = Circle(0, 0, 1) and K =

Rectangle(−1, 1,−1, 1) and f = SqCirc and p1 ∈ L([−1,−1], [−1, 1]) and

(p1)2 ­ 0 and LE(p1, p2,K) and LE(p2, p3,K). Then LE(f(p2), f(p3), P ).

(77) Let p be a point of E2

T
and f be a map from E2

T
into E2

T
. If f = SqCirc

and p1 = −1 and p2 < 0, then f(p)1 < 0 and f(p)2 < 0.

(78) Let p be a point of E2

T
, P , K be non empty compact subsets of E2

T
,

and f be a map from E2

T
into E2

T
. If P = Circle(0, 0, 1) and K =

Rectangle(−1, 1,−1, 1) and f = SqCirc, then f(p)1 ­ 0 iff p1 ­ 0.

(79) Let p be a point of E2

T
, P , K be non empty compact subsets of E2

T
,

and f be a map from E2

T
into E2

T
. If P = Circle(0, 0, 1) and K =

Rectangle(−1, 1,−1, 1) and f = SqCirc, then f(p)2 ­ 0 iff p2 ­ 0.

(80) Let p, q be points of E2

T
and f be a map from E2

T
into E2

T
. If f = SqCirc

and p ∈ L([−1,−1], [−1, 1]) and q ∈ L([1,−1], [−1,−1]), then f(p)1 ¬
f(q)1.
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(81) Let p, q be points of E2

T
and f be a map from E2

T
into E2

T
. Suppose

f = SqCirc and p ∈ L([−1,−1], [−1, 1]) and q ∈ L([−1,−1], [−1, 1]) and

p2 ­ q2 and p2 < 0. Then f(p)2 ­ f(q)2.

(82) Let p1, p2, p3, p4 be points of E2

T
, P , K be non empty compact subsets

of E2

T
, and f be a map from E2

T
into E2

T
. Suppose P = Circle(0, 0, 1) and

K = Rectangle(−1, 1,−1, 1) and f = SqCirc . Suppose LE(p1, p2,K) and

LE(p2, p3,K) and LE(p3, p4,K). Then f(p1), f(p2), f(p3), f(p4) are in

this order on P .

(83) Let p1, p2 be points of E2

T
and P be a non empty compact subset of E2

T
.

If P is a simple closed curve and p1 ∈ P and p2 ∈ P and not LE(p1, p2, P ),

then LE(p2, p1, P ).

(84) Let p1, p2, p3 be points of E2

T
and P be a non empty compact subset of E2

T
.

Suppose P is a simple closed curve and p1 ∈ P and p2 ∈ P and p3 ∈ P.

Then LE(p1, p2, P ) and LE(p2, p3, P ) or LE(p1, p3, P ) and LE(p3, p2, P )

or LE(p2, p1, P ) and LE(p1, p3, P ) or LE(p2, p3, P ) and LE(p3, p1, P ) or

LE(p3, p1, P ) and LE(p1, p2, P ) or LE(p3, p2, P ) and LE(p2, p1, P ).

(85) Let p1, p2, p3 be points of E2

T
and P be a non empty compact subset of

E2

T
. Suppose P is a simple closed curve and p1 ∈ P and p2 ∈ P and p3 ∈ P

and LE(p2, p3, P ). Then LE(p1, p2, P ) or LE(p2, p1, P ) and LE(p1, p3, P )

or LE(p3, p1, P ).

(86) Let p1, p2, p3, p4 be points of E2

T
and P be a non empty compact subset

of E2

T
. Suppose P is a simple closed curve and p1 ∈ P and p2 ∈ P and

p3 ∈ P and p4 ∈ P and LE(p2, p3, P ) and LE(p3, p4, P ). Then LE(p1, p2, P )

or LE(p2, p1, P ) and LE(p1, p3, P ) or LE(p3, p1, P ) and LE(p1, p4, P ) or

LE(p4, p1, P ).

(87) Let p1, p2, p3, p4 be points of E2

T
, P , K be non empty compact subsets

of E2

T
, and f be a map from E2

T
into E2

T
. Suppose P = Circle(0, 0, 1) and

K = Rectangle(−1, 1,−1, 1) and f = SqCirc and LE(f(p1), f(p2), P ) and

LE(f(p2), f(p3), P ) and LE(f(p3), f(p4), P ). Then p1, p2, p3, p4 are in this

order on K.

(88) Let p1, p2, p3, p4 be points of E2

T
, P , K be non empty compact subsets

of E2

T
, and f be a map from E2

T
into E2

T
. Suppose P = Circle(0, 0, 1) and

K = Rectangle(−1, 1,−1, 1) and f = SqCirc . Then p1, p2, p3, p4 are in

this order on K if and only if f(p1), f(p2), f(p3), f(p4) are in this order

on P .

(89) Let p1, p2, p3, p4 be points of E2

T
, K be a compact non empty subset of

E2

T
, and K0 be a subset of E2

T
. Suppose K = Rectangle(−1, 1,−1, 1) and

p1, p2, p3, p4 are in this order on K. Let f , g be maps from I into E2

T
.

Suppose that f is continuous and one-to-one and g is continuous and one-

to-one andK0 = ClosedInsideOfRectangle(−1, 1,−1, 1) and f(0) = p1 and

f(1) = p3 and g(0) = p2 and g(1) = p4 and rng f ⊆ K0 and rng g ⊆ K0.
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Then rng f meets rng g.
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