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The articles [14], [5], [16], [10], [17], [3], [4], [1], [12], [11], [15], [2], [8], [13], [9],
[7], and [6] provide the notation and terminology for this paper.

1. OPERATION OF COMPLEX FUNCTIONS

We adopt the following convention: z1, x2, z are sets, A is a non empty set,
and f, g, h are elements of CA4.

Let us consider A. The functor +ca yielding a binary operation on C4 is
defined by:

(Def. 1) For all elements f, g of C4 holds +¢a(f, g) = (+¢)°(f, 9)-

Let us consider A. The functor -ca yielding a binary operation on C4 is
defined as follows:

(Def. 2) For all elements f, g of C4 holds -ca(f, g) = (-c)°(f, 9)-

Let us consider A. The functor -g 4 yielding a function from [C, C*] into
CA is defined by:
(Def. 3) For every complex number z and for every element f of C* and for every
element x of A holds -%A((z, M) =z f(x).
Let us consider A. The functor Oga yielding an element of C4 is defined by:
(Def. 4) O(CA =A+— 0@.
Let us consider A. The functor 1¢a yields an element of C4 and is defined
by:
(Def. 5) 1ca = A+— 1¢.
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One can prove the following propositions:

(1) h=+cal(f, g) iff for every element = of A holds h(z) = f(z) + g(z).
(2) h=-ca(f, g) iff for every element x of A holds h(z) = f(z) - g(x).
(3) For every element x of A holds 1¢a(x) = 1c.

(4) For every element x of A holds O¢a(z) = Oc.

(

5) Oca # 1ca.

In the sequel a, b denote complex numbers.

The following proposition is true

(6) h= -gA((a, f)) iff for every element x of A holds h(z) =a- f(z).
In the sequel u, v, w are vectors of ((CA, Oca, +ca, %A).

One can prove the following propositions:

(1) +calfs 9) = +caly, ).

(8) +calf +calg, b)) = +cal+calf, 9), ).
9) calf, 9) = -calg, )

10) -ca(f, -calg, h)) = -cal-calf, 9), h).

11 '(CA(l(CA, f) = f.

12) +ca(0ca, f) = f.

15 '%A((aa '%A((b7 MNES '%A((a b, f)).
+eal-gal{a, £)), €al(b, £))) = Gal{a+0, f)).
‘cal(fs +calg, b)) = +calcalfs 9), calf, h)).
cal-Eal{a, ), 9) = Eal{a, -calf, 9)))-

16
17

)
)
)
)
)
)
13) +ealf, gal{—1c, f))) = Oca.
)
)
)
)
18)

(
(
(
(
(14) Gal(lc, /) = f.
(
(
(
(

2. COMPLEX LINEAR SPACE OF COMPLEX VALUED FUNCTIONS

One can prove the following propositions:
(19) There exist f, g such that
(i)  for every z such that z € A holds if z = zj, then f(z) = 1¢ and if
z # x1, then f(z) = 0c, and
(ii)  for every z such that z € A holds if z = =1, then g(z) = Oc and if
z # x1, then g(z) = 1c.
(20) Suppose that

(i) x1 € A,

(ii) To € A,
(iii)) 1 # o,
(iv)  for every z such that z € A holds if z = z1, then f(2) = 1¢ and if

z # x1, then f(z) = O¢, and
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(v)  for every z such that z € A holds if z = z, then g(z) = Oc and if
z # x1, then g(z) = 1¢.
Let given a, b. If +CA('€A(<(I, )¢ '%A((b, g))) = Oca, then a = O¢ and
b= 0c.

(21) If x;1 € A and x93 € A and z; # x9, then there exist f, g such that for
all a, b such that +CA('%A(<G, ), %A((b, g))) = Oca holds a = O¢ and
b= 0c.

(22) Suppose that

(i) A={z1,22},

(ii) I 7é 9,

(ili)  for every z such that z € A holds if z = z1, then f(z) = 1¢ and if
z # x1, then f(z) = Oc¢, and

(iv) for every z such that z € A holds if z = z7, then g(z) = Oc and if
z # x1, then g(z) = 1c.
Let given h. Then there exist a, b such that h = +(CA('gA(<CL, ), -gA((b,
9))-

(23) If A= {x1,22} and x; # x2, then there exist f, g such that for every h
there exist a, b such that h = +ca(-ga({a, f)), -Ga({D, 9))).

(24) Suppose A = {z1,x2} and x; # x2. Then there exist f, g such that for
all a, b such that —|—(CA(-%A((a, ), -gA((b, g))) = Oca holds a = O¢ and
b = Oc and for every h there exist a, b such that h = +(CA(‘gA((CL, ),
£.((b, 9))).

(25) (CA,0¢a, +ca, '8;) is a complex linear space.

Let us consider A. The functor ComplexVectSpace(A) yields a strict complex
linear space and is defined by:
(Def. 6) ComplexVectSpace(A) = (CA, 0¢a, ¢4, '84>-
We now state the proposition

(26) There exists a strict complex linear space V' and there exist vectors u,
v of V' such that for all a, b such that a-u + b-v = 0y holds a = O¢ and
b = Oc and for every vector w of V' there exist a, b such that w = a-u+b-v.

Let us consider A. The functor CRing(A) yielding a strict double loop struc-
ture is defined by:
(Def. 7)  CRing(A) = (CA, +¢a,-ca, 1ca, 0ca).
Let us consider A. Observe that CRing(A) is non empty.
We now state two propositions:

(27) Let x, y, z be elements of CRing(A). Then x+y = y+x and (z+y)+2z =
T+ (y+2) and x+0cRing(4) =  and there exists an element ¢ of CRing(A)
such that © +t = OcRinga) and z-y =y-x and (z-y) -z =2 (y- 2) and
Z - 1CRing(4) = 2 and 1cRing(a) " T =T andz-(y+z)=z-y+ax-zand
(y+z2)z2=y-z+z- 2.
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(28) CRing(A) is a commutative ring.

We introduce complex algebra structures which are extensions of double loop
structure and CLS structure and are systems

( a carrier, a multiplication, an addition, an external multiplication, a unity,
a zero ),
where the carrier is a set, the multiplication and the addition are binary ope-
rations on the carrier, the external multiplication is a function from [ C, the
carrier ] into the carrier, and the unity and the zero are elements of the carrier.

Let us mention that there exists a complex algebra structure which is non
empty.

Let us consider A. The functor CAlgebra(A) yielding a strict complex algebra
structure is defined as follows:

(Def. 8) CAlgebra(A) = (CA, -ca, +ca, -%A, 1ca,0ca).
Let us consider A. Observe that CAlgebra(A) is non empty.
Next we state the proposition

(29) Let x, y, z be elements of CAlgebra(A) and given a, b. Then x+y = y+x
and (r +y)+2 =2+ (y + 2) and x + 0calgebra(a) = @ and there exists an
element ¢ of CAlgebra(A) such that x +t = Ocalgebra(a) and -y =y -
and (z-y)-z =z (y-z) and - 1oalgebra(a) = T and v+ (y+2) = x-y+x-2
and a-(z-y) = (a-x)-yand a-(r+y) = a-x+a-y and (a+b)-z = a-z+b-x
and (a-b)-z=a-(b-x).

Let I; be a non empty complex algebra structure. We say that I; is complex
algebra-like if and only if the condition (Def. 9) is satisfied.

(Def. 9) Let x, y, z be elements of I; and given a, b. Then z - 1(;;) = z and
z-(y+z)=z-y+z-zanda-(x-y) = (a-z)-yanda-(z+y)=a-z+a-y
and (a+b)-z=a-z+b-zand (a-b)-z=a-(b-z).

Let us note that there exists a non empty complex algebra structure which
is strict, Abelian, add-associative, right zeroed, right complementable, commu-
tative, associative, and complex algebra-like.

A complex algebra is an Abelian add-associative right zeroed right com-
plementable commutative associative complex algebra-like non empty complex
algebra structure.

One can prove the following proposition

(30) CAlgebra(A) is a complex algebra.
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The terminology and notation used here are introduced in the following articles:
18], [8], 20, [5], [7), (6], [3], (1], [17), (18], [19], [14], [2], [4], [15], [10], [11], [9);
and [12].
One can prove the following propositions:
(1) Let X, Y, Z be complex linear spaces, f be a linear operator from X
into Y, and g be a linear operator from Y into Z. Then ¢ - f is a linear
operator from X into Z.

(2) Let X,Y, Z be complex normed spaces, f be a bounded linear operator
from X into Y, and g be a bounded linear operator from Y into Z. Then
(i) g- fis a bounded linear operator from X into Z, and
(ii)  for every vector z of X holds ||(g- f)(z)| < (BdLinOpsNorm(Y, Z))(g)-
(BALinOpsNorm(X,Y))(f) - |lz]] and (BdLinOpsNorm(X,Z))(g - f) <
(BdLinOpsNorm(Y, Z))(g) - (BdLinOpsNorm (X, Y))(f)-
Let X be a complex normed space and let f, g be bounded linear operators
from X into X. Then g - f is a bounded linear operator from X into X.
Let X be a complex normed space and let f, g be elements of
BdLinOps(X, X). The functor f + g yields an element of BdLinOps(X, X) and
is defined by:

(Def. 1)  f+ g = (Add_(BdLinOps(X, X), CVSpLinOps(X, X)))(f, g).
Let X be a complex normed space and let f, g be elements of

BdLinOps(X, X). The functor g - f yields an element of BdLinOps(X, X) and
is defined as follows:

@ 2004 University of Bialystok
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(Def. 2) ¢ - f = modetrans(g, X, X) - modetrans(f, X, X).

Let X be a complex normed space, let f be an element of BdLinOps(X, X),
and let z be a complex number. The functor z - f yields an element of
BdLinOps(X, X) and is defined by:

(Def. 3) z- f = (Mult_(BdLinOps(X, X), CVSpLinOps(X, X)))(z, f).

Let X be a complex normed space. The functor FuncMult(X) yields a binary

operation on BdLinOps(X, X) and is defined as follows:
(Def. 4) For all elements f, g of BAdLinOps(X, X) holds (FuncMult(X))(f, g) =
f-g
The following proposition is true
(3) For every complex normed space X holds idthe carrier of X 18 & bounded
linear operator from X into X.

Let X be a complex normed space. The functor FuncUnit(X) yielding an
element of BdLinOps(X, X) is defined by:

(Def. 5)  FuncUnit(X) = id¢he carrier of X-
The following propositions are true:

(4) Let X be a complex normed space and f, g, h be bounded linear opera-
tors from X into X. Then h = f - g if and only if for every vector x of X
holds h(x) = f(g(x)).

(5) For every complex normed space X and for all bounded linear operators
f, g, h from X into X holds f-(g-h)=(f-g) - h.

(6) Let X be a complex normed space and f be a bounded linear operator
from X into X. Then f : idthe carrier of X — f and idthe carrier of X ° f = f

(7) For every complex normed space X and for all elements f, g, h of
BdLinOps(X, X) holds f-(g-h) = (f-g) - h.

(8) For every complex normed space X and for every element f of
BdLinOps(X, X) holds f - FuncUnit(X) = f and FuncUnit(X) - f = f.

(9) For every complex normed space X and for all elements f, g, h of
BdLinOps(X, X) holds f-(g+h)=f-g+ f-h.

(10) For every complex normed space X and for all elements f, g, h of
BdLinOps(X, X) holds (¢ +h)-f=g-f+h-f.

(11) Let X be a complex normed space, f, g be elements of BdLinOps(X, X),
and a, b be complex numbers. Then (a-b) - (f-g)=a-f-(b-g).

(12) Let X be a complex normed space, f, g be elements of BdLinOps(X, X),
and a be a complex number. Then a- (f-g) = (a- f)-g.

Let X be a complex normed space.
The functor RingOfBoundedLinearOperators(X) yields a double loop struc-
ture and is defined by:

(Def. 6) RingOfBoundedLinearOperators(X) = (BdLinOps(X, X),
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Add_(BdLinOps(X, X), CVSpLinOps(X, X)), FuncMult(X ), FuncUnit(X),
Zero_(BdLinOps(X, X), CVSpLinOps(X, X))).
Let X be a complex normed space.
Note that RingOfBoundedLinearOperators(X) is non empty and strict.
Next we state two propositions:
(13) Let X be a complex normed space and z, y, z be elements of
RingOfBoundedLinearOperators(X). Then =z +y = y + « and (z +
y) +tz =T+ (y + Z) and x + 0RingOfBoundedLinearOperators(X) = x and
there exists an element ¢t of RingOfBoundedLinearOperators(X ) such that
r+1 = 0RingOfBoundedLinearOperators(X) and (.TU ’ y) =X (y ’ Z) and
€ - 1RingOfBoundedLinearOperators(X) = x and 1RingOfBoundedLinearOperators(X) )
r=zandz-(y+z)=z-y+z-zand (y+2)-z=y-v+ 2.
(14) For every complex normed space X holds
RingOfBoundedLinearOperators(X) is a ring.

Let X be a complex normed space.

Observe that RingOfBoundedLinearOperators(X) is Abelian, add-associative,
right zeroed, right complementable, associative, left unital, right unital, and di-
stributive.

Let X be a complex normed space. The functor CAlgBdLinOps(X) yields a
complex algebra structure and is defined by:

(Def. 7) CAlgBdLinOps(X) = (BdLinOps(X, X ), FuncMult(X), Add_(BdLinOps
(X, X),CVSpLinOps(X, X)), Mult_(BdLinOps(X, X ), CVSpLinOps(X, X)),
FuncUnit(X), Zero_(BdLinOps(X, X), CVSpLinOps(X, X))).

Let X be a complex normed space. Note that CAlgBdLinOps(X) is non
empty and strict.

The following proposition is true

(15) Let X be a complex normed space, x, y, z be elements of
CAlgBdLinOps(X), and a, b be complex numbers. Then x4y = y+x and
(r+y)+z=1z+ (y+2) and ¥ + OcalgBdLInOps(x) = = and there exists
an element ¢ of CAlgBdLinOps(X) such that z +t = 0cAlgBdLInOps(x) and
(z-y) 2z =z (y-2) and - 1oAleBdLiInOps(x) = T and 1CAleBdLInOps(X) T = T
and z-(y+z2) =x-y+z-zand (y+z2)-x =y-x+z-zand a-(z-y) = (a-x)-y
and a-(z4+vy) =a-z+a-yand (a+b)-x =a-xz+b-z and (a-b)-z = a-(b-x)
and (a-b) - (z-y)=a-x-(b-y).

A complex BL algebra is an Abelian add-associative right zeroed right com-
plementable associative complex algebra-like non empty complex algebra struc-
ture.

We now state the proposition

(16) For every complex normed space X holds CAlgBdLinOps(X) is a com-
plex BL algebra.
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Let us note that Complex-11-Space is complete.

Let us mention that Complex-11-Space is non trivial.

Let us note that there exists a complex Banach space which is non trivial.
The following two propositions are true:

(17) For every non trivial complex normed space X there exists a vector w
of X such that ||w| = 1.

(18) For every non trivial complex normed space X holds
(BdLinOpsNorm(X, X)) (idthe carrier of x) = 1.

We introduce normed complex algebra structures which are extensions of
complex algebra structure and complex normed space structure and are systems

( a carrier, a multiplication, an addition, an external multiplication, a unity,
a zero, a norm ),
where the carrier is a set, the multiplication and the addition are binary ope-
rations on the carrier, the external multiplication is a function from [ C, the
carrier ] into the carrier, the unity and the zero are elements of the carrier, and
the norm is a function from the carrier into R.

One can check that there exists a normed complex algebra structure which
is non empty.

Let X be a complex normed space. The functor CNAlgBdLinOps(X) yields
a normed complex algebra structure and is defined by:

(Def. 8) CNAlgBdLinOps(X) = (BdLinOps(X, X ), FuncMult(X),
Add_(BdLinOps(X, X), CVSpLinOps(X, X)), Mult_(BdLinOps(X, X),
CVSpLinOps(X, X)), FuncUnit(X), Zero_(BdLinOps(X, X),
CVSpLinOps(X, X)), BdLinOpsNorm(X, X)).

Let X be a complex normed space. Note that CNAlgBdLinOps(X) is non
empty and strict.
The following propositions are true:

(19) Let X be a complex normed space, z, y, z be elements of
CNAlgBdLinOps(X), and a, b be complex numbers. Then z+y = y+z and
(x+y)+2z =12+ (y+2) and +0cNAlgBdLInOps(x) = T and there exists an
element ¢ of CNAIgBdLinOps(X) such that x +¢ = OcNAlgBdLinOps(x) and
(z-y)-z = z-(y-2) and - 1oNAlgBdLinOps(x) = T and 1oNAlgBALinOps(X) T =
zand z-(y+2) = z-y+x-z and (y+2)-x =y-x+z-zand a-(z-y) = (a-x)-y
and (a-b)-(z-y) = a-z-(b-y) and a-(z+y) = a-x+a-y and (a+b)-x = a-x+b-x
and (a-b)-z=a-(b-x) and 1¢c -z = x.

(20) Let X be a complex normed space. Then CNAlgBdLinOps(X) is com-
plex normed space-like, Abelian, add-associative, right zeroed, right com-
plementable, associative, complex algebra-like, and complex linear space-
like.

Let us observe that there exists a non empty normed complex algebra struc-
ture which is complex normed space-like, Abelian, add-associative, right zeroed,
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right complementable, associative, complex algebra-like, complex linear space-
like, and strict.

A normed complex algebra is a complex normed space-like Abelian add-
associative right zeroed right complementable associative complex algebra-like
complex linear space-like non empty normed complex algebra structure.

Let X be a complex normed space. One can check that CNAlgBdLinOps(X)
is complex normed space-like, Abelian, add-associative, right zeroed, right com-
plementable, associative, complex algebra-like, and complex linear space-like.

Let X be a non empty normed complex algebra structure. We say that X is
Banach Algebra-likel if and only if:

(Def. 9) For all elements z, y of X holds ||z - y|| < ||z - ||ly]|-

We say that X is Banach Algebra-like2 if and only if:

(Def. 10) ||1x] = 1.
We say that X is Banach Algebra-like3 if and only if:

(Def. 11) For every complex number a and for all elements z, y of X holds a - (= -

y)=z-(a-y).
Let X be a normed complex algebra. We say that X is Banach Algebra-like

if and only if the condition (Def. 12) is satisfied.

(Def. 12) X is Banach Algebra-likel, Banach Algebra-like2, Banach Algebra-like3,
left unital, left distributive, and complete.

One can verify that every normed complex algebra which is Banach Algebra-
like is also Banach Algebra-likel, Banach Algebra-like2, Banach Algebra-like3,
left distributive, left unital, and complete and every normed complex algebra
which is Banach Algebra-likel, Banach Algebra-like2, Banach Algebra-like3, left
distributive, left unital, and complete is also Banach Algebra-like.

Let X be a non trivial complex Banach space. One can verify that
CNAlgBdLinOps(X) is Banach Algebra-like.

One can check that there exists a normed complex algebra which is Banach
Algebra-like.

A complex Banach algebra is a Banach Algebra-like normed complex algebra.
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The articles [2], [5], [1], [6], [3], and [4] provide the terminology and notation for
this paper.

In this paper t1, ¢, t3, t4 are real numbers.

One can prove the following propositions:

(1) If costy; # 0, then cosecty = %
(2) Ifsint; # 0, then cost; = sinty - cot ¢;.

(3) If sinty # 0 and sints # 0 and sinty # 0, then sin(te + t3 + t4) =
sinty - sints - sinty - ((cot t3 - cot ty + cot to - cot t4 + cotte - cottz) — 1).
(4) If sinty # 0 and sints # 0 and sinty # 0, then cos(to + t3 + t4) =
—sinty - sintg - sinty - ((cot ty + cot ts + cot ty) — cott - cot ts - cotty).

(5) sin(2-t1) =2-sint; - costy.

(6) Ifcost; #0, then sin(2 ;) = p2tnt

(7) cos(2-t1) = (cost1)? — (sint;)? and cos(2 - t1) = 2 (cost;)? — 1 and
cos(2-t) =1—2-(sinty)2.

If cost; # 0, then cos(2 - 1) 1-(tanty)?

(8) 1+(tant1)2 "
(9) If cost; # 0, then tan(2-¢1) = 13(237221)2
(10) Ifsinty # 0, then cot(2- ;) = (g1,
(11) TIf costy # 0, then (sect1)? =1+ (tanty)?.
_ 1
(12) cot tl = Tant;"

@ 2004 University of Bialystok
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If cost; # 0 and sint; # 0, then sec(2-¢1) = % and sec(2-t1) =

cotti+tanty
cotti—tanty *

(14)
(15)

ty

[
N O

NN NN =
N N == N< N ¢}

\)
(=2}

A,_\,_\AAAA/_\A,_\,_\,_\AA,_\,_\,_\,_\,_\
~ ot
e N e e N N N N e N N N N N N N N N

W W W W w N N
=W NN = O ©

(35)

If sint; # 0, then (cosect1)? = 1 + (cot t1)2.

If costy # 0 and sinty # 0, then cosec(2 - t;) = 3¢9t anq cosec(2 -
) __ tanti+4cotiy
= tantidcothy

sin(3-t1) = —4 - (sint)3 + 3 -sint;.
cos(3-t1) =4 - (costy)® — 3 - costy.

If costy # 0, then tan(3 - t1) = %#;)3

sin#)2 = 1=cosZh)

cost 2 _ 1+C082(2.t1)'

3 3-sin tq —Sin(?)-tl)

sinty v

3 3-costi+cos(3-t1)

)
)
costy)’ = T
)
)

(
(
(
(
(
(

sint, 4 _ (374-008(2-té))+cos(4-t1) )
costy 4 _ 3+4-Cos(2~té)+cos(4-t1)'

cos(4) = W or cos(%) = Lol
If sin(4) # 0, then tan(4) = 1;370;’51

If cos(4) # 0, then tan(4) = lfélotsltl.
tan() = /et or tan(3) = —/ e
If cos(4) # 0, then cot(4) = 1;‘;7051“

If sin(%) # 0, then cot(4) = %

cot(4) = |/ EES2I or cot(}) = - /FEets

¢

If sin(4) # 0 and cos(%) # 0 and 1 — (tan(%))? # 0, then sec(4) =

2
2-sec tq 1y 2-sec tq
secti+1 or sec( 2) - V secti+1°

If sin(%) # 0 and cos(4) # 0 and 1 — (tan(%))? # 0, then cosec(4) =

2-secty 1y 2-secty
\/ sect1—1 or COSGC( 2) - \/ sect1—1"

Let
follows:

(Def. 1)
Let
(Def. 2)

us consider t1. The functor cotht; yielding a real number is defined as

cosht
coth tl = Slnihti

us consider 1. The functor sech?; yielding a real number is defined by:

1
sech tl = Coshiy”
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Let us consider ¢;. The functor cosech ¢; yields a real number and is defined
as follows:

(Def. 3) cosecht; = ——+

sinh ¢y *

We now state a number of propositions:

_ exptitexp(—t1) _ 2 —
(36) COth§1 = pr(_ti) and SeCht]_ == m and COSGCht]_ =

expti—exp(—t1) "
If expty — exp(—t1) # 0, then tanht; - cotht; = 1.
(secht)? + (tanht1)? = 1.
If sinh¢; # 0, then (cotht;)? — (cosecht1)? = 1.

(37)

(38)

(39)

(40) If sinhty # 0 and sinhtz # 0, then coth(ty + t3) = LEeptitlacothls.
(41)

(42)

If sinh ta # 0 and sinhts # 0, then coth(ty — t3) = M—Qcﬁfﬁ?

If sinhty # 0 and sinhts # 0, then cothts + cothts = sinh(tadts) o)

sinh to-sinh t3
Sinh(tz 7t3)
sinh to-sinh t3 *

sinh(3-t1) = 3 -sinht; + 4 - (sinh#;)3.
cosh(3-t1) =4 - (cosht)? — 3 - coshty.

If sinh ¢y # 0, then coth(2-;) = %
If t1 > 0, then sinht; > 0.

If 1 < 0, then sinht; < 0.

(43)
(44)
(45)
(46)
(47)
(48) cosh(t—l) = \/@
(49)
(50)
(51)
(52)

cothto — cothty = —

If sinh

(4) # 0, then tanh(4) %
50) If cosh(%}) # 0, then tanh(%) = %
51) 1f sinh(§) # 0, then coth(§) = SHy.
52) If cosh( ) # 0, then coth( ) = Cossillﬁzrl
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The papers [5], [4], [2], [3], and [1] provide the terminology and notation for this
paper.

We follow the rules: z, y, a, b, ¢, p, ¢ are real numbers and m, n are natural
numbers.

We now state a number of propositions:

(1) Ta#0and? <0and € >0and Ala,bc) >0, then VAL o ¢

—b—+/A(a,b,c) < 0.

and 5

(2) Ifa?éoand§>0and§>0and Ala,b,c) > 0, then@ <0

—b—+/A(a,b,c) <0

and 5

(3) Ifa;éOand§<O,then_b+7 vQib(a’b’c)>Oaur1d_I)_Z%Aa(a’b’c)<001r

“bhyA(abe) ”Qi(a’b’c) <0 and Z2=VAlabo) Qi(a’b’c) > 0.

(4) If a > 0 and there exists m such that n =2-m and m > 1 and 2" = q,
then x = {/a or x = — {/a.

(5) If a # 0 and Poly2(a,b,0,2) =0, then x =0 or = = —%.

(6) If a # 0 and Poly2(a,0,0,2) = 0, then = = 0.

(7) If a # 0 and there exists m such that n = 2-m+1 and A(a,b,c) > 0 and

Poly2(a, b, ¢, z™) = 0, then z = 1, “hhy Alabe) VQi(a’b’C) or z = ) oV alabo) Vﬁl(a’b’c).
(8) Suppose a # 0 and © < 0 and ¢ > 0 and there exists m such that

n=2-mand m > 1 and A(a,b,c) > 0 and Poly2(a, b, c,z™) = 0. Then

@ 2004 University of Bialystok
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@ 2a 2-a
n [ —b—+/A(a,b,c)
r=- 2-a
(9) Ifa # 0 and there exists m such that n = 2-m+1 and Poly2(a, b, 0, 2™) =

0,thenz=0o0r z = ”—g.

(10) If a # 0 and g < 0 and there exists m such that n =2-m and m > 1

and Poly2(a,b,0,2™) =0, then z =0 or = \”/—2 orr=— \"/—g.

(11) a®+0*=(a+0b)-((a®—a-b) +b?) and a® +b° = (a+b) - ((((a* —a®-
b) +a?-b?) —a-b?) +bh).
(12) Suppose a # 0 and b2 —2-a-b—3-a? > 0 and Poly3(a,b,b,a,z) = 0.
(a—b)+VB2—3ab—3a2 4—b— /P —2ab—3a2
2-a 2-a :

Thenx = —-1lorz = or x =

Let a, b, ¢, d, e, f, x be real numbers. The functor Polys(a,b,c,d, e, f,x) is
defined by:
(Def. 1) Polys(a,b,c,d,e, f,x) =a-2° +b-2* +c- 2> +d-22+e- -2+ f.
We now state a number of propositions:
(13) Suppose @ # 0 and (b2 +2-a-b+5-a%?) —4-a-c > 0 and
Polys(a,b,c,c,b,a,z) = 0. Let yi, y2 be real numbers. Suppose y;
(a=b)+y/ B2 +2abtba?)—dac o yp = abo /(P2 ab S at) e iy

2-a 2-a
+/A,—y1,1 +y/A1,—y2,1 —/A(1,—y1,1
—1lorg=2TVoomuly) é y1,1) EEAAS . L ; b2 )or::::—y1 é u )or
Y2—/ A(lv_y271)

Tr = 2

or r =

(14) Suppose z +y=pand -y = q and p?2 —4-q > 0. ThenuU:u

and v = p—\/p?—4q p—\/p2—4q pHy/p2—4q
y= 2 2 2 :
(15) Suppose 2™ 4+ y" = p and 2" - y" = q and p? — 4 - ¢ > 0 and there exists

m such that n = 2-m + 1. Then z = {/2ZXV2 =24 Mandy: YR amae it

2
n —\/p2—4. n [ pt++/p2—4.
orr =1/ pig 4 and Y= pig £

(16) Suppose 2" +y" = p and 2"y = gand p>—4-¢ > 0and p > 0and ¢ > 0

i

or x = and y =

;

n 2_4.
and there exists m such that n =2-m and m > 1. Then x = prypiTia

[M

n —\/p2—-4. n -+ —4. n — 2_4.
andy:\/Worx:—quandy: o 2
n [ p+ 2_4. n/p—s/p2—4- n [ p4+ 2_4.

or xr = pig  and y = — pi‘g T or @0 = —/ VA

N

W~

<
3

TEFFEE

n/p—a/p2—4. n/p— —4. -+ 2_4.

and y = —\/pig L or x = VP2 and y = A
n —A/ 2_4. n -+ . n — 2_4.

ora::—\/quandy: PEVE " or ¢ = /B2 ap

n/p+y/p2—4q n/p—y/p3—4q n/pty/p2—4q

y=—\—Vrg—orx=—-\—5— andy=— 5

| [0

=

<
MT
(oW
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(18)! Suppose 2" + y" = a and " — y™ = b and there exists m such that
n=2-mandm>1anda>0and a+b>0and a —b>0. Then

(i) x:”“;b ndy:”“T_b,or
(ii) a::”“T*'bandy:—"“T_b,or
(iii) x:—”‘%ﬂ’andy:"%b,or
(iv) x—f"“TH’andy:f”“be.

(19) Ifa-2"+b-y" = pand x-y = 0 and there exists m such that n = 2-m+1

and a-b # 0, then x =0 and y = \[orx—&‘/»andy—O

(20) Suppose a-z" +b-y" = pand x -y = 0 and there exists m such that
n=2-mandm>1and § >0and 2 >0and a-b+# 0. Then 2 = 0 and

y:’\L/;ora:—Oandy— forxz’(/;andy—()orx——*{/gand
y=0.

(21) Ifa-2" =pand x-y = g and there exists m such that n =2-m+ 1 and
p'a;ﬁ(),thenx:’\l/%andy:q-r\l/g.

(22) Suppose a-z"™ = p and x - y = ¢q and there exists m such that n =2-m
andm}landg>0anda7é0.Then:c:T\L/gandy:mn%or

m:—’\l/gandy:—q- "%

(24)? For all real numbers a, = such that a > 0 and a # 1 and a® = 1 holds

z=0.
(25) For all real numbers a, x such that a > 0 and a # 1 and a® = a holds
=1

(27)3 For all real numbers a, b, = such that a > 0 and a@ # 1 and = > 0 and
log, x = 0 holds z = 1.

(28) For all real numbers a, b, x such that ¢ > 0 and a # 1 and = > 0 and
log, =1 holds x = a.
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The notation and terminology used here are introduced in the following papers:
[21], [9], [25], [1], [20], [14], [24], [22], [2], [5], [27], [6], [7], [18], [11], [19], [10],
[17], [26], [8], [15], [23], [12], [4], [3], [16], and [13].

1. PRELIMINARIES

The scheme ExFunc8CondD deals with a non empty set A, three unary
functors F, G, and H yielding sets, and three unary predicates P, @, R, and
states that:

There exists a function f such that dom f = A and for every
element ¢ of A holds if P[c], then f(c) = F(c) and if Q]c], then
f(c) = G(c) and if R[c], then f(c) = H(c)
provided the parameters meet the following conditions:
e For every element ¢ of A holds if P|c], then not Q[c| and if Plc],
then not R[c] and if Q[c], then not R[c], and
e For every element ¢ of A holds Plc] or Q|c] or R]c].

Let n be a natural number. Observe that every element of £7 is function-like
and relation-like.

Let n be a natural number. Observe that every element of &} is finite
sequence-like.

We now state a number of propositions:

(1) The carrier of [ I, I]=[[0,1], [0,1]].

!This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102 and KBN grant 4 T11C 039 24.

2The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-
versity, Japan.
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(2) For every real number z such that z < § holds 2-z — 1 < 1
(3) For every real number x such that 2 >  holds 2.2 —1>1—-2-z.
or all real numbers z, a, b, ¢, d such that a olds rT—a)t+c=
(4) For all real b b, ¢, d such that a # b holds #=¢ - (z — a)
(1 - 7) C + b a * d.
(5) For all real numbers a, b,  such that a < x and = < b holds =5 € the
carrier of [0, 1].

(6) For every point z of I such that z < 3 holds 2 z is a point of L.
or every point x of I such that x > 5 holds 2.2 — 1 is a point of I.
7) F i f I such th 3 holds 2 1i int of I
or all points p, q o olds p - q 1s a point of 1.
8) For all poi f I hold i i il
(9) For every point « of I holds 3 - « is a point of L.
(10) For every point x of I such that = > % holds = — i is a point of I.
(12)? idy is a path from Of to 1j.
or all points a, b, ¢, d of I such that a < b and ¢ < olds [ |a,b|, |c,d|
13) For all b, ¢, d of I such th b and d hold b d

is a compact non empty subset of [ I, I].

2. AFFINE MAPS

One can prove the following four propositions:

(14) Let S, T be subsets of 8%. Suppose S = {p; p ranges over points of E%:
2 < 2-p1 — 1} and T = {p;p ranges over points of £2: pa < p1}. Then

(AffineMap(1,0,1,1))°5 =T.

(15) Let S, T be subsets of 2. Suppose S = {p; p ranges over points of £2:
p2 > 2-p1 — 1} and T = {p;p ranges over points of £2: pa > p1}. Then
(AffineMap(1,0,1,1))°S =T.

(16) Let S, T be subsets of 2. Suppose S = {p;p ranges over points of £2:
p2 > 1—2-p1} and T = {p; p ranges over points of E2: pa > —p1}. Then

(AffineMap(1,0,1,-1))°S =T.
(17) Let S, T be subsets of £%. Suppose S = {p;p ranges over points of £2:
2 <1—2-p1} and T = {p; p ranges over points of £2: pa < —p1}. Then

(AffineMap(1,0,1,-3))°S =T.

3. REAL-MEMBERED STRUCTURES

Let T be a 1-sorted structure. We say that T is real-membered if and only
if:
(Def. 1) The carrier of T is real-membered.

We now state the proposition

3The proposition (11) has been removed.



ALGEBRAIC PROPERTIES OF HOMOTOPIES 253

(18) For every non empty 1-sorted structure 7" holds 7" is real-membered iff
every element of T is real.

Let us mention that I is real-membered.

One can verify that there exists a 1-sorted structure which is non empty
and real-membered and there exists a topological space which is non empty and
real-membered.

Let T be a real-membered 1-sorted structure. Note that every element of T'
is real.

Let T be a real-membered topological structure. Note that every subspace
of T is real-membered.

Let S, T be real-membered non empty topological spaces and let p be an
element of [ S, T']. One can check that p; is real and ps is real.

Let T be a non empty subspace of [ I, ] and let = be a point of 7. One can
check that x7 is real and xg is real.

One can check that R is real-membered.

4. CLOSED SUBSETS OF EUCLIDEAN TOPOLOGICAL SPACES

The following propositions are true:

(19) {p;p ranges over points of E%: pp < 2-p1 — 1} is a closed subset of £2.
(20) {p;p ranges over points of E2: pp > 2-p1 — 1} is a closed subset of £2.
(21) {p;p ranges over points of 5%: p2 < 1—2-p1} is a closed subset of S%.
(22) {p;p ranges over points of EX: p2 > 1 —2-p;1} is a closed subset of E2.
(23) {p;p ranges over points of E&:pa > 1—2-p1 A p2 >2-py —1}isa

closed subset of £2.

(24) There exists a map f from [ R, R! ] into £2 such that for all real num-
bers z, y holds f({z, y)) = (z,y).

(25) {p;p ranges over points of [ RY, R ]: po <1 —2-p;} is a closed subset
of [RY, R1].

(26) {p;p ranges over points of [ R, R ]: po < 2-p; — 1} is a closed subset
of [RY, R1].

(27) {p;p ranges over points of [RY, R']: po > 1—2-p;y A pa>2-p; — 1}
is a closed subset of [ R, R ].

(28) {p;p ranges over points of [ I, I]: po <1 —2-p;} is a closed non empty
subset of [ I, .

(29) {p;p ranges over points of [I, [{: p2 >1—-2-p1 A p2>2-p1—1}isa
closed non empty subset of [ I, I].

(30) {p;p ranges over points of [ I, I]: p2 < 2-p1 — 1} is a closed non empty
subset of [ I, I].
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(31) Let S, T be non empty topological spaces and p be a point of [ .S, T'].
Then p; is a point of S and ps is a point of T'.

(32) For all subsets A, B of [ I, 1] such that A = [[0,3], [0,1]] and B =
E[5,1], [0,1]] holds Qs 1914 Uy 138 = Qpr 13-

(33) For all subsets A, B of [ I, 1] such that A = [[0,3], [0,1]] and B =
E[5,1], [0,1]] holds Q¢ 1914 Ny iyys = E{5}, [0,1]].

5. COMPACT SPACES

Let T be a topological structure. Note that 7 is compact.
Let T be a topological structure. Observe that there exists a subset of T
which is empty and compact.
Next we state three propositions:
(34) For every topological structure 7" holds ) is an empty compact subset of
T.
(35) Let T be a topological structure and a, b be real numbers. If @ > b, then
[a,b] is an empty compact subset of T'.
(36) For all points a, b, ¢, d of I holds [ [a,b], [c,d] ] is a compact subset of
FL T

6. CONTINUOUS MAPS

Let a, b, ¢, d be real numbers. The functor Lo (a, b, ¢, d) yielding a map from
[a, b]T into [c, d| is defined by:
(Def. 2)  Loi(a, b, c,d) = Lo1(cic,qr» djc,d)r) - Po1(a; b, 00115 1o,157)-
The following propositions are true:
(37) For all real numbers a, b, ¢, d such that a < b and ¢ < d holds
(Lo1(a,b,c,d))(a) = ¢ and (Lo1(a,b,c,d))(b) = d.
(38) For all real numbers a, b, ¢, d such that a < b and ¢ < d holds
Lo1(a, b, ¢, d) is a continuous map from [a, b]T into [c, d]T.
(39) Let a, b, ¢, d be real numbers. Suppose a < b and ¢ < d. Let = be a real
number. If @ < z and = < b, then (Loi(a, b, ¢, d))(z) = % (z—a)+ec.
(40) Let f1, fo be maps from [I, I] into I. Suppose f; is continuous and fo
is continuous and for every point p of [ I, I] holds fi(p) - f2(p) is a point
of I. Then there exists a map g from [ I, I] into I such that
(i)  for every point p of [ I, I] and for all real numbers 7y, r2 such that
fi(p) = r1 and fa(p) = re holds g(p) = r1 - 2, and
(ii) g is continuous.
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(41) Let f1, fo be maps from [I, I] into I. Suppose f; is continuous and fo
is continuous and for every point p of [ I, I] holds fi(p) + f2(p) is a point
of I. Then there exists a map g from [ I, I] into I such that

(i)  for every point p of [I, I] and for all real numbers 71, r2 such that
fi(p) = r1 and fa(p) = ro holds g(p) = r1 + 72, and
(ii) g is continuous.

(42) Let f1, fo be maps from [ I, I] into I. Suppose f; is continuous and fo
is continuous and for every point p of [ I, I] holds fi(p) — f2(p) is a point
of I. Then there exists a map ¢ from [ I, I] into I such that

(i)  for every point p of [I, I] and for all real numbers 71, 79 such that
fi(p) = r1 and fa(p) = r2 holds g(p) = r1 —r2, and
(ii) g is continuous.

7. PATHS

We follow the rules: T denotes a non empty topological space and a, b, ¢, d
denote points of T
The following three propositions are true:
(43) For every path P from a to b such that P is continuous holds P -
Lo1(1(0,1)1»0(0,1},) is & continuous map from I into 7.
(44) Let X be a non empty topological structure, a, b be points of X,
and P be a path from a to b. If P(0) = a and P(1) = b, then
(P Lo1 (10,131 0p0,11))(0) = b and (P - Lo1 (10,11, 0p0,1)1)) (1) = a.
(45) Let P be a path from a to b. Suppose P is continuous and P(0) = a and
P(1) = b. Then —P is continuous and (—P)(0) = b and (—P)(1) = a.
Let T be a topological structure and let a, b be points of T'. We say that a,
b are connected if and only if:
(Def. 3) There exists amap f from [ into 7" such that f is continuous and f(0) = a
and f(1) =b.
Let T be a non empty topological space and let a, b be points of T'. Let us
notice that the predicate a, b are connected is reflexive and symmetric.
We now state several propositions:
(46) 1If a, b are connected and b, ¢ are connected, then a, ¢ are connected.
(47) For every arcwise connected topological structure 7" and for all points a,
b of T holds a, b are connected.
(48) For every path A from a to a holds A, A are homotopic.
(49) 1If a, b are connected, then for every path A from a to b holds A, A are
homotopic.
(50) If a, b are connected, then for every path A from a to b holds A = ——A.
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(51) Let T be a non empty arcwise connected topological space, a, b be points
of T, and A be a path from a to b. Then A = ——A.

(52) 1If a, b are connected, then every path from a to b is continuous.

8. REEXAMINATION OF A PATH CONCEPT

Let T be a non empty arcwise connected topological space, let a, b, ¢ be
points of T', let P be a path from a to b, and let (Q be a path from b to ¢. Then
P + @ can be characterized by the condition:

(Def. 4) For every point ¢ of I holds if ¢ < §, then (P + Q)(t) = P(2-t) and if
3 <t then (P+Q)(t)=Q(2-t—1).

Let T be a non empty arcwise connected topological space, let a, b be points
of T, and let P be a path from a to b. Then —P can be characterized by the
condition:

(Def. 5) For every point t of I holds (—P)(t) = P(1 —t).

9. REPARAMETRIZATIONS

Let T be a non empty topological space, let a, b be points of T', let P be a
path from a to b, and let f be a continuous map from I into I. Let us assume
that f(0) = 0 and f(1) = 1 and a, b are connected. The functor RePar(P, f)
yields a path from a to b and is defined by:

(Def. 6) RePar(P, f) =P - f.
Next we state two propositions:

(53) Let P be a path from a to b and f be a continuous map from I into L.
Suppose f(0) =0 and f(1) = 1 and a, b are connected. Then RePar(P, f),
P are homotopic.

(54) Let T be a non empty arcwise connected topological space, a, b be points
of T', P be a path from a to b, and f be a continuous map from I into I.
If f(0) =0 and f(1) =1, then RePar(P, f), P are homotopic.
The map 13*RP from I into I is defined as follows:
(Def. 7) For every point ¢ of I holds if ¢t < %, then (15°RP)(t) = 2-¢ and if t > 3,
then (15'RP)(¢) = 1.
Let us note that 15'RP is continuous.
One can prove the following proposition
(55) (15*RP)(0) = 0 and (15*RP)(1) = 1.
The map 2"RP from I into I is defined by:

(Def. 8) For every point ¢ of I holds if ¢ < 3, then (2"RP)(¢) = 0 and if ¢ > 3,
then (2"4RP)(t) =2 -t — 1.
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One can verify that 2"9RP is continuous.
One can prove the following proposition
(56) (2"RP)(0) = 0 and (2"¢RP)(1) = 1.
The map 3"'RP from I into I is defined by the condition (Def. 9).
(Def. 9) Let x be a point of I. Then

(i) if # < g, then (3"'RP)(z) = § - x,

(i) ifz> 3 and 2 < 2, then (3"RP)(z) =z — 1, and
(iii) if 2 > 3, then (3"RP)(z) =2 2 — 1.
Let us note that 3'"9RP is continuous.
We now state four propositions:
(57) (3'9RP)(0) = 0 and (3"9RP)(1) = 1.
(58) Let P be a path from a to b and @ be a constant path from b to b. If a,
b are connected, then RePar(P, 15'RP) = P + Q.

(59) Let P be a path from a to b and @ be a constant path from a to a. If a,
b are connected, then RePar(P,2"RP) = Q + P.

(60) Let P be a path from a to b, @ be a path from b to ¢, and R be a path
from ¢ to d. Suppose a, b are connected and b, ¢ are connected and ¢, d
are connected. Then RePar(P + Q + R,3"RP) = P + (Q + R).

10. DECOMPOSITION OF THE UNIT SQUARE

The subset LowerLeftUnitTriangle of [ I, I] is defined as follows:

(Def. 10) For every set  holds x € LowerLeftUnitTriangle iff there exist points a,
b of I such that z = (a, b) and b< 1—2-a.

We introduce TAA as a synonym of LowerLeft UnitTriangle.
The subset UpperUnitTriangle of [ I, I is defined by:

(Def. 11) For every set = holds = € UpperUnitTriangle iff there exist points a, b
of I such that z = {a, b) and b>1—-2-aand b>2-a — 1.

We introduce IBB as a synonym of UpperUnitTriangle.
The subset LowerRightUnitTriangle of [ I, 1] is defined as follows:

(Def. 12) For every set = holds x € LowerRightUnitTriangle iff there exist points
a, b of I such that x = (a, b) and b< 2-a — 1.

We introduce ICC as a synonym of LowerRightUnitTriangle.
The following propositions are true:
(61) TAA = {p;p ranges over points of [ I, I]: po <1—2-p1}.
(62) IBB = {p;p ranges over points of [ I, I]: pg > 1—2-p1 A pa > 2-p1 —1}.
(63) ICC = {p;p ranges over points of [ I, I]: po <2-p; — 1}.
One can check the following observations:

x TAA is closed and non empty,
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+ IBB is closed and non empty, and
* ICC is closed and non empty.

Next we state a number of propositions:

64) TAAUIBBUICC = [[0,1], [0,1]].

65) TAANIBB = {p;p ranges over points of [I, I[]: pa =1—2-p1}.
66) ICCNIBB = {p;p ranges over points of [ I, I]: po =2 -p; — 1}.
67) For every point z of [ I, T] such that x € TAA holds z1 <

(@)
o
D[ po—

For every point z of [ I, I] such that x € ICC holds z1 >
For every point = of I holds (0, z) € TAA.
For every set s such that (0, s) € IBB holds s = 1.

D
N=)

AN AN AN N N N N AN N N N N N N N N
[\ )
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71) For every set s such that (s, 1) € ICC holds s = 1.
(0, 1) € IBB.
73) For every point z of I holds (x, 1) € IBB.
74) (3, 0) € ICC and (1, 1) € ICC.
75) (i, 0) € IBB.
76) For every point z of I holds (1, z) € ICC.
77) For every point z of I such that z > § holds (z, 0) € ICC.
78) For every point z of I such that = < § holds (z, 0) € TAA.
79) For every point z of I such that z < 3 holds (z, 0) ¢ IBB and (z,

0) ¢ ICC.
(80) IAANICC = {(}, 0)}.

11. PROPERTIES OF A HOMOTOPY

We use the following convention: X denotes a non empty arcwise connected
topological space and aq, b1, ¢1, di denote points of X.
One can prove the following propositions:

(81) Let P be a path from a to b, @ be a path from b to ¢, and R be a path
from ¢ to d. Suppose a, b are connected and b, ¢ are connected and ¢, d
are connected. Then (P + Q) + R, P + (Q + R) are homotopic.

(82) Let P be a path from a; to b1, @ be a path from b; to c¢1, and R be a
path from ¢; to dy. Then (P + Q) + R, P+ (Q + R) are homotopic.

(83) Let Py, P, be paths from a to b and @1, Q2 be paths from b to ¢. Suppose
a, b are connected and b, ¢ are connected and P;, P, are homotopic and
@1, Q2 are homotopic. Then P; + @1, P> + Q2 are homotopic.

(84) Let Pi, P, be paths from a; to by and @1, Q2 be paths from b; to c;.
Suppose P, P, are homotopic and @1, Q2 are homotopic. Then P; 4+ Q1,
P, + Q2 are homotopic.
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(85) Let P, @ be paths from a to b. Suppose a, b are connected and P, ) are
homotopic. Then —P, —@Q are homotopic.

(86) For all paths P, @ from a; to b; such that P, @ are homotopic holds
—P, —Q are homotopic.

(87) Let P, @, R be paths from a to b. Suppose P, @ are homotopic and @,
R are homotopic. Then P, R are homotopic.

(88) Let P be a path from a to b and @ be a constant path from b to b. If a,
b are connected, then P + ), P are homotopic.

(89) For every path P from a; to b; and for every constant path @ from b,
to b1 holds P + @, P are homotopic.

(90) Let P be a path from a to b and @ be a constant path from a to a. If a,
b are connected, then @ + P, P are homotopic.

(91) For every path P from a; to by and for every constant path @ from a;
to a1 holds @Q + P, P are homotopic.

(92) Let P be a path from a to b and @ be a constant path from a to a. If a,
b are connected, then P + —P, () are homotopic.

(93) For every path P from a; to by and for every constant path @ from a;
to a; holds P + —P, ) are homotopic.

(94) Let P be a path from b to a and @ be a constant path from a to a. If b,
a are connected, then —P + P, () are homotopic.

(95) For every path P from by to a; and for every constant path @ from a;
to a; holds —P + P, Q are homotopic.

(96) For all constant paths P, @ from a to a holds P, @ are homotopic.

Let T be a non empty topological space, let a, b be points of T', and let P, Q)
be paths from a to b. Let us assume that P, Q are homotopic. A map from [T,
[]into T is said to be a homotopy between P and (@ if it satisfies the conditions
(Def. 13).

(Def. 13)(i) It is continuous, and
(ii)  for every point s of I holds it(s, 0) = P(s) and it(s, 1) = Q(s) and for
every point ¢ of I holds it(0, ¢) = a and it(1, t) = b.
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Summary. This is the next article in a series devoted to the homotopy
theory (following [11] and [12]). The concept of fundamental groups of pointed
topological spaces has been introduced. Isomorphism of fundamental groups de-
fined with respect to different points belonging to the same component has been
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1. PRELIMINARIES

We adopt the following convention: p, ¢, x, y are real numbers and n is a
natural number.
Next we state a number of propositions:
(1) Let G, H be groups and h be a homomorphism from G to H. If h-h~! =
idg and h~! - h =idg, then h is an isomorphism.
(2) For every subset X of I and for every point a of I such that X = ]a, 1]
holds X¢ = [0, a].

'The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-

versity, Japan.
2This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-

00102 and KBN grant 4 T11C 039 24.

@ 2004 University of Bialystok
261 ISSN 1426-2630



262 ARTUR KORNILOWICZ et al.

(3) For every subset X of I and for every point a of I such that X = [0, a]
holds X¢ = [a, 1].

(4) For every subset X of I and for every point a of I such that X = |a, 1]
holds X is open.

(5) For every subset X of I and for every point a of I such that X = [0, a]
holds X is open.

For every element f of R” holds - —f = —z - f.

For all elements f, g of R" holds z - (f —g) =x-f—x - g.

For every element f of R" holds (x —y)-f=x-f—y- f.

For all elements f, g, h, k of R™ holds (f+¢g)— (h+k) = (f—h)+(9—k).

=~~~
O o
—_— — Y N N T

(10) For every element f of R" such that 0 < z and < 1 holds |z - f| < |f]|.
(11) For every element f of R™ and for every point p of I holds |p- f| < |f].
(12) Let ey, e2, €3, €4, es, eg be points of £™ and p1, p2, p3, p4 be points of EF.

Suppose e; = py and e3 = po and e3 = p3 and e4 = p4 and e5 = p1 +p3 and
e¢ = p2 + p4 and p(er, es) < x and p(es,eq) < y. Then p(es,e) < x + y.

(13) Let ey, e, e5, e be points of £™ and p1, p2 be points of EF. If e; = py
and eg = pp and e5 = y - p; and eg = y - p2 and p(e1,e2) < x and y # 0,
then p(es, eq) < |y| - z.

(14) Let ey, e2, €3, €4, es, eg be points of £™ and p1, p2, p3, p4 be points of EF.
Suppose e; = p; and es = po and e3 = p3 and e4 = pg and e5 = x-p1+Y-Ps3
and eg = z - p2 +y - ps and p(e1,e2) < p and p(es,eq) < g and z # 0 and
y # 0. Then p(es,e6) < |z|-p+|y| - ¢.

(16)> Let X be a non empty topological space and f, g be maps from X into
EL. Suppose f is continuous and for every point p of X holds g(p) = y-f(p).
Then g is continuous.

(17) Let X be a non empty topological space and fi, f2, g be maps from X
into £F. Suppose fi is continuous and f5 is continuous and for every point
p of X holds g(p) =z - fi(p) + y - f2(p). Then g is continuous.

(18) Let F' be a map from [ &R, I] into EF. Suppose that for every point
of &% and for every point ¢ of I holds F(x, i) = (1 — i) - x. Then F is
continuous.

(19) Let F' be a map from [ &, I] into EL. Suppose that for every point x of
&L and for every point ¢ of I holds F'(z, i) =i -x. Then F is continuous.

2. PATHS

For simplicity, we follow the rules: X denotes a non empty topological space,
a, b, ¢, d, e, f denote points of X, T" denotes a non empty arcwise connected

3The proposition (15) has been removed.
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topological space, and a1, b1, c1, di, e1, fi denote points of T.
One can prove the following propositions:

(20) Suppose a, b are connected and b, ¢ are connected. Let A be a path from
a to b and B be a path from b to ¢. Then A, A+ B + —B are homotopic.

(21) For every path A from ay to by and for every path B from b; to ¢; holds
A, A+ B + —B are homotopic.

(22) Suppose a, b are connected and ¢, b are connected. Let A be a path from
a to b and B be a path from ¢ to b. Then A, A+ —B + B are homotopic.

(23) For every path A from a; to by and for every path B from ¢; to by holds
A, A+ —B + B are homotopic.

(24) Suppose a, b are connected and ¢, a are connected. Let A be a path from
a to b and B be a path from ¢ to a. Then A, —B + B + A are homotopic.

(25) For every path A from a; to by and for every path B from ¢; to a; holds
A, —B + B + A are homotopic.

(26) Suppose a, b are connected and a, ¢ are connected. Let A be a path from
a to b and B be a path from a to c¢. Then A, B+ —B + A are homotopic.

(27) For every path A from a; to by and for every path B from a; to ¢; holds
A, B+ —B + A are homotopic.

(28) Suppose a, b are connected and ¢, b are connected. Let A, B be paths
from a to b and C be a path from b to c. If A+ C, B 4+ C are homotopic,
then A, B are homotopic.

(29) Let A, B be paths from a; to b; and C be a path from by to ¢;. If A+C,
B + C are homotopic, then A, B are homotopic.

(30) Suppose a, b are connected and a, ¢ are connected. Let A, B be paths
from a to b and C be a path from ¢ to a. If C + A, C + B are homotopic,
then A, B are homotopic.

(31) Let A, B be paths from ay to by and C be a path from ¢; to a;. If C+ A,
C + B are homotopic, then A, B are homotopic.

(32) Suppose a, b are connected and b, ¢ are connected and ¢, d are connected
and d, e are connected. Let A be a path from a to b, B be a path from
b to ¢, C be a path from ¢ to d, and D be a path from d to e. Then
A+ B+ C+ D, A+ (B+ C) + D are homotopic.

(33) Let A be a path from a; to by, B be a path from b; to ¢1, C' be a path
from c¢; to di, and D be a path from d; to e;. Then A+ B+ C + D,
A+ (B + C) 4+ D are homotopic.

(34) Suppose a, b are connected and b, ¢ are connected and ¢, d are connected
and d, e are connected. Let A be a path from a to b, B be a path from
b to ¢, C be a path from ¢ to d, and D be a path from d to e. Then
(A+ B+ C)+ D, A+ (B + C + D) are homotopic.

263
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(35) Let A be a path from a; to by, B be a path from b; to ¢;, C be a path
from ¢; to dy, and D be a path from d; to e;. Then (A+ B+ C) + D,
A+ (B + C + D) are homotopic.

(36) Suppose a, b are connected and b, ¢ are connected and ¢, d are connected
and d, e are connected. Let A be a path from a to b, B be a path from
b to ¢, C be a path from c to d, and D be a path from d to e. Then
(A+(B+C))+ D, A+ B + (C + D) are homotopic.

(37) Let A be a path from a; to by, B be a path from b; to ¢1, C' be a path
from ¢; to di, and D be a path from d; to e;. Then (A+ (B+C)) + D,
A+ B+ (C+ D) are homotopic.

(38) Suppose a, b are connected and b, ¢ are connected and b, d are connected.
Let A be a path from a to b, B be a path from d to b, and C be a path
from b to ¢. Then A+ —B + B+ C, A+ C are homotopic.

(39) Let A be a path from a; to by, B be a path from d; to by, and C be a
path from by to ¢;. Then A+ —B + B+ C, A+ C are homotopic.

(40) Suppose a, b are connected and a, ¢ are connected and ¢, d are connected.
Let A be a path from a to b, B be a path from ¢ to d, and C be a path
from a to ¢. Then A+ —A+ C + B + —B, C' are homotopic.

(41) Let A be a path from a; to by, B be a path from ¢; to dj, and C be a
path from a1 to ¢;. Then A+ —A+ C + B+ —B, C are homotopic.

(42) Suppose a, b are connected and a, ¢ are connected and d, ¢ are connected.
Let A be a path from a to b, B be a path from c to d, and C be a path
from a to c¢. Then A+ (-A+ C + B) + —B, C are homotopic.

(43) Let A be a path from a; to by, B be a path from ¢; to di, and C be a
path from a; to ¢;. Then A+ (—A+ C + B) + —B, C are homotopic.

(44) Suppose that

(i) a, b are connected,

(ii

(iii

b, ¢ are connected,
¢, d are connected,
(iv) d, e are connected, and

(v

~— N

a, f are connected.
Let A be a path from a to b, B be a path from b to ¢, C' be a path from
c to d, D be a path from d to e, and E be a path from f to c¢. Then
(A+(B+C))+ D, A+ B+ —E+ (E + C + D) are homotopic.
(45) Let A be a path from a; to by, B be a path from b; to ¢, C be a path
from ¢q to dy, D be a path from dy to e, and F be a path from f; to c;.
Then (A+ (B+C))+ D, A+ B+ —FE + (E 4 C + D) are homotopic.
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3. THE FUNDAMENTAL GROUP

Let T be a topological structure and let ¢ be a point of T'. A loop of t is a
path from ¢ to .
Let T be a non empty topological structure and let ¢t be a point of T". The
functor Loops(t) is defined by:
(Def. 1) For every set x holds = € Loops(¢) iff = is a loop of ¢.
Let T be a non empty topological structure and let ¢ be a point of T'. Observe
that Loops(t) is non empty.
Let X be a non empty topological space and let a be a point of X. The
functor EqRel(X, a) yielding a binary relation on Loops(a) is defined by:
(Def. 2) For all loops P, Q of a holds (P, Q) € EqRel(X,a) iff P,  are homo-
topic.
Let X be a non empty topological space and let a be a point of X. One can
check that EqRel(X, a) is non empty, total, symmetric, and transitive.
We now state two propositions:

(46) For all loops P, @ of a holds Q € [P]EqRel(X,a) iff P, Q are homotopic.
(47) For all loops P, Q of a holds [Plg pei(x,a) = [@)pqrei(x,0) iff P, Q@ are
homotopic.
Let X be a non empty topological space and let a be a point of X. The

functor FundamentalGroup(X,a) yielding a strict groupoid is defined by the
conditions (Def. 3).

(Def. 3)(i) The carrier of FundamentalGroup(X, a) = Classes EqRel(X, a), and
(ii)  for all elements z, y of FundamentalGroup(X,a) there exist loops P,
Q of a such that = [Plg ge(x,q) and ¥ = [Qlgqrel(x,q) and (the multi-
plication of FundamentalGroup(X,a))(x, y) = [P + Q]EqRel(X,a)'
We introduce 71(X, a) as a synonym of FundamentalGroup(X, a).

Let X be a non empty topological space and let a be a point of X. One can
verify that 71 (X, a) is non empty.

Next we state the proposition

(48) For every set x holds = € the carrier of 71 (X, a) iff there exists a loop P
of a such that z = [Plg pe(x,q)-

Let X be a non empty topological space and let a be a point of X. Note
that m (X, a) is associative and group-like.

Let T be a non empty topological space, let xg, 1 be points of T, and let P
be a path from xg to x1. Let us assume that xg, x1 are connected. The functor
m1-iso( P) yielding a map from 71 (T, x1) into m1 (T, zp) is defined by:

(Def. 4) For every loop @ of 1 holds (m-iso(P))([Qlgqrel(r,z1))
[P+Q+ _P]EqRel(T,:po)'
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For simplicity, we follow the rules: xg, 1 denote points of X, P, Q denote
paths from xg to z1, yo, y1 denote points of T, and R, V denote paths from g
to Yi1-

Next we state three propositions:

(49) If zg, x1 are connected and P, ) are homotopic, then m-iso(P) =
m1-is0(Q).

(50) If R, V are homotopic, then mi-iso(R) = m;-iso(V).

(51) If xo, x1 are connected, then mi-iso(P) is a homomorphism from
7T1(X,x1) to 7T1(X, .%'0).

Let T be a non empty arcwise connected topological space, let zg, 1 be po-
ints of T, and let P be a path from zg to ;. Then mi-iso(P) is a homomorphism
from 71 (T, 1) to 71 (T, x0).

The following propositions are true:

(52) If xp, x1 are connected, then m-iso(P) is one-to-one.
(53) If xo, x1 are connected, then m-iso(P) is onto.

Let T' be a non empty arcwise connected topological space, let xg, x1 be
points of 7', and let P be a path from zy to z1. One can verify that m-iso(P) is
one-to-one and onto.

One can prove the following propositions:

(54) 1If zo, z1 are connected, then (m1-iso(P))~! = my-iso(—P).

(55) (m1-iso(R))~! = mi-iso(—R).

(56) If xg, x; are connected, then for every homomorphism A from m (X, z1)
to 71 (X, zp) such that h = my-iso(P) holds h is an isomorphism.

(57) mi-iso(R) is an isomorphism.

(58) If xp, x1 are connected, then 71 (X, z¢) and 71 (X, x1) are isomorphic.

(59) mi(T,yo) and (7, y1) are isomorphic.

4. EUCLIDEAN TOPOLOGICAL SPACE

Let n be a natural number, let a, b be points of £, and let P, @ be paths
from a to b. The functor RealHomotopy (P, Q) yields a map from [ I, I] into &}
and is defined by:

(Def. 5) For all elements s, ¢ of I holds (RealHomotopy (P, Q))(s, t) = (1 —t) -
P(s)+t-Q(s).
The following proposition is true
(60) For all points a, b of £} and for all paths P, @ from a to b holds P, Q
are homotopic.

Let n be a natural number, let a, b be points of £F, and let P, @ be paths

from a to b. Then RealHomotopy(P, @) is a homotopy between P and Q.
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Let n be a natural number, let a, b be points of &, and let P, ) be paths
from a to b. One can check that every homotopy between P and @ is continuous.
Next we state the proposition

(61) For every point a of £ and for every loop C of a holds the carrier of
m(Er,a) = {[C]EqRel(S%,a)}'
Let n be a natural number and let a be a point of £F. Note that m1(EF, a)
is trivial.
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The articles [16], [19], [20], [2], [21], [4], [9], [3], [1], [11], [15], [5], [17], [18], [10],
(7], [8], [6], [13], [22], [12], and [14] provide the notation and terminology for this
paper.

We use the following convention: n is a natural number, x, X, X; are sets,
and s, 7, p are real numbers.

Let S, T be 1-sorted structures. A partial function from S to T is a partial
function from the carrier of S to the carrier of T

For simplicity, we adopt the following rules: S, T" denote real normed spaces,
fs f1, fo denote partial functions from S to T', s; denotes a sequence of S, xg,
x1, o denote points of S, and Y denotes a subset of S.

Let Ry be a real linear space and let S7 be a sequence of R;. The functor
—51 yields a sequence of R; and is defined as follows:

(Def. 1) For every n holds (—=S71)(n) = —S1(n).
Next we state two propositions:
(1) For all sequences sg, s3 of S holds sy — s3 = s9 + —s3.
(2) For every sequence s4 of S holds —sg = (—1) - s4.

Let us consider S, T and let f be a partial function from S to T'. The functor

|| |l vielding a partial function from the carrier of S to R is defined as follows:
(Def. 2)  dom||f|| = dom f and for every point ¢ of S such that ¢ € dom|| f|| holds
1£11(c) = Il fell-
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Let us consider S, zg. A subset of S is called a neighbourhood of zg if:
(Def. 3) There exists a real number g such that 0 < g and {y; y ranges over points
of St ||y — zol| < g} Cit.

The following two propositions are true:

(3) For every real number g such that 0 < g holds {y;y ranges over points
of S: ||y — zo|| < g} is a neighbourhood of .
(4) For every neighbourhood N of xy holds 2y € N.

Let us consider S and let X be a subset of S. We say that X is compact if
and only if the condition (Def. 4) is satisfied.

(Def. 4) Let s; be a sequence of S. Suppose rngs; C X. Then there exists a
sequence s5 of S such that s; is a subsequence of s; and convergent and
lims; € X.

Let us consider S and let X be a subset of S. We say that X is closed if and
only if:

(Def. 5) For every sequence s; of S such that rngs; € X and s; is convergent
holds lim s; € X.

Let us consider S and let X be a subset of S. We say that X is open if and
only if:

(Def. 6) X¢ is closed.

Let us consider S, T, let us consider f, and let s4 be a sequence of S. Let
us assume that rng sy C dom f. The functor f - s4 yields a sequence of T and is
defined as follows:

(Def. 7) f-s4 = (f qua function) -(s4).

Let us consider S, let f be a partial function from the carrier of S to R, and
let s4 be a sequence of S. Let us assume that rng s4 C dom f. The functor f - sy
yields a sequence of real numbers and is defined as follows:

(Def. 8) f-s4=(f qua function) -(s4).

Let us consider S, T and let us consider f, xg. We say that f is continuous
in z¢ if and only if:

(Def. 9) xo € dom f and for every s; such that rngs; C dom f and s is conver-
gent and lim s; = xo holds f - s1 is convergent and f,, = lim(f - s1).

Let us consider S, let f be a partial function from the carrier of S to R, and
let us consider zg. We say that f is continuous in g if and only if:

(Def. 10) zp € dom f and for every s; such that rng s; C dom f and s; is conver-
gent and lim s; = xg holds f - s1 is convergent and fy, = lim(f - s1).
The scheme SeqPointNormSpChoice deals with a non empty normed struc-
ture A and a binary predicate P, and states that:

There exists a sequence s of A such that for every natural number
n holds P[n, s1(n)]
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provided the following condition is met:
e For every natural number n there exists a point r of A such that
Pln,r|.
The following propositions are true:
(5) For every sequence s4 of S and for every partial function A from S to T
such that rng s4 C dom A holds s4(n) € dom h.

(6) For every sequence s4 of S and for every set = holds x € rng sy iff there
exists n such that z = s4(n).

(7) For all sequences sy, s of S such that sy is a subsequence of s4 holds
g so C rng s4.

(8) For all f, sy such that rng s; C dom f and for every n holds (f-s1)(n) =
fsl(n)'

(9) Let f be a partial function from the carrier of S to R and given s;. If
g s; C dom f, then for every n holds (f - s1)(n) = f,, (n)-

(10) Let h be a partial function from S to T', s4 be a sequence of S, and Ny be
an increasing sequence of naturals. If rng s4 C dom A, then (h - s4) - N1 =
h - (84 . Nl).

(11) Let h be a partial function from the carrier of S to R, s4 be a sequence of
S, and Ni be an increasing sequence of naturals. If rng s4 C dom h, then
(h-84)-N1 Zh-(84-N1).

(12) Let h be a partial function from S to T' and sa, s3 be sequences of S. If
rng so C dom h and s3 is a subsequence of so, then h - s3 is a subsequence
of h- ss.

(13) Let h be a partial function from the carrier of S to R and sz, s3 be
sequences of S. If rng so C dom h and s3 is a subsequence of so, then h - s3
is a subsequence of h - so.

(14) f is continuous in ¢ if and only if the following conditions are satisfied:
(i)  xo € dom f, and
(ii) for every r such that 0 < r there exists s such that 0 < s and for every
x1 such that x; € dom f and ||z — x| < s holds || fo; — faoll <7
(15) Let f be a partial function from the carrier of S to R. Then f is conti-
nuous in zg if and only if the following conditions are satisfied:
(i) xp € dom f, and
(ii)  for every r such that 0 < r there exists s such that 0 < s and for every
x1 such that x; € dom f and ||x1 — x| < s holds |fu, — fa,| < 7
(16) Let given f, xg. Then f is continuous in z¢ if and only if the following
conditions are satisfied:
(i) =z € dom f, and
(ii) for every neighbourhood Nj of f;, there exists a neighbourhood N of x
such that for every z; such that z; € dom f and x; € N holds f,, € N».
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(17) Let given f, xg. Then f is continuous in z¢ if and only if the following

conditions are satisfied:

(i) o € dom f, and

(ii)  for every neighbourhood Ny of f;, there exists a neighbourhood N of
g such that f°N C Ns.

(18) If zp € dom f and there exists a neighbourhood N of zy such that
dom f NN = {z¢}, then f is continuous in xo.

(19) Let hy, ho be partial functions from S to T' and s4 be a sequence of S.
If rngsqg € dom hy N dom hy, then (hy + ha) - S4 = hy - sS4 + ha - s4 and
(hl—hg)'84:h1‘84—h2~84.

(20) Let h be a partial function from S to T', s4 be a sequence of S, and r be
a real number. If rng s4 C dom h, then (rh)-sqg =17 (h-s4).

(21) Let h be a partial function from S to T and s4 be a sequence of S. If
rng s4 C dom h, then ||h - sq|| = ||h]| - s4 and —h - s4 = (—h) - s4.

(22) If f; is continuous in zy and fo is continuous in xg, then f; + fo is
continuous in zg and fi; — f5 is continuous in xg.

(23) If f is continuous in zg, then r f is continuous in zo.

(24) If f is continuous in g, then || f|| is continuous in 29 and — f is continuous
in xg.

Let us consider S, T" and let us consider f, X. We say that f is continuous
on X if and only if:
(Def. 11) X C dom f and for every z( such that xg € X holds f[X is continuous
in xg.
Let us consider S, let f be a partial function from the carrier of S to R, and
let us consider X. We say that f is continuous on X if and only if:
(Def. 12) X C dom f and for every z( such that xo € X holds f[X is continuous
in xg.
One can prove the following propositions:

(25) Let given X, f. Then f is continuous on X if and only if the following

conditions are satisfied:

(i) X Cdom f, and

(ii)  for every s; such that rngs; C X and s is convergent and lims; € X
holds f - s; is convergent and fiims, = im(f - s1).

(26) f is continuous on X if and only if the following conditions are satisfied:

(i) X Cdom f, and
(ii) for all zg, r such that 29 € X and 0 < r there exists s such that 0 < s
and for every z1 such that 1 € X and ||z1 —x¢|| < s holds || fz, — fzoll < 7.
(27) Let f be a partial function from the carrier of S to R. Then f is conti-

nuous on X if and only if the following conditions are satisfied:
(i) X Cdom f, and
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(ii)  for all zg, r such that zp € X and 0 < r there exists s such that 0 < s
and for every z1 such that 1 € X and ||x; —z¢|| < s holds |fz, — fzo] < 7.

(28)  f is continuous on X iff f[X is continuous on X.

(29) Let f be a partial function from the carrier of S to R. Then f is conti-
nuous on X if and only if f[X is continuous on X.

(30) If f is continuous on X and X; C X, then f is continuous on Xj.

(31) If zyp € dom f, then f is continuous on {xg}.

(32) For all X, fi1, f2 such that f; is continuous on X and f is continuous
on X holds fi; 4+ f2 is continuous on X and f; — f5 is continuous on X.

(33) Let given X, X1, f1, fo. Suppose fi is continuous on X and fs is continu-
ous on Xi. Then fi + f5 is continuous on X N X7 and f; — fs is continuous
on X NXj.

(34) For all r, X, f such that f is continuous on X holds r f is continuous
on X.

(35) If f is continuous on X, then | f|| is continuous on X and —f is conti-
nuous on X.

(36) Suppose f is total and for all z1, xo holds fy,+z, = fz, + fa, and there
exists ¢ such that f is continuous in zg. Then f is continuous on the
carrier of S.

(37) For every f such that dom f is compact and f is continuous on dom f
holds rng f is compact.

(38) Let f be a partial function from the carrier of S to R. If dom f is compact
and f is continuous on dom f, then rng f is compact.

(39) If Y C dom f and Y is compact and f is continuous on Y, then f°Y is
compact.

(40) Let f be a partial function from the carrier of S to R. Suppose dom f # ()
and dom f is compact and f is continuous on dom f. Then there exist
x1, T2 such that 1 € dom f and 2 € dom f and f;, = suprng f and
fz, = infrng f.

(41) Let given f. Suppose dom f # () and dom f is compact and f is con-
tinuous on dom f. Then there exist x1, xo such that xy € dom f and
72 € dom f and [f[le, = suprng|| || and || fla, = inf g f].

(42) [IfITX = [If1X].

(43) Let given f, Y. Suppose Y # () and Y C dom f and Y is compact and f
is continuous on Y. Then there exist x1, x5 such that z1 € Y and 25 € Y
and || fllz, = sup([[f[°Y) and || f|[z, = inf([|f][°Y).

(44) Let f be a partial function from the carrier of S to R and given Y.
Suppose Y # fand Y C dom f and Y is compact and f is continuous on Y.
Then there exist z1, x2 such that 1 € Y and z3 € Y and f;, = sup(f°Y)

273
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and f,, = inf(f°Y).
Let us consider S, T" and let us consider X, f. We say that f is Lipschitzian
on X if and only if:
(Def. 13) X C dom f and there exists r such that 0 < r and for all x;, xo such
that 1 € X and x9 € X holds || fo, — fo|| <7 - [|z1 — 22|
Let us consider S, let us consider X, and let f be a partial function from
the carrier of S to R. We say that f is Lipschitzian on X if and only if:
(Def. 14) X C dom f and there exists r such that 0 < r and for all x;, xo such
that 1 € X and x9 € X holds |fz, — fo,| <7 |lx1 — 22|
The following propositions are true:
(45) If f is Lipschitzian on X and X; C X, then f is Lipschitzian on Xj.
(46) If f; is Lipschitzian on X and fo is Lipschitzian on X, then f; + f3 is
Lipschitzian on X N Xj.
(47) If f; is Lipschitzian on X and fo is Lipschitzian on X, then f; — fy is
Lipschitzian on X N X;.
(48) If f is Lipschitzian on X, then p f is Lipschitzian on X.
(49) If f is Lipschitzian on X, then —f is Lipschitzian on X and |f|| is
Lipschitzian on X.
(50) If X C dom f and f is a constant on X, then f is Lipschitzian on X.
(51) idy is Lipschitzian on Y.
(52) If f is Lipschitzian on X, then f is continuous on X.
(53) Let f be a partial function from the carrier of S to R. If f is Lipschitzian
on X, then f is continuous on X.
(54) For every f such that there exists a point 7 of T such that rng f = {r}
holds f is continuous on dom f.
(55) If X Cdom f and f is a constant on X, then f is continuous on X.
(56) For every partial function f from S to S such that for every xo such that
xg € dom f holds f;, = z¢ holds f is continuous on dom f.
(67) For every partial function f from S to S such that f = idqom ¢ holds f
is continuous on dom f.
(58) For every partial function f from S to S such that ¥ C dom f and
f1Y =idy holds f is continuous on Y.

(59) Let f be a partial function from S to S, r be a real number, and p be a
point of S. Suppose X C dom f and for every xg such that zo € X holds
fzo =720+ p. Then f is continuous on X.

(60) Let f be a partial function from the carrier of S to R. If for every z
such that zp € dom f holds fz, = ||zo||, then f is continuous on dom f.

(61) Let f be a partial function from the carrier of S to R. If X C dom f and
for every zg such that xp € X holds f;, = ||zo]|, then f is continuous on X.
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The notation and terminology used in this paper are introduced in the following
articles: [15], [18], [19], [1], [20], [3], [2], [7], [14], [16], [9], [13], [4], [17], [6], [5],
11, [21], [10], [12], and [8].

1. THE UNIFORM CONTINUITY OF FUNCTIONS ON NORMED LINEAR SPACES

For simplicity, we follow the rules: X, X are sets, s, r, p are real numbers,
S, T are real normed spaces, f, fi, fo are partial functions from S to T, x1, x2
are points of S, and Y is a subset of S.
Let us consider X, S, T and let us consider f. We say that f is uniformly
continuous on X if and only if the conditions (Def. 1) are satisfied.
(Def. 1)(i) X C dom f, and
(ii)  for every r such that 0 < r there exists s such that 0 < s and for all z1,
x2 such that 1 € X and x5 € X and ||z1 — z2|| < s holds || fz, — fa, || <7
Let us consider X, S and let f be a partial function from the carrier of S

to R. We say that f is uniformly continuous on X if and only if the conditions
(Def. 2) are satisfied.

!The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-
versity, Japan.
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(Def. 2)(i) X C dom f, and
(ii) for every r such that 0 < r there exists s such that 0 < s and for all x,
x9 such that x1 € X and x5 € X and ||x; — x2|| < s holds |fz, — fao| <7
The following propositions are true:

(1) If f is uniformly continuous on X and X; C X, then f is uniformly
continuous on Xj.

(2) If f1 is uniformly continuous on X and fy is uniformly continuous on
X1, then fi + f2 is uniformly continuous on X N X;.

(3) If f1 is uniformly continuous on X and fy is uniformly continuous on
X1, then f; — fo is uniformly continuous on X N X;.

(4) If f is uniformly continuous on X, then p f is uniformly continuous on

X.

(5) If f is uniformly continuous on X, then —f is uniformly continuous on
X.

(6) If f is uniformly continuous on X, then | f|| is uniformly continuous on
X.

(7) If f is uniformly continuous on X, then f is continuous on X.

(8) Let f be a partial function from the carrier of S to R. If f is uniformly
continuous on X, then f is continuous on X.

(9) If f is Lipschitzian on X, then f is uniformly continuous on X.

(10) For all f, Y such that Y is compact and f is continuous on Y holds f is
uniformly continuous on Y.

(11) If Y C dom f and Y is compact and f is uniformly continuous on Y,
then f°Y is compact.

(12) Let f be a partial function from the carrier of S to R and given Y.
Suppose Y # () and Y C dom f and Y is compact and f is uniformly
continuous on Y. Then there exist x1, 29 such that 1 € Y and zo € Y
and f,, =sup(f°Y) and f;, = inf(f°Y).

(13) If X C dom f and f is a constant on X, then f is uniformly continuous
on X.

2. THE CONTRACTION MAPPING PRINCIPLE ON NORMED LINEAR SPACES

Let M be a real Banach space. A function from the carrier of M into the
carrier of M is said to be a contraction of M if:

(Def. 3) There exists a real number L such that 0 < L and L < 1 and for all
points z, y of M holds ||it(x) —it(y)| < L - ||z — y]|.

The following two propositions are true:
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(14) Let X be a real Banach space and f be a function from X into X.
Suppose f is a contraction of X. Then there exists a point xz3 of X such
that f(x3) = x3 and for every point x of X such that f(z) = = holds
Ir3 = X.

(15) Let X be areal Banach space and f be a function from X into X. Given
a natural number ng such that f"° is a contraction of X. Then there exists
a point z3 of X such that f(x3) = x3 and for every point = of X such that
f(x) =z holds x3 = x.
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The articles [22], [24], [25], [5], [6], [3], [2], [21], [11], [1], [23], [4], [15], [16], [17],
[14], [12], [13], [19], [18], [10], [8], [9], [7], and [20] provide the notation and
terminology for this paper.

1. BASIC PROPERTIES OF SEQUENCES OF NORM SPACE

Let X be a non empty complex normed space structure and let s; be a se-
quence of X. The functor (3 5 _,(s1)(c))xen yielding a sequence of X is defined
as follows:

(Def. 1) (>o0_o(s1)(@))wen(0) = s1(0) and for every natural number n holds
(X a=o(s1)(@))ren(n +1) = o—o(s1)(@))ren(n) + s1(n +1).

One can prove the following proposition

(1) Let X be an add-associative right zeroed right complementable non
empty complex normed space structure and s; be a sequence of X. Sup-
pose that for every natural number n holds s;(n) = 0x. Let m be a natural
number. Then (3°0_(s1)(a))wen(m) = 0x.

Let X be a complex normed space and let s; be a sequence of X. We say
that s; is summable if and only if:

(Def. 2) (30 _o(s1)(@))ken is convergent.
Let X be a complex normed space. One can verify that there exists a sequ-
ence of X which is summable.
Let X be a complex normed space and let s1 be a sequence of X. The functor
>~ s1 yields an element of X and is defined by:
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(Def. 3) 3251 =lm((3a—(s1)(e))ren)-

Let X be a complex normed space and let s; be a sequence of X. We say
that s; is norm-summable if and only if:

(Def. 4) ||s1]| is summable.
The following propositions are true:

(2) For every complex normed space X and for every sequence s; of X and
for every natural number m holds 0 < ||s1||(m).

(3) For every complex normed space X and for all elements z, y, z of X
holds ||z —yl| = [|(z — 2) + (z — y) ||

(4) Let X be a complex normed space and s; be a sequence of X. Suppose
s1 is convergent. Let s be a real number. Suppose 0 < s. Then there exists
a natural number n such that for every natural number m if n < m, then
[s1(m) —s1(n)]| <'s.

(5) Let X be a complex normed space and s; be a sequence of X. Then s; is
Cauchy sequence by norm if and only if for every real number p such that

p > 0 there exists a natural number n such that for every natural number
m such that n < m holds ||s1(m) — s1(n)|| < p.

(6) Let X be a complex normed space and s; be a sequence of X. Suppose
that for every natural number n holds s1(n) = Ox. Let m be a natural
number. Then (3"~ |Is1]|(a))wen(m) = 0.

Let X be a complex normed space and let s; be a sequence of X. Let us
observe that s; is constant if and only if:
(Def. 5) There exists an element r of X such that for every natural number n
holds s1(n) =r.

Let X be a complex normed space, let s; be a sequence of X, and let k
be a natural number. The functor s; T k£ yielding a sequence of X is defined as
follows:

(Def. 6) For every natural number n holds (s; T k)(n) = s1(n + k).

Let X be a complex normed space and let s1, so be sequences of X. We say
that s; is a subsequence of ss if and only if:

(Def. 7) There exists an increasing sequence N; of naturals such that s; = so- Nj.
Next we state a number of propositions:

(7) For every complex normed space X and for every sequence s; of X holds
S1 T 0= S1.

(8) For every complex normed space X and for every sequence s; of X and
for all natural numbers k£, m holds s1 TkTm =s1 Tm1Tk.

(9) For every complex normed space X and for every sequence s; of X and
for all natural numbers k, m holds s; Tk Tm = s1 1 (k+m).
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(10) Let X be a complex normed space and s1, s be sequences of X. If s9 is
a subsequence of s; and s; is convergent, then so is convergent.

(11) Let X be a complex normed space and s1, sg be sequences of X. If sg is
a subsequence of s; and s is convergent, then lim s5 = lim s1.

(12) Let X be a complex normed space, s; be a sequence of X, and k be a
natural number. Then s; T k is a subsequence of s;.

(13) Let X be a complex normed space, s, s2 be sequences of X, and k
be a natural number. If s; is convergent, then s; T k is convergent and
lim(s; Tk) =lims;.

(14) Let X be a complex normed space and s1, s2 be sequences of X. Suppose
s1 is convergent and there exists a natural number k such that s; = so T k.
Then s, is convergent.

(15) Let X be a complex normed space and s1, s3 be sequences of X. Suppose
s1 is convergent and there exists a natural number k such that s; = so T k.
Then lim so = lim s1.

(16) For every complex normed space X and for every sequence s; of X such
that s; is constant holds s; is convergent.

(17) Let X be a complex normed space and s; be a sequence of X. If for
every natural number n holds s1(n) = Ox, then s; is norm-summable.

Let X be a complex normed space. Observe that there exists a sequence of
X which is norm-summable.
The following three propositions are true:

(18) Let X be a complex normed space and s be a sequence of X. If s is
summable, then s is convergent and lims = Ox.

(19) For every complex normed space X and for all sequences sz, s4 of X
holds (324 _o(s3)(a))ken + (Xoa—o(54) (@) ren = (3oa—o(s3 + 54) (@) e

(20) For every complex normed space X and for all sequences s3, s4 of X
holds (3250 (s3)(a))wen — (Xao(s4)(@))ren = (Xoa—o(s3 — 54)(@))ren.

Let X be a complex normed space and let s; be a norm-summable sequence
of X. Observe that ||s1]| is summable.

Let X be a complex normed space. One can check that every sequence of X
which is summable is also convergent.

The following two propositions are true:

(21) Let X be a complex normed space and sa, s5 be sequences of X. If s9 is
summable and s5 is summable, then sg+ s5 is summable and » *(sy+s5) =
>822+ ss.

(22) Let X be a complex normed space and s2, s5 be sequences of X. If s9 is
summable and s is summable, then sg — s5 is summable and ) (s2 —s5) =

> 89— ss.
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Let X be a complex normed space and let s9, s5 be summable sequences of
X. One can check that sy + s5 is summable and sy — s5 is summable.
The following propositions are true:

(23) For every complex normed space X and for every sequence s; of X
and for every complex number z holds (35 _ (2 - s1)(@))keny = 2z -
(Xa=o(s1)(a))ren-

(24) Let X be a complex normed space, s; be a summable sequence of X, and
z be a complex number. Then z - s is summable and Y (z-s1) = 2> 1.

Let X be a complex normed space, let z be a complex number, and let s;
be a summable sequence of X. One can check that z - s; is summable.
Next we state two propositions:

(25) Let X be a complex normed space and s, s3 be sequences of X. If for
every natural number n holds s3(n) = s(0), then (35 (s 1 1)(a))ken =
(ZZ:O s(a))ken T 1 — s3.

(26) Let X be a complex normed space and s be a sequence of X. If s is
summable, then for every natural number n holds s T n is summable.

Let X be a complex normed space, let s; be a summable sequence of X, and
let n be a natural number. Observe that s; Tn is summable.
We now state the proposition

(27) Let X be a complex normed space and s; be a sequence of X. Then
(>0 _ollsill(@))ken is upper bounded if and only if s; is norm-summable.

Let X be a complex normed space and let s; be a norm-summable sequence
of X. Note that (3_n_|Is1]/(e))ken is upper bounded.
The following propositions are true:

(28) Let X be a complex Banach space and s; be a sequence of X. Then s;
is summable if and only if for every real number p such that 0 < p there
exists a natural number n such that for every natural number m such that
n < m holds [[(3o5—o(s1)(a))xen(m) — (3oa—o(s1)(@))ren(n)[| < p.

(29) Let X be a complex normed space, s be a sequence of X, and
n, m be natural numbers. If n < m, then |3 h_,s(a))ken(m) —
(Xa=o s(@))ren(n)ll < [(Xa=ollsll(a))wen(m) — (Ca—ollsll () ren(n)l-

(30) For every complex Banach space X and for every sequence s; of X such
that s1 is norm-summable holds s; is summable.

(31) Let X be a complex normed space, r1 be a sequence of real numbers,
and s; be a sequence of X. Suppose r; is summable and there exists a
natural number m such that for every natural number n such that m <n
holds ||s5(n)|| < r1(n). Then s5 is norm-summable.

(32) Let X be a complex normed space and sa, s5 be sequences of X. Suppose
for every natural number n holds 0 < ||s2||(n) and ||s2||(n) < ||s5]|(n) and
s is norm-summable. Then sg is norm-summable and Y ||s2|| < >_||s5]|-
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(33) Let X be a complex normed space and s; be a sequence of X. Suppose
that
(i)  for every natural number n holds ||s1]|(n) > 0, and
(ii)  there exists a natural number m such that for every natural number n
such that n > m holds % > 1.

Then s7 is not norm-summable.

(34) Let X be a complex normed space, s; be a sequence of X, and r; be
a sequence of real numbers. Suppose for every natural number n holds
ri(n) = {/||s1]|(n) and 7 is convergent and limr; < 1. Then s; is norm-
summable.

(35) Let X be a complex normed space, s; be a sequence of X, and r; be a
sequence of real numbers. Suppose that
(i)  for every natural number n holds r1(n) = {/||s1|[(n), and
(ii)  there exists a natural number m such that for every natural number n
such that m < n holds r1(n) > 1.
Then ||s1|| is not summable.

(36) Let X be a complex normed space, s; be a sequence of X, and r; be
a sequence of real numbers. Suppose for every natural number n holds
ri(n) = {/||s1||/(n) and 7y is convergent and limr; > 1. Then s; is not
norm-summable.

(37) Let X be a complex normed space, s; be a sequence of X, and r; be
a sequence of real numbers. Suppose ||s1]| is non-increasing and for every
natural number n holds r1(n) = 2™ - ||s1||(2"). Then s; is norm-summable
if and only if r is summable.

(38) Let X be a complex normed space, s; be a sequence of X, and p be a
real number. Suppose p > 1 and for every natural number n such that
n > 1 holds [s1[|(n) = 5. Then s; is norm-summable.

(39) Let X be a complex normed space, s; be a sequence of X, and p be a
real number. Suppose p < 1 and for every natural number n such that
n > 1 holds [|s1[|(n) = 5. Then s; is not norm-summable.

(40) Let X be a complex normed space, s; be a sequence of X, and r; be
a sequence of real numbers. Suppose for every natural number n holds
si(n) # 0x and r1(n) = Hsnlsq('i"z:)l) and ry is convergent and limr; < 1.
Then s; is norm-summable.

(41) Let X be a complex normed space and s; be a sequence of X. Suppose
that

(i)  for every natural number n holds s;(n) # Ox, and
(ii)  there exists a natural number m such that for every natural number n
such that n > m holds ls1lln+1) > 1.

lls1li(n)
Then s; is not norm-summable.

285
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Let X be a complex Banach space. One can check that every sequence of X
which is norm-summable is also summable.

2. BASIC PROPERTIES OF SEQUENCE OF BANACH ALGEBRA

The scheme FxNCBCASeq deals with a non empty normed complex algebra
structure A and a unary functor F yielding a point of A, and states that:
There exists a sequence S of A such that for every natural number
n holds S(n) = F(n)
for all values of the parameters.
We now state the proposition

(42) Let X be a complex Banach algebra, x, y, z be elements of X, and a, b

be complex numbers. Then z+y = y+z and (r+y)+2 =2+ (y+2) and

r + 0x = x and there exists an element ¢ of X such that x +¢ = 0x and

(x-y)-z=x-(y-z)and 1Ic-x =2z and Oc - * = 0x and a-0x = Ox and

(—lg)z=—-zandz-lx =zand lx-z=zxzand z-(y+2)=2-y+z-2

and (y+z)-z=y-x+z-zanda-(z-y)=(a-2)-yanda-(x+y) =

a-r4+a-yand (a+bdb)-z=a-x+b-zand (a-b)-z =a-(b-x) and

(a-b)-(x-y)=a-x-(b-y)anda-(z-y) =z-(a-y) and Ox - = Ox and

z-0x =0xandz-(y—2)=z-y—z-zand (y—z2)-x=y-x— 2z and

(x4y)—z=a+(y—2) and (zr—y)+z =z—(y—2) and z—y—2z = x—(y+2)

andz+y = (r—2)+(z+y)and z—y = (r—2)+ (2 —y) and z = (x—y)+y

and x =y — (y — ) and ||z|]| = 0 iff x = Ox and ||a - z|| = |a| - ||z|| and

o+ oll < llall + gl and flz - yl| < [zl - |yl and [[1x] = 1 and X is

complete.

Let X be a non empty normed complex algebra structure, let S be a sequence

of X, and let a be an element of X. The functor a - S yields a sequence of X
and is defined by:

(Def. 8) For every natural number n holds (a - S)(n) =a-S(n).
Let X be a non empty normed complex algebra structure, let S be a sequence
of X, and let a be an element of X. The functor S - a yields a sequence of X
and is defined by:
(Def. 9) For every natural number n holds (S - a)(n) = S(n) - a.
Let X be a non empty normed complex algebra structure and let sg, s5 be
sequences of X. The functor s - s5 yielding a sequence of X is defined by:
(Def. 10) For every natural number n holds (s2 - s5)(n) = sa(n) - s5(n).
Let X be a complex Banach algebra and let = be an element of X. Let
us assume that x is invertible. The functor z~! yields an element of X and is
defined as follows:

(Def. 11) z-2'=1yandaz ' -z =1x.
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Let X be a complex Banach algebra and let z be an element of X. The
functor (2").en yielding a sequence of X is defined as follows:

(Def. 12)  (2")ken(0) = 1x and for every natural number n holds (2").en(n+1) =
(2")ken(n) - z.

Let X be a complex Banach algebra, let z be an element of X, and let n be

a natural number. The functor zg yielding an element of X is defined as follows:

(Def. 13) 25 = (2")ken(n).
The following propositions are true:
(43) For every complex Banach algebra X and for every element z of X holds
ZI% =1x.
(44) For every complex Banach algebra X and for every element z of X such
that ||z|| < 1 holds (2").en is summable and norm-summable.

(45) Let X be a complex Banach algebra and z be a point of X. If ||[1x —z|| <
1, then ((1x —)")ken is summable and ((1x —2)").en is norm-summable.

(46) For every complex Banach algebra X and for every point x of X such
that ||[1x — || < 1 holds z is invertible and 27 = Y ((1x — 2)")xen)-
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For simplicity, we adopt the following convention: X denotes a complex
Banach algebra, w, z, z1, zo denote elements of X, k, I, m, n denote natural
numbers, s1, S92, $3, s, s’ denote sequences of X, and r; denotes a sequence of
real numbers.

Let X be a non empty normed complex algebra structure and let x, y be
elements of X. We say that x, y are commutative if and only if:

(Def. 1) z-y=y-=z.
Let us note that the predicate x, y are commutative is symmetric.
One can prove the following propositions:
(1) If s9 is convergent and sz is convergent and lim(sy — s3) = Ox, then
lim sy = lim s3.

(2) For every z such that for every natural number n holds s(n) = z holds

lims = z.
(3) If s is convergent and s’ is convergent, then s - s’ is convergent.
(4) If s is convergent, then z - s is convergent.
(5) If s is convergent, then s - z is convergent.
(6) If s is convergent, then lim(z-s) = z-lims.
(7) If s is convergent, then lim(s-z) =lims - z.
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(8) 1If s is convergent and s’ is convergent, then lim(s - s’') = lim s - lim s’

(9) (O a—o(zs)(@))ren = 2+ (Xa=o(s1)(@))ren and (3og_o(s1-2)(@))ren =
(Xa—o(s1)(@))ren - 2.
(10) (I a=o(s1)(a))ren(k) |l < (Xa—ollsill(a))xen(k).
(11) If for every n such that n < m holds sa2(n) = s3(n), then
(Xa=o(s2)(@))ren(m) = (3oq—o(s3)(@))wen(m).
(12) 1If for every n holds [|s1(n)|| < r1(n) and 7 is convergent and limr, = 0,
then s; is convergent and lim s; = Ox.

Let us consider X, z. The functor z ExpSeq yields a sequence of X and is
defined as follows:

(Def. 2) For every n holds z ExpSeq(n) = %C - 28
The scheme FxNormSpace CASE deals with a non empty complex Banach
algebra A and a binary functor F yielding a point of A, and states that:
For every k there exists a sequence s1 of A such that for every n
holds if n < k, then s1(n) = F(k,n) and if n > k, then s1(n) = 04
for all values of the parameters.
Let us consider X, s1. The functor Shift s; yielding a sequence of X is defined
by:
(Def. 3) (Shifts;)(0) = Ox and for every natural number k£ holds (Shift s;)(k +
1) = s1(k).
Let us consider n, X, z, w. The functor Expan(n, z,w) yielding a sequence
of X is defined by:

(Def. 4) For every natural number k holds if k < n, then (Expan(n,z,w))(k) =
(Coef n) (k) - 2& - wg_lk and if n < k, then (Expan(n, z,w))(k) = 0x.

Let us consider n, X, z, w. The functor Expan_e(n, z,w) yields a sequence
of X and is defined as follows:

(Def. 5) For every natural number £ holds if k£ < n, then (Expan_e(n, z,w))(k) =
(Coef_en)(k) - 2& - wg_lk and if n < k, then (Expan_e(n, z,w))(k) = Ox.

Let us consider n, X, z, w. The functor Alfa(n, z, w) yielding a sequence of
X is defined by:

(Def. 6) For every natural number £ holds if £ < n, then (Alfa(n,z,w))(k) =
zExpSeq(k) - (>_n_,wExpSeq(a))gen(n —' k) and if n < k, then
(Alfa(n, z,w))(k) = 0x.

Let us consider X, z, w, n. The functor Conj(n, z, w) yields a sequence of X
and is defined as follows:

(Def. 7) For every natural number k& holds if k¥ < n, then (Conj(n,z,w))(k) =
zExpSeq(k) - (300 w ExpSeq(a))wen(n) — (35— w ExpSeq(a)) wen(n —'
k)) and if n < k, then (Conj(n, z,w))(k) = 0x.

Next we state several propositions:
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(13) zExpSeq(n+1) = m -z - z ExpSeq(n) and z ExpSeq(0) = 1x and
Iz ExpSeq(n)[| < ||z[| ExpSeq(n).

(14) If 0 < k, then (Shift s1)(k) = s1(k —' 1).

(15)  (azo(s1)(@))ren(k) = (3260 (Shift s1)(c))nen(k) + s1(k).

(16) For all z, w such that z, w are commutative holds (z + w)f =
(Xa=o(Expan(n, z, w))(@))ren(n).

(17) Expan_e(n,z,w) = % - Expan(n, z, w).

(18) For all z, w such that z, w are commutative holds % (2w =
(Xa—o(Expan_e(n, z,w))(a))ren(n).

(19) 0x ExpSeq is norm-summable and ) (0x ExpSeq) = 1x.

Let us consider X and let z be an element of X. One can check that z ExpSeq
is norm-summable.
We now state a number of propositions:

(20) zExpSeq(0) =1x and (Expan(0, z,w))(0) = 1x.

(21) If I < k, then (Alfa(k + 1,2,w))(l) = (Alfa(k, z,w))(l) + (Expan_e(k +
1, z,w))(1).

(22) (Xa—o(Alfa(k+1, 2, w))(c))ren(k) = (Lo—o(Alfalk, z,w)) () ren (k) +
(Xa—o(Expan_e(k + 1, z,w))(a))xen (k).

(23) zExpSeq(k) = (Expan_e(k, z,w))(k).

(24) For all z, w such that z, w are commutative holds (3> h_,z +
w ExpSeq(a))ren(n) = (q—o(Alfa(n, 2, w))(a))ren(n).

(25) For all z, w such that z, w are commutative holds
(X a=o 2 ExpSeq(a))sen(k) - (3q—o w ExpSeq(a))sen(k) — (3 a— 2+
w ExpSeq(a))ren(k) = (2q=o(Conj(k, 2, w))(e))xen (k).

(26) 0 < |[|z[| ExpSeq(n).

(27) (36— 2 ExpSeq(a))sen (k)| < (3o6—ollzl| ExpSeq(a))sen(k) and
(Xa—ollzll ExpSeq(e))nen(k) < 3_(||2]| ExpSeq) and
1> a=0 2 ExpSeq(a))sen (k)| < 32(||2]| ExpSeq).

(28) 1< ¥2(]12] ExpSeq).

(29)  |(3C6=ollzll ExpSeq(a))sen(n)] = (3-6ollzll ExpSeq(a))ren(n) and if
n < m, then |(320_oll2]l ExpSeq(a))wen(m) —(3oq—ollzll ExpSeq(a)) wen(n)]
= (Xazollzll ExpSeq(a))wen(m) — (3o ll2[| ExpSeq(ar)) wen(n).

(30)  [(Xoa=ollConj(k, z, w)|(a))ren(n)| = (a=olIConj(k, 2, w)[[(@))xen(n).
(31) For every real number p such that p > 0 there exists n such that for
every k such that n < k holds |(3 4 _||Conj(k, z, w)||(a))ken(k)| < p.

(32) For every s; such that for every k holds si(k) =
(>0 _o(Conj(k, z,w)) () ken(k) holds s is convergent and lim s; = Ox.

Let us consider X. The functor exp X yields a function from the carrier of
X into the carrier of X and is defined by:
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(Def. 8) For every element z of the carrier of X holds (exp X )(z) = > (z ExpSeq).
Let us consider X, z. The functor exp z yielding an element of X is defined
as follows:
(Def. 9) expz = (exp X)(z).
The following propositions are true:
(33) For every z holds exp z = ) (z ExpSeq).
(34) Let given z1, z2. Suppose z1, z2 are commutative. Then exp(z; + 22) =
exp z1 -exp z2 and exp(z2+21) = exp z2-exp 21 and exp(z1 +22) = exp(z2+
z1) and exp z1, exp z2 are commutative.

(35) Forall z;, zo such that z;, 2o are commutative holds z1-exp zo = exp 22-21.
(36) eXp(Ox) = 1)(.

(37) expz-exp(—z) =1y and exp(—=z) -expz = 1x.

(38) expz is invertible and (expz)™! = exp(—z) and exp(—z) is invertible

and (exp(—2))~! = exp z.

39 For every 2 and for all complex numbers S, t holds s - z, t -z are commu-
p
tative.

(40) Let given z and s, ¢ be complex numbers. Then exp(s - z) - exp(t - 2)
exp((s+t)-z) and exp(t-z)-exp(s-z) = exp((t+s)-z) and exp((s+t)-2)
exp((t+ s) - z) and exp(s - z), exp(t - z) are commutative.
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The notation and terminology used in this paper have been introduced in the
following articles: [20], [6], (23], [1], [17], [24], [4], [5], [3], [2], (19], [11], [16], [22],
[21], [18], [14], (8], [7], [15], [13], [9], [10], and [12].

1. CONVEX SUBSPACES OF &f

In this paper n denotes a natural number and a, b denote real numbers.

Let us consider n. One can verify that there exists a subset of £} which is
non empty and convex.

Let n be a natural number and let 7" be a subspace of £1. We say that T is
convex if and only if:

(Def. 1) Qg is a convex subset of £F.

Let n be a natural number. Note that every non empty subspace of &} which
is convex is also arcwise connected.
Let n be a natural number. One can verify that there exists a subspace of
T which is strict, non empty, and convex.
The following proposition is true

!The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-
versity, Japan. This work has been partially supported by KBN grant 4 T11C 039 24.
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(1) Let X be a non empty topological space, Y be a non empty subspace of
X, x1, 9 be points of X, y1, yo be points of Y, and f be a path from y;
to yo. Suppose x1 = y1 and o = y2 and y1, Y2 are connected. Then f is a
path from z1 to xo.

Let n be a natural number, let 7' be a non empty convex subspace of
&L, let a, b be points of T', and let P, @) be paths from a to b. The functor
ConvexHomotopy (P, Q) yielding a map from [ I, I] into 7" is defined as follows:

(Def. 2)  For all elements s, t of I and for all points a1, by of £F such that a; = P(s)
and by = Q(s) holds (ConvexHomotopy (P, @Q))(s, t) = (1 —t) -a; +t- by.

Next we state the proposition

(2) Let T be a non empty convex subspace of £}, a, b be points of T', and
P, Q be paths from a to b. Then P, () are homotopic.

Let n be a natural number, let T' be a non empty convex subspace of £F, let a,
b be points of T', and let P, @ be paths from a to b. Then ConvexHomotopy (P, Q)
is a homotopy between P and Q.

Let n be a natural number, let T be a non empty convex subspace of £, let
a, b be points of T', and let P, () be paths from a to b. Note that every homotopy
between P and () is continuous.

We now state the proposition

(3) Let T be a non empty convex subspace of £, a be a point of T, and C

be a loop of a. Then the carrier of 71(T,a) = {[C]EqRel(T@)}.

Let n be a natural number, let T" be a non empty convex subspace of ¥,
and let a be a point of T'. Observe that 71(T, a) is trivial.

2. CONVEX SUBSPACES OF R!

We now state the proposition

(4) Proj(l[al],1) = a.

One can verify that every subspace of R! is real-membered.
Next we state three propositions:

(5) If @ < b, then [a,b] = {(1 —1)-a+ - b;l ranges over real numbers:
0<I AN L1}

(6) Let F be a map from [R!, T] into R'. Suppose that for every point z
of R and for every point i of I holds F(x, i) = (1 — i) -x. Then F is
continuous.

(7) Let F be a map from | R, T] into R. Suppose that for every point z of
R and for every point i of I holds F(x, i) =i -z. Then F is continuous.

Let P be a subset of R1. We say that P is convex if and only if:
(Def. 3) For all points a, b of R! such that a € P and b € P holds [a,b] C P.
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One can check that there exists a subset of R! which is non empty and
convex and every subset of R! which is empty is also convex.
We now state four propositions:

(8) [a,b] is a convex subset of RY.
I
(10) [a,b[ is a convex subset of RY.
(11) ]

Let T be a subspace of R!. We say that 7T is convex if and only if:
(Def. 4) Qg is a convex subset of RL.

Let us note that there exists a subspace of R! which is strict, non empty,

a,b[ is a convex subset of RY.

a,b] is a convex subset of RL.

and convex.
R! is a strict convex subspace of RL.
The following proposition is true

(12) For every non empty convex subspace T of R! and for all points a, b of
T holds [a, b] C the carrier of T.

Let us note that every non empty subspace of R which is convex is also
arcwise connected.
One can prove the following propositions:

(13) If a < b, then [a, b1 is convex.
(14) T is convex.
(15) If a <b, then [a, b]T is arcwise connected.

Let T be a non empty convex subspace of R1, let a, b be points of T, and let
P, @ be paths from a to b. The functor R1Homotopy(P, Q) yields a map from
I, I into T and is defined by:
(Def. 5) For all elements s, t of I holds (R1Homotopy(P,Q))(s, t) = (1 —t) -
P(s)+t-Q(s).
Next we state the proposition

(16) Let T be a non empty convex subspace of R, a, b be points of T, and
P, Q be paths from a to b. Then P, () are homotopic.

Let T be a non empty convex subspace of R, let a, b be points of T, and
let P, @ be paths from a to b. Then R1Homotopy (P, @) is a homotopy between
P and Q.

Let T be a non empty convex subspace of R, let a, b be points of T, and
let P, Q be paths from a to b. Note that every homotopy between P and @ is
continuous.

The following proposition is true

(17) Let T be a non empty convex subspace of R!, a be a point of T, and C
be a loop of a. Then the carrier of m1 (T, a) = {[Clgqrei(r,)}-
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Let T be a non empty convex subspace of R! and let a be a point of 7.
Observe that w1 (7, a) is trivial.
One can prove the following four propositions:
(18) If a < b, then for all points z, y of [a, b]r and for all paths P, @ from x
to y holds P, @ are homotopic.
(19) If a < b, then for every point = of [a, bj7 and for every loop C' of x holds
the carrier of m([a, b1, ) = {[Clgqrel((a, bjr.2) -
(20) For all points z, y of I and for all paths P, @ from z to y holds P, Q
are homotopic.

(21) For every point x of I and for every loop C of = holds the carrier of
(L z) = {[C]EqRel(]Lz)}'
Let x be a point of I. Observe that 7 (L, z) is trivial.
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1. PRELIMINARIES

For simplicity, we follow the rules: n denotes a natural number, a, b, r denote
real numbers, z, y, z denote points of £}, and e denotes a point of £".

The following propositions are true:

1) z—y—z=x—2—y.

(2) Ifx+y==x+z theny=z.

(3) If n is non empty, then x # = + 1.REALn.
(4)

4) For every set x such that z = (1 —7r)-y+r-zholdsx =y iff r =0 or

y=zandx=ziffr=1ory==z.
(5) For every finite sequence f of elements of R holds |f|? = > 2f.

(6) For every non empty metric space M and for all points z1, 29, 23 of M
such that z; # 22 and z; € Ball(z3,7) and z9 € Ball(z3, ) holds r > 0.

!The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-
versity, Japan. This work has been partially supported by KBN grant 4 T11C 039 24.
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2. SUBSETS OF &

Let n be a natural number, let x be a point of £}, and let r be a real number.
The functor Ball(z, ) yields a subset of £ and is defined by:

(Def. 1) Ball(z,r) = {p; p ranges over points of EL: |p — x| < r}.

The functor Ball(z,) yielding a subset of £ is defined by:
(Def. 2) Ball(z,r) = {p; p ranges over points of EL: [p — z| < r}.

The functor Sphere(z, ) yielding a subset of £} is defined as follows:
(Def. 3) Sphere(x,r) = {p; p ranges over points of E¢: [p — z| = r}.

We now state a number of propositions:

J

y € Ball(z,r) iff |y — x| < r.
y € Ball(z,r) iff |y — 2| <.

~—~~ ~~
O 0o

y € Sphere(z,r) iff |y — x| =r.

If y € Ball(Ogn,7), then |y| <r.

If y € Ball(Ogz, 7), then |y| <.

If y € Sphere((0Ogzn), ), then |y| =r.

If x = e, then Ball(e, ) = Ball(z, r).

If 2 = e, then Ball(e,r) = Ball(z, r).

If x = e, then Sphere(e, r) = Sphere(z, r).
Ball(z,r) C Ball(xz, 7).

Sphere(z,r) C Ball(x, 7).

Ball(z, r) U Sphere(z,r) = Ball(z, r).

Ball(z, ) misses Sphere(z,r).

e e
N = O

— = = ==
N O Ot W
N e e e e e e e e S N N N

AAAAA,_\A/_\,_\A
—_

—_
Ne)

Let us consider n, x and let 7 be a non positive real number. One can check
that Ball(z,r) is empty.
Let us consider n, x and let r be a positive real number. Note that Ball(x,r)
is non empty.
One can prove the following propositions:
(20) If Ball(z,r) is non empty, then r > 0.
(21) If Ball(z,r) is empty, then r < 0.
Let us consider n, x and let » be a negative real number. Observe that
Ball(z,r) is empty.
Let us consider n, x and let r be a non negative real number. Observe that
Ball(z,7) is non empty.
The following three propositions are true:
(22) If Ball(z,r) is non empty, then r > 0.
(23) 1If Ball(z,r) is empty, then r < 0.
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(24) fa+b=1and |a|+|b) =1 and b # 0 and z € Ball(z,r) and y €
Ball(z,7), then a-x + b -y € Ball(z,r).
Let us consider n, z, . One can check the following observations:
* Ball(x,r) is open and Bounded,
% Ball(z,r) is closed and Bounded, and
* Sphere(x,r) is closed and Bounded.
Let us consider n, z, r. Observe that Ball(x,r) is convex and Ball(z,7) is
convex.
Let n be a natural number and let f be a map from &7 into £F. We say that
f is homogeneous if and only if:
(Def. 4)  For every real number r and for every point = of £F holds f(r-x) = r- f(x).
We say that f is additive if and only if:
(Def. 5) For all points x, y of £} holds f(x +y) = f(x) + f(y).
Let us consider n. One can verify that (£F) —— Ogn is homogeneous and
additive.
Let us consider n. Observe that there exists a map from &7 into £} which
is homogeneous, additive, and continuous.
Let a, ¢ be real numbers. One can check that AffineMap(a, 0, ¢,0) is homo-
geneous and additive.
One can prove the following proposition
(25) For every homogeneous additive map f from £ into £} and for every
convex subset X of £} holds f°X is convex.
In the sequel p, ¢ are points of £F.
Let n be a natural number and let p, ¢ be points of £F. The functor HL(p, q)
yields a subset of £} and is defined by:
(Def. 6) HL(p,q) = {(1 —1)-p+1-¢;1 ranges over real numbers: 0 < [}.
One can prove the following proposition
(26) For every set x holds = € HL(p, q) iff there exists a real number [ such
that c =(1—1)-p+1-gand 0 <.
Let us consider n, p, ¢. One can verify that HL(p, ¢) is non empty.
The following propositions are true:

27) p e HL(p,q).
28) ¢ € HL(p,q).
29) HL(p,p) = {p}.

If x € HL(p, ¢), then HL(p, z) C HL(p, q).
31) If x € HL(p, q) and x # p, then HL(p, q) = HL(p, x).

32) L(p,q) € HL(p,q).
Let us consider n, p, q. Note that HL(p, ¢) is convex.

~— — — ~— ~— ~—
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One can prove the following propositions:



304 ARTUR KORNILOWICZ AND YASUNARI SHIDAMA

(33) If y € Sphere(z,r) and z € Ball(z, ), then L(y, z) N Sphere(x, r) = {y}.
(34) Ify € Sphere(z,r) and z € Sphere(z, ), then L(y, 2)\{y, z} C Ball(x,r).
(35) If y € Sphere(z,r) and z € Sphere(x,r), then L(y, z) N Sphere(x,r) =
{y, 2}
(36) If y € Sphere(z,r) and z € Sphere(z, ), then HL(y, z) N Sphere(z,r) =
{y,2}.
(37) Ify # z and y € Ball(z,r), then there exists a point e of £ such that
{e} = HL(y, #) N Sphere(z, ).
(38) If y # z and y € Sphere(x,r) and z € Ball(z,r), then there exists a
point e of £ such that e # y and {y, e} = HL(y, z) N Sphere(z, r).
Let us consider n, x and let » be a negative real number. Observe that
Sphere(x, r) is empty.
Let n be a non empty natural number, let = be a point of £}, and let r be
a non negative real number. Observe that Sphere(z,r) is non empty.
Next we state two propositions:
(39) If Sphere(z,r) is non empty, then r > 0.
(40) If n is non empty and Sphere(z,r) is empty, then r < 0.

3. SUBSETS OF &2

In the sequel s, t are points of 8%.
The following propositions are true:
(41) (a-s+b-t)y =a-s1+0b-t;.
(42) (a-s+b-t)g=a-s2+b-ta.
(43) t € Circle(a,b,r) iff |t — [a,b]| = .
(44) t € ClosedInsideOfCircle(a, b, r) iff |t — [a, b]| < r.
(45) t € InsideOfCircle(a, b, r) iff |t — [a, b]| < 7.
Let a, b be real numbers and let r be a positive real number. Observe that
InsideOfCircle(a, b, r) is non empty.
Let a, b be real numbers and let r be a non negative real number. Observe
that ClosedInsideOfCircle(a, b, ) is non empty.
We now state a number of propositions:
(46) Circle(a,b,r) C ClosedInsideOfCircle(a, b, r).

(47) For every point z of £? such that 2 = [a,b] holds Ball(z,r) =
ClosedInsideOfCircle(a, b, r).
(48) TFor every point x of £ such that # = [a,b] holds Ball(z,r) =

InsideOfCircle(a, b, ).
(49) For every point z of £2 such that z = [a,b] holds Sphere(x,r) =
Circle(a,b,r).
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Ball([a, b], 7) = InsideOfCircle(a, b, 7).
Ball([a, b],r) = ClosedInsideOfCircle(a, b, ).
Sphere([a, b], ) = Circle(a, b, r).
InsideOfCircle(a, b, ) C ClosedInsideOfCircle(a, b, ).
InsideOfCircle(a, b, r) misses Circle(a,b,r).
InsideOfCircle(a, b, ) U Circle(a, b, ) = ClosedInsideOfCircle(a, b, 7).
If s € Sphere((0gz ), 7), then (51)% + (s2)% = r2.
If s # t and s € ClosedlnsideOfCircle(a,b,7) and t €
ClosedInsideOfCircle(a, b, ), then r > 0.
(58) If s #t and s € InsideOfCircle(a, b, ), then there exists a point e of £2
such that {e} = HL(s,t) N Circle(a, b, r).
(59) If s € Circle(a,b,r) and ¢t € InsideOfCircle(a,b,r), then L(s,t) N
Circle(a, b,r) = {s}.
(60) If s € Circle(a,b,r) and t € Circle(a,b,r), then L(s,t) \ {s,t} C
InsideOfCircle(a, b, r).
(61) If s € Circle(a,b,r) and t € Circle(a, b, r), then L(s,t) N Circle(a, b,r) =
{s,t}.
(62) If s € Circle(a,b,r) and t € Circle(a, b, ), then HL(s, t)NCircle(a, b,r) =
{s,t}.
(63) If s # t and s € Circle(a,b,r) and t € ClosedInsideOfCircle(a, b, r),

then there exists a point e of £% such that e # s and {s,e} = HL(s,t) N
Circle(a, b, r).

Let a, b, r be real numbers. Observe that InsideOfCircle(a, b, r) is convex
and ClosedInsideOfCircle(a, b, r) is convex.
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Magdalena Jastrzebska Adam Grabowski'
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Summary. We formalized some basic properties of the Fibonacci num-
bers using definitions and lemmas from [7] and [23], e.g. Cassini’s and Catalan’s
identities. We also showed the connections between Fibonacci numbers and Py-
thagorean triples as defined in [31]. The main result of this article is a proof of
Carmichael’s Theorem on prime divisors of prime-generated Fibonacci numbers.
According to it, if we look at the prime factors of a Fibonacci number generated
by a prime number, none of them have appeared as a factor in any earlier Fi-
bonacci number. We plan to develop the full proof of the Carmichael Theorem
following [33].

MML Identifier: FIB_NUM2.

The papers [26], (3], [4], [30], [24], [1], 28], [29], [2], [18], [13], [27], [32], [9], [10],
(7], [12], [8], [17], [21], [19], [22], [25], [6], [20], [11], [23], [15], [31], [14], [16], and
[5] provide the terminology and notation for this paper.

1. PRELIMINARIES

In this paper n, k, r, m, i, 7 denote natural numbers.
We now state a number of propositions:
(1) For every non empty natural number n holds (n —' 1) +2 =n+ 1.
(2) For every odd integer n and for every non empty real number m holds
(—=m)™ = —m™.
(3) For every odd integer n holds (—1)" = —1.

(4) For every even integer n and for every non empty real number m holds
(=m)™ =m™.

IThis work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102.

@ 2004 University of Bialystok
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(5) For every even integer n holds (—1)" = 1.

(6) For every non empty real number m and for every integer n holds ((—1)-
m)" = (=1)"-m".

(7) For every non empty real number a holds a*+™ = a* . a™.

(8) For every non empty real number k and for every odd integer m holds

9 (=D™)?*=1.

(10) For every non empty real number a holds =% - a

(11) (-1~ =1.

(12) For every non empty real number a holds a* - a=% = 1.

-m _ afkfm'

Let n be an odd integer. One can verify that —n is odd.
Let n be an even integer. Note that —n is even.
One can prove the following two propositions:
(13) (=)™ =(=D"
(14) For all natural numbers k, m, my, n; such that & | m and k | n holds
kE|lm-mi+n-n.
One can check that there exists a set which is finite, non empty, and natural-
membered and has non empty elements.
Let f be a function from N into N and let A be a finite natural-membered
set with non empty elements. Note that f[A is finite subsequence-like.
One can prove the following proposition
(15) For every finite subsequence p holds rng Seqp C rngp.
Let f be a function from N into N and let A be a finite natural-membered
set with non empty elements. The functor Prefix(f, A) yields a finite sequence
of elements of N and is defined as follows:

(Def. 1) Prefix(f, A) = Seq(f[A).
The following proposition is true
(16) For every natural number k such that k& # 0 holds if k¥ +m < n, then
m < n.
Let us mention that N is lower bounded.
Let us mention that {1,2,3} is natural-membered and has non empty ele-
ments.
Let us note that {1,2,3,4} is natural-membered and has non empty ele-
ments.
The following propositions are true:
(17) For all sets z, y such that 0 < i and 7 < j holds {(i, =), (j, y) } is a finite
subsequence.
(18) For all sets z, y and for every finite subsequence ¢ such that ¢ < j and

q = {(i, ¥), (j, y)} holds Seqq = (z,y).
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Let n be a natural number. Observe that Segn has non empty elements.

Let A be a set with non empty elements. Note that every subset of A has
non empty elements.

Let A be a set with non empty elements and let B be a set. Observe that
AN B has non empty elements and B N A has non empty elements.

We now state four propositions:

(19) For every natural number k and for every set a such that k£ > 1 holds
{(k, a)} is a finite subsequence.

(20) Let ¢, k be natural numbers, y be a set, and f be a finite subsequence.
If f={(1, y)}, then Shift’ f = {{1+1i, y)}.

(21) Let g be a finite subsequence and k, n be natural numbers. Suppose
dom g C Segk and n > k. Then there exists a finite sequence p such that
q C p and dom p = Segn.

(22) For every finite subsequence ¢ there exists a finite sequence p such that
q<p.

2. FiBoNAcCcI NUMBERS

In this article we present several logical schemes. The scheme Fib Ind 1
concerns a unary predicate P, and states that:
For every non empty natural number & holds P[k]
provided the parameters have the following properties:
. P,
e P[2], and
e For every non empty natural number £ such that P[k] and P[k+1]
holds Pk + 2].
The scheme Fib Ind 2 concerns a unary predicate P, and states that:
For every non trivial natural number % holds P[k]
provided the parameters meet the following conditions:

e P2,

e P[3], and

e For every non trivial natural number k such that P[k] and P[k+1]

holds Pk + 2].
Next we state a number of propositions:

(23) Fib(2) = 1.
(24) Fib(3) =2
(25) Fib(4) = 3.
(26) Fib(n +2) = Fib(n) + Fib(n + 1).
(27) Fib(n + 3) = Fib(n + 2) 4+ Fib(n + 1).
(28) Fib(n +4) = Fib(n + 2) + Fib(n + 3).
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(29) Fib(n +5) = Fib(n + 3) + Fib(n + 4).
(30) Fib(n + 2) = Fib(n + 3) — Fib(n + 1).
(31) Fib(n 4 1) = Fib(n + 2) — Fib(n).
(32) Fib(n) = Fib(n + 2) — Fib(n + 1)

3. CASSINI’S AND CATALAN’S IDENTITIES

The following propositions are true:
(33) Fib(n) - Fib(n + 2) — Fib(n + 1)2 = (=1)"*1.
(34) For every non empty natural number n holds Fib(n —' 1) - Fib(n + 1) —
Fib(n)? = (-1)"™.

(35) 7> 0.

(36) 7= (—7)"L

(37) (=m)Dm = (=)™

(38) —1=7.

(30) (1) =2+ (<1)) + ()2 = (¢ = 7).

(40) For all non empty natural numbers n, r such that r < n holds Fib(n)2 —

Fib(n + ) - Fib(n ' 7) = (—1)"~"" - Fib(r)2.

(41) Fib(n)? 4+ Fib(n + 1)2 = Fib(2-n + 1).

(42) For every non empty natural number k holds Fib(n + k) = Fib(k) -
Fib(n + 1) + Fib(k =" 1) - Fib(n).

(43) For every non empty natural number n holds Fib(n) | Fib(n - k).

(44) For every non empty natural number k such that k | n holds Fib(k) |

Fib(n).

) Fib(n) < Fib(n + 1).

) For every natural number n such that n > 1 holds Fib(n) < Fib(n + 1).

47) For all natural numbers m, n such that m > n holds Fib(m) > Fib(n).

) For every natural number & such that & > 1 holds if k¥ < n, then Fib(k) <

Fib(n).

(49) Fib(k) =1iffk=1or k= 2.

(50) Let k, n be natural numbers. Suppose n > 1 and k # 0 and k£ # 1 and
k#1and n# 2 or k # 2 and n # 1. Then Fib(k) = Fib(n) if and only if
k=mn.

(51) Let n be a natural number. Suppose n > 1 and n # 4. Suppose n is non

prime. Then there exists a non empty natural number k such that k # 1
and k # 2 and k # n and k | n.

(52) For every natural number n such that n > 1 and n # 4 holds if Fib(n)
is prime, then n is prime.
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4. SEQUENCE OF FIBONACCI NUMBERS

The function FIB from N into N is defined as follows:
(Def. 2) For every natural number & holds FIB(k) = Fib(k).
The subset Neyen of N is defined by:
(Def. 3) Neyen = {2 k : k ranges over natural numbers}.
The subset Nyqq of N is defined as follows:
(Def. 4) Nggqa = {2k + 1: k ranges over natural numbers}.
One can prove the following two propositions:
(53) For every natural number k holds 2 - k € Neyen and 2 -k + 1 ¢ Neyen.
(54) For every natural number k holds 2- k 4+ 1 € Nygq and 2 - k ¢ Nygq.

Let n be a natural number. The functor EvenFibs(n) yielding a finite sequ-
ence of elements of N is defined by:

(Def. 5) EvenFibs(n) = Prefix(FIB, Neyen N Segn).
The functor OddFibs(n) yields a finite sequence of elements of N and is defined
by:

(Def. 6) OddFibs(n) = Prefix(FIB, Nyqq N Segn).

We now state a number of propositions:

(55) EvenFibs(0) = 0.

(56) Seq(FIB[{2}) = (1).

(57) EvenFibs(2) = (1).

(58) EvenFibs(4) = (1,3).

(59) For every natural number k holds Neyen NSeg(2 -k +2)U{2 -k + 4} =

Neven N Seg(2 - k + 4).

(60) For every natural number k holds FIB [(Neyen NSeg(2-k+2))U{(2-k+4,
FIB(2 -k +4))} = FIB [(Neven N Seg(2 - k + 4)).

(61) For every natural number n holds EvenFibs(2 - n + 2) = EvenFibs(2 -
n) "~ (Fib(2-n + 2)).

(62) OddFibs(1) = (1).

(63) OddFibs(3) = (1,2).

(64) For every natural number k holds Nogq N Seg(2-k+3)U {2 -k + 5} =
Nogqa N Seg(2 - k + 5).

(65) For every natural number k holds FIB [(NygqNSeg(2-k+3))U{(2-k+5,
FIB(2-k +5))} = FIB [(Noqa N Seg(2 - k + 5)).

(66) For every natural number n holds OddFibs(2-n + 3) = OddFibs(2-n +
1) = (Fib(2 - n + 3)).

(67) For every natural number n holds > EvenFibs(2-n+2) = Fib(2-n+3)—1.

(68) For every natural number n holds Y OddFibs(2-n+1) = Fib(2-n+ 2).
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5. CARMICHAEL’S THEOREM ON PRIME DIVISORS

One can prove the following three propositions:

(69) For every natural number n holds Fib(n) and Fib(n + 1) are relative
prime.

(70) For every non empty natural number n and for every natural number m
such that m # 1 holds if m | Fib(n), then m { Fib(n —' 1).

(71) Let m be a non empty natural number. Suppose m is prime and n is

prime and m | Fib(n). Let r be a natural number. If » < n and r # 0,
then m t Fib(r).

6. FiBoNACcCI NUMBERS AND PYTHAGOREAN TRIPLES

We now state the proposition

(72) For every non empty natural number n holds {Fib(n) - Fib(n + 3),2 -
Fib(n+1) - Fib(n +2), Fib(n+1)2 + Fib(n +2)?} is a Pythagorean triple.
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Summary. The Marriage Theorem, as credited to Philip Hall [7], gives the
necessary and sufficient condition allowing us to select a distinct element from
each of a finite collection {A;} of n finite subsets. This selection, called a set of
different representatives (SDR), exists if and only if the marriage condition (or
Hall condition) is satisfied:

C
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The proof which is given in this article (according to Richard Rado, 1967) is
based on the lemma that for finite sequences with non-trivial elements which
satisfy Hall property there exists a reduction (see Def. 5) such that Hall property
again holds (see Th. 29 for details).

MML Identifier: HALLMAR1.

The notation and terminology used here are introduced in the following papers:
[9], [5], [10], [11], [4], [8], [2], [6], [1], and [3].

1. PRELIMINARIES

One can prove the following proposition
(1) For all finite sets X, Y holds card(XUY")+card(XNY') = card X +card Y.

In this article we present several logical schemes. The scheme Regri! deals
with a natural number A and a unary predicate P, and states that:
For every natural number k such that 1 < k and k < A holds
P[k]
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provided the parameters meet the following conditions:
e P[A] and A > 2, and
e For every natural number k£ such that 1 < k& and & < A and
Plk + 1] holds P[k|.
The scheme Regr2 concerns a unary predicate P, and states that:
P[1]
provided the parameters meet the following requirements:
e There exists a natural number n such that n > 1 and P[n], and
e For every natural number k such that £ > 1 and P[k + 1] holds
Plk].
Let F' be a non empty set. One can check that there exists a finite sequence
of elements of 2 which is non empty and non-empty.
We now state the proposition

(2) Let F be a non empty set, f be a non-empty finite sequence of elements
of 2F, and 4 be a natural number. If i € dom f, then f(i) # 0.

Let F be a finite set, let A be a finite sequence of elements of 2F, and let i
be a natural number. Note that A(7) is finite.

2. UNION OF FINITE SEQUENCES

Let F be a set, let A be a finite sequence of elements of 2, and let J be a
set. The functor | J; A yields a set and is defined as follows:

(Def. 1) For every set « holds « € |J; A iff there exists a set j such that j € J
and j € dom A and x € A(j).
Next we state two propositions:

(3) For every set F' and for every finite sequence A of elements of 27 and
for every set J holds | J; A C F.
(4) Let F be a finite set, A be a finite sequence of elements of 2, and J, K
be sets. If J C K, then |J; A C [Jx A.
Let F be a finite set, let A be a finite sequence of elements of 2, and let .J
be a set. One can verify that |J; A is finite.
The following propositions are true:
(5) Let F be a finite set, A be a finite sequence of elements of 2/, and i be
a natural number. If 7 € dom A, then Jg;; A = A(i).

(6) Let F be a finite set, A be a finite sequence of elements of 2f", and i, j be
natural numbers. If i € dom A and j € dom A, then Jy; ; A = A(1)UA()).

(7) Let J be a set, F be a finite set, A be a finite sequence of elements of
2F and i be a natural number. If i € J and i € dom A, then A(i) C |J; A.
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(8) Let J be a set, F' be a finite set, ¢ be a natural number, and A be a
finite sequence of elements of 27'. If i € J and i € dom 4, then |J; A =
Uy AU A

(9) Let Jy, J2 be sets, F' be a finite set, i be a natural number, and A be
a finite sequence of elements of 2F. If i € dom A, then U{z’}quuJQ A=
A) VU j 00 A-

(10) Let F be a finite set, A be a finite sequence of elements of 2F i be a
natural number, and z, y be sets. If x # y and z € A(i) and y € A(1),

then (A(i) \ {}) U (A(9) \ {y}) = A@).

3. CUT OPERATION FOR FINITE SEQUENCES

Let F be a finite set, let A be a finite sequence of elements of 2, let i be
a natural number, and let x be a set. The functor Cut(A,,x) yielding a finite
sequence of elements of 2F" is defined by the conditions (Def. 2).
(Def. 2)(i) dom Cut(A4,i,z) = dom A, and
(ii) for every natural number k such that k¥ € dom Cut(A, i, z) holdsifi = k,
then (Cut(A,i,x))(k) = A(k) \ {z} and if ¢ # k, then (Cut(A4,i,z))(k) =
A(k).
The following propositions are true:

(11) Let F be a finite set, A be a finite sequence of elements of 2, i be
a natural number, and = be a set. If ¢ € dom A and = € A(i), then
card(Cut(A,i,x))(i) = card A(i) — 1.

(12) Let F be a finite set, A be a finite sequence of elements of 27, i be a
natural number, and z, J be sets. Then |y 1, Cut(4, i, z) = U p 1 A-

(13) Let F be a finite set, A be a finite sequence of elements of 27, i be a
natural number, and x, J be sets. If i ¢ J, then | J; A = J; Cut(A4,1,x).

(14) Let F be a finite set, A be a finite sequence of elements of 27, i be
a natural number, and x, J be sets. If i € dom Cut(A,é,z) and J C
dom Cut(A4,i,z) and i € J, then |J; Cut(A, 4, z) = Uy 5 AU(AG) \ {z}).

4. SYSTEM OF DIFFERENT REPRESENTATIVES AND HALL PROPERTY

Let F be a finite set, let X be a finite sequence of elements of 2/, and let A
be a set. We say that A is a system of different representatives of X if and only
if the condition (Def. 3) is satisfied.

(Def. 3) There exists a finite sequence f of elements of F' such that f = A and
dom X = dom f and for every natural number ¢ such that ¢ € dom f holds
f(i) € X (i) and f is one-to-one.
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Let F be a finite set and let A be a finite sequence of elements of 2F. We
say that A satisfies Hall condition if and only if:

(Def. 4) For every finite set J such that J C dom A holds card J < card|J; A.
Next we state four propositions:

(15) Let F be a finite set and A be a non empty finite sequence of elements
of 2F. If A satisfies Hall condition, then A is non-empty.

(16) Let F be a finite set, A be a finite sequence of elements of 2!, and i
be a natural number. If ¢ € dom A and A satisfies Hall condition, then
card A(7) > 1.

(17) Let F be a non empty finite set and A be a non empty finite sequence of
elements of 2F". Suppose for every natural number 4 such that i € dom A
holds card A(i) = 1 and A satisfies Hall condition. Then there exists a set
which is a system of different representatives of A.

(18) Let F be a finite set and A be a finite sequence of elements of 2F" such
that there exists a set which is a system of different representatives of A.
Then A satisfies Hall condition.

5. REDUCTIONS AND SINGLIFICATIONS OF FINITE SEQUENCES

Let F be a set, let A be a finite sequence of elements of 2, and let i be a
natural number. A finite sequence of elements of 2F" is said to be a reduction of
A at i-th position if:

(Def. 5) domit = dom A and for every natural number j such that j € dom A
and j # i holds A(j) = it(j) and it(i) C A(3).

Let F be a set and let A be a finite sequence of elements of 2. A finite

sequence of elements of 2 is said to be a reduction of A if:

(Def. 6) domit = dom A and for every natural number ¢ such that i € dom A
holds it(i) C A(37).
Let F be a set, let A be a finite sequence of elements of 2, and let i be a
natural number. Let us assume that ¢ € dom A and A(i) # (. A reduction of A
is called a singlification of A at i-th position if:

(Def. 7) it(i) = 1.
One can prove the following propositions:

(19) Let F be a finite set, A be a finite sequence of elements of 2/, and i be a
natural number. Then every reduction of A at i-th position is a reduction
of A.

(20) Let F be a finite set, A be a finite sequence of elements of 2, i be
a natural number, and = be a set. If ¢ € domA and = € A(i), then
Cut(A,i,x) is a reduction of A at i-th position.
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(21) Let F be a finite set, A be a finite sequence of elements of 2, i be
a natural number, and = be a set. If i € dom A and = € A(i), then
Cut(A, i, z) is a reduction of A.

(22) Let F be a finite set, A be a finite sequence of elements of 2f", and B be
a reduction of A. Then every reduction of B is a reduction of A.

(23) Let F be a non empty finite set, A be a non-empty finite sequence of
elements of 2F', i be a natural number, and B be a singlification of A at
i-th position. If ¢ € dom A, then B(i) # 0.

(24) Let F be a non empty finite set, A be a non-empty finite sequence of
elements of 2F', i, j be natural numbers, B be a singlification of A at i-th
position, and C be a singlification of B at j-th position. Suppose ¢ € dom A
and j € dom A and C(i) # () and B(j) # 0. Then C' is a singlification of
A at j-th position and a singlification of A at i-th position.

(25) Let F be a set, A be a finite sequence of elements of 2, and i be a
natural number. Then A is a reduction of A at i-th position.

(26) For every set F' holds every finite sequence A of elements of 2f is a
reduction of A.

Let F be a non empty set and let A be a finite sequence of elements of 2%

Let us assume that A is non-empty. A reduction of A is called a singlification
of A if:

(Def. 8) For every natural number ¢ such that i € dom A holds it(i) = 1.

We now state the proposition
(27) Let F be a non empty finite set, A be a non empty non-empty finite
sequence of elements of 2F', and f be a function. Then f is a singlification
of A if and only if the following conditions are satisfied:
(i) dom f =domA, and
(ii)  for every natural number i such that i € dom A holds f is a singlification
of A at i-th position.

Let F' be a non empty finite set, let A be a non empty finite sequence of
elements of 2F", and let k be a natural number. Note that every singlification of
A at k-th position is non empty.

Let F' be a non empty finite set and let A be a non empty finite sequence of
elements of 2. One can check that every singlification of A is non empty.

6. RADO’S PROOF OF THE HALL MARRIAGE THEOREM

One can prove the following propositions:

(28) Let F be a non empty finite set, A be a non empty finite sequence of
elements of 27, X be a set, and B be a reduction of A. Suppose X is a
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system of different representatives of B. Then X is a system of different
representatives of A.

(29) Let F be a finite set and A be a finite sequence of elements of 2. Suppose
A satisfies Hall condition. Let ¢ be a natural number. If card A(i) > 2,
then there exists a set x such that € A(i) and Cut(A4,, x) satisfies Hall
condition.

(30) Let F be a finite set, A be a finite sequence of elements of 27, and i be
a natural number. If 1 € dom A and A satisfies Hall condition, then there
exists a singlification of A at i-th position which satisfies Hall condition.

(31) Let F be a non empty finite set and A be a non empty finite sequ-
ence of elements of 2F. If A satisfies Hall condition, then there exists a
singlification of A which satisfies Hall condition.

(32) Let F be a non empty finite set and A be a non empty finite sequence
of elements of 2. Then there exists a set which is a system of different
representatives of A if and only if A satisfies Hall condition.
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Summary. In this article, the basic properties of the differentiable func-
tions on normed linear spaces are described.

MML Identifier: NDIFF_1.

The notation and terminology used in this paper are introduced in the following
papers: [20], [23], [4], [24], [6], [5], [19], [3], [10], [1], [18], [7], [21], [22], [11], [8],
[9], [25], [13], [15], [16], [17], [12], [14], and [2].
For simplicity, we adopt the following rules: n, k denote natural numbers, z,
X, Z denote sets, g, r denote real numbers, S denotes a real normed space, 1
denotes a sequence of real numbers, s1, sy denote sequences of S, zy denotes a
point of S, and Y denotes a subset of S.
Next we state several propositions:
(1) For every point xg of S and for all neighbourhoods Ny, Ny of z( there
exists a neighbourhood N of xy such that N C Ny and N C No.
(2) Let X be a subset of S. Suppose X is open. Let r be a point of S. If
r € X, then there exists a neighbourhood N of r such that N C X.
(3) Let X be a subset of S. Suppose X is open. Let r be a point of S. If
r € X, then there exists g such that 0 < g and {y;y ranges over points of
S:lly—r] < g} CX.
(4) Let X be a subset of S. Suppose that for every point r of S such that
r € X there exists a neighbourhood N of r such that N C X. Then X is
open.
(5) Let X be a subset of S. Then for every point r of S such that r € X
there exists a neighbourhood N of r such that N C X if and only if X is
open.
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Let S be a zero structure and let f be a sequence of S. We say that f is
non-zero if and only if:

(Def. 1) rng f C (the carrier of S) \ {0s}.

We introduce f is non-zero as a synonym of f is non-zero.
We now state two propositions:

(6) 1 is non-zero iff for every z such that x € N holds s1(z) # Os.
(7) s1 is non-zero iff for every n holds s1(n) # 0g.

Let Ry be a real linear space, let S be a sequence of Ri, and let a be a
sequence of real numbers. The functor a S yields a sequence of R and is defined
as follows:

(Def. 2) For every n holds (a S)(n) = a(n) - S(n).
Let Ry be a real linear space, let z be a point of R1, and let a be a sequence
of real numbers. The functor a - z yields a sequence of R; and is defined by:
(Def. 3) For every n holds (a - z)(n) = a(n) - z.
Next we state a number of propositions:
(8) For all sequences 12, r3 of real numbers holds (r3 4 73) s1 = 72 51 + 73 51.

(9) For every sequence ri of real numbers and for all sequences sg, s3 of S
holds (82 + 83) =171 82 + 11 83.

(10) For every sequence 71 of real numbers holds r - (ry s1) =71 (r - s1).
(11) For all sequences 19, r3 of real numbers holds (rg —r3) 51 = 19 81 — 73 81.

(12) For every sequence rj of real numbers and for all sequences sg, s3 of S
holds 71 (s2 — s3) = 71 82 — 71 S3.

—
w

If r1 is convergent and s; is convergent, then ry s1 is convergent.

—_
W

If r1 is convergent and s is convergent, then lim(r; s1) = limr; - lim s3.
(81+82)Tk281Tk+82Tk.
(s1—s2)Tk=s1Tk—s27k.

If s1 is non-zero, then s; T k is non-zero.

—
ot

— =
o

s1 T k is a subsequence of s.

—
Ne)

If s is constant and s is a subsequence of s1, then sy is constant.

e R N e e N T N
[\V) =
) (@)}
S N e e S N N

If sq1 is constant and s9 is a subsequence of s1, then s; = ss.

Let us consider S and let I7 be a sequence of S. We say that I is convergent
to 0 if and only if:

(Def. 4) I is non-zero and convergent and lim I; = Og.
The following propositions are true:

(21) Let X be a real normed space and s; be a sequence of X. Suppose s;
is constant. Then s; is convergent and for every natural number k£ holds
lims; = s1(k).
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(22) For every real number 7 such that 0 < r and for every n holds s1(n) =
1

n+r

(23) For every real number 7 such that 0 < r and for every n holds s1(n) =
1

n—+r

(24) Let a be a convergent to 0 sequence of real numbers and z be a point of

- o holds sp is convergent.

- o holds lim s; = Og.

S. If z # 0g, then a - z is convergent to 0.

(25) For every point r of S holds r € Y iff r € the carrier of S iff Y = the
carrier of S.

For simplicity, we adopt the following rules: S, T' denote non trivial real
normed spaces, f, fi, fo denote partial functions from S to T, s4, s1 denote
sequences of S, and xy denotes a point of S.

Let S be a non trivial real normed space. Note that there exists a sequence
of S which is convergent to 0.

Let us consider S. Note that there exists a sequence of S which is constant.

In the sequel h is a convergent to 0 sequence of S and ¢ is a constant sequence
of S.

Let us consider S, T" and let I; be a partial function from S to T. We say
that Iy is rest-like if and only if:

(Def. 5) I is total and for every h holds ||h||~! (f; - h) is convergent and
lim([|A]| =" (11 - b)) = Or-

Let us consider S, T. Observe that there exists a partial function from S to
T which is rest-like.

Let us consider S, T'. A rest of S, T is a rest-like partial function from S to
T.

We now state two propositions:

(26) Let R be a partial function from S to T. Suppose R is total. Then R
is rest-like if and only if for every real number r such that r > 0 there
exists a real number d such that d > 0 and for every point z of S such
that z # 0g and ||z|| < d holds ||z||7% - | R.|| < .

(27) For every rest R of S, T and for every convergent to 0 sequence s of S
holds R - s is convergent and lim(R - s) = Or.

In the sequel R, Ro, Rs are rests of S, T and L is a point of
RNormSpaceOfBoundedLinearOperators(S, T').

Next we state several propositions:

(28) rng(s; 1n) C mgsy.

(29) For every partial function h from S to T" and for every sequence s; of S
such that rng s; C domh holds (h-s1) Tn="h-(s1 ] n).

(30) Let hy, ho be partial functions from S to T" and s; be a sequence of S.
If hy is total and ho is total, then (hy + ha) - s1 = hy - s1 + ha - s1 and
(hl—hg)-slzhl'sl—hg-sl.
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(31) Let h be a partial function from S to T', s1 be a sequence of S, and r be
a real number. If h is total, then (rh) sy =r-(h-s1).
(32) f is continuous in x¢ if and only if the following conditions are satisfied:
(i) o € dom f, and
(ii)  for every sequence s4 of S such that rng s4 C dom f and sy is convergent
and lim sy = z¢ and for every n holds s4(n) # xo holds f - s4 is convergent
and fy, = lim(f - s4).
(33) For all Ry, R3 holds Ry + R3 is a rest of S, T and Ry — R3 is a rest of
S, T.
(34) For all r, R holds r R is a rest of S, T'.

Let us consider S, T', let f be a partial function from S to T', and let ¢ be
a point of S. We say that f is differentiable in x( if and only if the condition
(Def. 6) is satisfied.

(Def. 6) There exists a neighbourhood N of zy such that N C dom f and there
exist L, R such that for every point x of S such that z € N holds f,— f., =
L(z — x0) + Ry—s,-

Let us consider S, T, let f be a partial function from S to T', and let ¢ be
a point of S. Let us assume that f is differentiable in xy. The functor f'(zo)
yielding a point of RNormSpaceOfBoundedLinearOperators(S, T') is defined by
the condition (Def. 7).

(Def. 7)  There exists a neighbourhood N of xy such that N C dom f and there
exists R such that for every point  of § such that € N holds f, — f., =
f'(@o)(z — 20) + Ry—sp-

Let us consider X, let us consider S, T', and let f be a partial function from
S to T. We say that f is differentiable on X if and only if:

(Def. 8) X C dom f and for every point z of S such that z € X holds f[X is
differentiable in x.

Next we state three propositions:

(35) Let f be a partial function from S to T'. If f is differentiable on X, then
X is a subset of the carrier of S.

(36) Let f be a partial function from S to T and Z be a subset of S. Suppose Z
is open. Then f is differentiable on Z if and only if the following conditions
are satisfied:

(i) Z Cdom f, and
(ii)  for every point z of S such that € Z holds f is differentiable in x.

(37) Let f be a partial function from S to T" and Y be a subset of S. If f is
differentiable on Y, then Y is open.

Let us consider S, T', let f be a partial function from S to T, and let X
be a set. Let us assume that f is differentiable on X. The functor ff  yielding
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a partial function from S to RNormSpaceOfBoundedLinearOperators(S,T) is
defined by:

(Def. 9) dom(fjy) = X and for every point z of S such that x € X holds (f{y), =
f'(@).
One can prove the following proposition

(38) Let f be a partial function from S to 7" and Z be a subset of S. Suppose
Z is open and Z C dom f and there exists a point r of T such that
rng f = {r}. Then f is differentiable on Z and for every point x of S such
that « € Z holds (fFZ)I = ORNormSpaeeOfBoundedLinearOperators(S,T)'

Let us consider S and let us consider h, n. Observe that h T n is convergent
to 0.

Let us consider S and let us consider ¢, n. Observe that ¢ T n is constant.

The following propositions are true:

(39) Let g be a point of S and N be a neighbourhood of zy. Suppose f is
differentiable in x¢g and N C dom f. Let h be a convergent to 0 sequence
of S and given c. If rngc = {xo} and rng(h+¢) C N, then f-(h+c)—f-c
is convergent and lim(f - (h+¢) — f - ¢) = Op.

(40) Let given fi, fa, zo. Suppose fi is differentiable in zp and fy is diffe-
rentiable in zp. Then fi + fo is differentiable in x¢ and (f1 + f2)'(z0) =
fi'(@o) + f2' (o).

(41) Let given fi, fa, zo. Suppose fi is differentiable in zo and fo is diffe-
rentiable in zg. Then f1 — fy is differentiable in x¢ and (f1 — f2)'(z0) =
' (o) = fo (o).

(42) For all r, f, zg such that f is differentiable in x¢ holds r f is differentiable
in zg and (r ) (zg) =7 - f'(x0).

(43) Let f be a partial function from S to S and Z be a subset of S. Suppose
Z is open and Z C dom f and f[Z = idz. Then f is differentiable on Z
and for every point « of S such that x € Z holds ( ffz)x = idihe carrier of S-

(44) Let Z be a subset of S. Suppose Z is open. Let given fi, fa. Suppose
Z C dom(f1 + f2) and f is differentiable on Z and fs is differentiable on
Z. Then f1 + fs is differentiable on Z and for every point z of S such that
z € Z holds ((f1 + f2)|2)e = fi'(2) + f2'(2).

(45) Let Z be a subset of S. Suppose Z is open. Let given fi, fa. Suppose
Z Cdom(f1 — f2) and f is differentiable on Z and f> is differentiable on
Z. Then f1 — f is differentiable on Z and for every point z of S such that
x € Z holds ((f1 — fg)lrz)x = fi'(z) — fo/ ().

(46) Let Z be a subset of S. Suppose Z is open. Let given r, f. Suppose
Z Cdom(r f) and f is differentiable on Z. Then r f is differentiable on Z
and for every point x of S such that z € Z holds ((r f)|z)s =7 f'(2).

(47) Let Z be a subset of S. Suppose Z is open. Suppose Z C dom f and f

325
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is a constant on Z. Then f is differentiable on Z and for every point x of
S such that = € Z holds (fFZ)m = ORNormSpaceOfBoundedLinearOperators(S,T)'

(48) Let f be a partial function from S to S, r be a real number, p be a point
of S, and Z be a subset of S. Suppose Z is open. Suppose Z C dom f
and for every point z of S such that x € Z holds f, = -2 + p. Then f
is differentiable on Z and for every point x of S such that x € Z holds
(fiz)e = r - FancUnit(9).

(49) For every point g of S such that f is differentiable in g holds f is
continuous in xg.

(50) If f is differentiable on X, then f is continuous on X.

(51) For every subset Z of S such that Z is open holds if f is differentiable
on X and Z C X, then f is differentiable on Z.

(52) Suppose f is differentiable in xg. Then there exists a neighbourhood N
of xy such that
(i) N Cdom f, and
(ii)  there exists R such that Ry, = O7 and R is continuous in Og and for
every point z of S such that z € N holds f; — fo, = f(20)(x—20) + Ro—z, -
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Numbers
Piotr Wojtecki Adam Grabowski!
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Summary. The recursive definition of Fibonacci sequences [3] is a good
starting point for various variants and generalizations. We can here point out e.g.
Lucas (with 2 and 1 as opening values) and the so-called generalized Fibonacci
numbers (starting with arbitrary integers a and b).

In this paper, we introduce Lucas and G-numbers and we state their basic
properties analogous to those proven in [10] and [5].

MML Identifier: FIB_NUM3.

The papers [15], [14], [11], [2], [6], [1], [13], [12], [8], [9], [4], [7], [3], and [10]
provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paper a, b, k, n denote natural numbers.
The following propositions are true:

(1) For every real number a and for every natural number n such that a™ = 0
holds a = 0.

(2) For every non negative real number a holds v/a - v/a = a.

(3) For every non empty real number a holds a? = (—a)?.

(4) For every non empty natural number k holds (k—'1)+2 = (k+2) /1.
(5) (a+b?*=a-a+a-b+a-b+b-b.

(

6) For every non empty real number a holds (a™)? = a?™.

IThis work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102.
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(7) For all real numbers a, b holds (a + b) - (a — b) = a® — b2.
(8) For all non empty real numbers a, b holds (a - b)"™ = a™ - b™.

Let us mention that 7 is positive and 7 is negative.

The following propositions are true:

n+1 +2

=TT,

(10) For every natural number n holds 7" + 7"+ = 77+2,

(9) For every natural number n holds 7" + 7

2. LucAs NUMBERS

Let n be a natural number. The functor Luc(n) yielding a natural number
is defined by the condition (Def. 1).
(Def. 1) There exists a function L from N into [ N, N ] such that Luc(n) = L(n)y
and L(0) = (2, 1) and for every natural number n holds L(n+1) = (L(n)a2,
L(n)1 + L(n)z2).
The following propositions are true:
(11) Luc(0) = 2 and Luc(1) = 1 and for every natural number n holds Luc(n+
1+ 1) = Luc(n) + Luc(n + 1).

(12) For every natural number n holds Luc(n + 2) = Luc(n) + Luc(n + 1).
(13) For every natural number n holds Luc(n + 1) + Luc(n+2) = Luc(n+3).
(14) Luc(2) = 3.

(15) Luc(3) = 4.

(16) Luc(4) =T7.

(17) For every natural number k holds Luc(k) > k.

(18) For every non empty natural number m holds Luc(m + 1) > Luc(m).

Let n be a natural number. Note that Luc(n) is positive.
Next we state a number of propositions:

For every natural number n holds 2 - Luc(n + 2) = Luc(n) + Luc(n + 3).
For every natural number n holds Luc(n + 1) = Fib(n) + Fib(n + 2).
For every natural number n holds Luc(n) = 7" + 7".
For every natural number n holds 2-Luc(n) +Luc(n+1) = 5-Fib(n+1).
For every natural number n holds Luc(n + 3) — 2 - Luc(n) = 5 - Fib(n).
For every natural number n holds Luc(n) 4+ Fib(n) = 2 - Fib(n + 1).
For every natural number n holds 3 - Fib(n) 4+ Luc(n) = 2 - Fib(n + 2).
For all natural numbers n, m holds 2 - Luc(n + m) = Luc(n) - Luc(m) +

5 - Fib(n) - Fib(m).

(27) For every natural number n holds Luc(n + 3) - Luc(n) = Luc(n + 2)? —

Luc(n + 1)2.
(28) For every natural number n holds Fib(2 - n) = Fib(n) - Luc(n).

~ o~~~ —~ —~ —~~ —~
N N NN N
T = W N = O O
D D O — T T

[\)
(=)
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(29) For every natural number n holds 2-Fib(2-n+1) = Luc(n+1)-Fib(n) +
Luc(n) - Fib(n + 1).
(30) For every natural number n holds 5 - Fib(n)? — Luc(n)? = 4 - (—1)"*1,

(31) For every natural number n holds Fib(2-n + 1) = Fib(n + 1) - Luc(n +
1) — Fib(n) - Luc(n).

3. GENERALIZED FIBONACCI NUMBERS

Let a, b, n be natural numbers. The functor GFib(a, b, n) yielding a natural
number is defined by the condition (Def. 2).

(Def. 2) There exists a function L from N into [ N, N ] such that GFib(a,b,n) =
L(n)1 and L(0) = (a, b) and for every natural number n holds L(n+1) =
(L(n)2, L(n)1 + L(n)2).

Next we state a number of propositions:

(32) For all natural numbers a, b holds GFib(a, b,0) = a and GFib(a,b,1) =b
and for every natural number n holds GFib(a, b,n+1+1) = GFib(a,b,n)+
GFib(a, b,n + 1).

(33) (GFib(a,b, k + 1) + GFib(a, b,k + 1 + 1)) = GFib(a,b,k + 1)2 + 2 -
GFib(a,b,k + 1) - GFib(a, b,k + 1 + 1) + GFib(a, b, k + 1 + 1)2,

(34) For all natural numbers a, b, n holds GFib(a, b, n) + GFib(a,b,n+ 1) =
GFib(a, b,n + 2).

(35) For all natural numbers a, b, n holds GFib(a, b, n+1)+GFib(a, b, n+2) =
GFib(a, b,n + 3).

(36) For all natural numbers a, b, n holds GFib(a, b, n+2)+GFib(a, b, n+3) =
GFib(a, b,n + 4).

(37) For every natural number n holds GFib(0,1,n) = Fib(n).

(38) For every natural number n holds GFib(2,1,n) = Luc(n).

(39) For all natural numbers a, b, n holds GFib(a, b, n) + GFib(a,b,n + 3) =
2. GFib(a, b, + 2).

(40) For all natural numbers a, b, n holds GFib(a, b, n) + GFib(a,b,n +4) =
3. GFib(a, b, + 2).

(41) For all natural numbers a, b, n holds GFib(a,b,n + 3) — GFib(a,b,n) =
2. GFib(a, b,n + 1).

(42) For all non empty natural numbers a, b, n holds GFib(a,b,n) =
GFib(a,b,0) - Fib(n —' 1) + GFib(a,b,1) - Fib(n).

(43) For all natural numbers n, m holds Fib(m) - Luc(n) 4+ Luc(m) - Fib(n) =
GFib(Fib(0), Luc(0),n + m).

(44) For every natural number n holds Luc(n) + Luc(n + 3) = 2 - Luc(n + 2).
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(45) For all natural numbers a, n holds GFib(a,a,n) = w - (Fib(n) +
Luc(n)).

(46) For all natural numbers a, b, n holds GFib(b,a+b,n) = GFib(a, b,n+1).

(47) For all natural numbers a, b, n holds GFib(a, b, n + 2) - GFib(a,b,n) —
GFib(a,b,n +1)? = (—=1)" - (GFib(a, b, 2)?> — GFib(a, b, 1) - GFib(a, b, 3)).

(48) For all natural numbers a, b, k, n holds GFib(GFib(a, b, k), GFib(a, b, k+
1),n) = GFib(a,b,n + k).

(49) For all natural numbers a, b, n holds GFib(a,b,n + 1) = a - Fib(n) +b-
Fib(n + 1).

(50) For all natural numbers a, b, n holds GFib(0,b,n) = b - Fib(n).

(51) For all natural numbers a, b, n holds GFib(a,0,n + 1) = a - Fib(n).

(52) For all natural numbers a, b, ¢, d, n holds GFib(a,b,n) + GFib(c,d,n) =
GFib(a + ¢,b+d,n).

(53) For all natural numbers a, b, k, n holds GFib(k - a,k - b,n) = k -
GFib(a,b,n).

(54) For all natural numbers a, b, n holds GFib(a, b,n) = (a'_?er)'T:L/Jg(a'T_b)'Fn.

(55) For all natural numbers a, n holds GFib(2-a+1,2-a+ 1,n+ 1) =
(2-a+1)-Fib(n+2).
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Summary. The article contains the formalization of the addition opera-
tor on relational structures as defined by A. Wronski [8] (as a generalization of
Troelstra’s sum or Jaskowski’s star addition). The ordering relation of A ® B is
given by

SagB=<aU<p U (<a0<p),
where the carrier is defined as the set-theoretical union of carriers of A and B.
Main part — Section 3 — is devoted to the Mizar translation of Theorem 1 (iv—xiii),
p. 66 of [8].

MML Identifier: LATSUM_1.

The terminology and notation used in this paper are introduced in the following
articles: [4], [6], [7], [5], [2], [3], and [1].

1. PRELIMINARIES

One can prove the following proposition
(1) Letx,y, A, B be sets. Suppose z € AUB and y € AUB. Then z € A\ B
andye A\Borzxe Bandye Borz € A\ Band y € Bor z € B and
ye A\ B.
Let R, S be relational structures. The predicate R ~ S is defined by the
condition (Def. 1).
(Def. 1) Let z, y be sets. Suppose x € (the carrier of R) N (the carrier of S) and
y € (the carrier of R) N (the carrier of S). Then (x, y) € the internal
relation of R if and only if (z, y) € the internal relation of S.

IThis work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102.
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2. THE WROKSKI’'S OPERATION

Let R, S be relational structures. The functor R® S' yields a strict relational
structure and is defined by the conditions (Def. 2).
(Def. 2)(i) The carrier of R ® S = (the carrier of R) U (the carrier of S), and
(ii)  the internal relation of R ® S = (the internal relation of R) U (the
internal relation of S) U (the internal relation of R) - (the internal relation
of S).
Let R be a relational structure and let S be a non empty relational structure.
Observe that R ® S is non empty.
Let R be a non empty relational structure and let .S be a relational structure.
Observe that R ® S is non empty.
One can prove the following two propositions:
(2) Let R, S be relational structures. Then
(i)  the internal relation of R C the internal relation of R ® S, and
(ii)  the internal relation of S C the internal relation of R ® S.
(3) For all relational structures R, S such that R is reflexive and S is reflexive
holds R ® S is reflexive.

3. PROPERTIES OF THE ADDITION

Next we state a number of propositions:

(4) Let R, S be relational structures and a, b be sets. Suppose that

(i)  {a, b) € the internal relation of R ® S,

(ii) @ € the carrier of R,

(ili) b € the carrier of R,

(iv) R~ S, and

v) R is transitive.

Then (a, b) € the internal relation of R.

(5) Let R, S be relational structures and a, b be sets. Suppose that

(i)  {a, b) € the internal relation of R ® S,

(ii) @ € the carrier of S,

(ili) b € the carrier of S,

(iv) R~=~S, and

(v) S is transitive.
Then (a, b) € the internal relation of S.

(6) Let R, S be relational structures and a, b be sets. Then

(i) if {a, b) € the internal relation of R, then (a, b) € the internal relation

of R® S, and

(ii)  if (a, b) € the internal relation of S, then (a, b) € the internal relation
of R®S.

—~
—

— —
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(7) Let R, S be non empty relational structures and = be an element of
R® S. Then x € the carrier of R or x € (the carrier of S) \ (the carrier of
R).

(8) Let R, S be non empty relational structures, z, y be elements of R, and
a, b be elements of R® S. Suppose z =a and y = b and R~ S and R is
transitive. Then x < y if and only if a < b.

(9) Let R, S be non empty relational structures, a, b be elements of R ® S,
and ¢, d be elements of S. Suppose a = cand b =d and R~ S and S is
transitive. Then a < b if and only if ¢ < d.

(10) Let R, S be antisymmetric reflexive transitive non empty relational
structures with l.u.b.’s and = be a set. If x € the carrier of R, then x
is an element of R® S.

(11) Let R, S be antisymmetric reflexive transitive non empty relational
structures with Lu.b.’s and = be a set. If x € the carrier of S, then z
is an element of R ® S.

(12) Let R, S be non empty relational structures and x be a set. Suppose
x € (the carrier of R) N (the carrier of S). Then x is an element of R.

(13) Let R, S be non empty relational structures and x be a set. Suppose
x € (the carrier of R) N (the carrier of S). Then x is an element of S.
(14) Let R, S be antisymmetric reflexive transitive non empty relational
structures with l.u.b.’s and x, y be elements of R ® S. Suppose x € the
carrier of R and y € the carrier of S and R ~ S. Then x < y if and only if
there exists an element a of R ® S such that a € (the carrier of R) N (the

carrier of S) and < a and a < y.

(15) Let R, S be non empty relational structures, a, b be elements of R, and
¢, d be elements of S. Suppose a = cand b = d and R ~ S and R is
transitive and S is transitive. Then a < b if and only if ¢ < d.

(16) Let R be an antisymmetric reflexive transitive non empty relational
structure with Lu.b.’s, D be a lower directed subset of R, and z, y be
elements of R. If x € D and y € D, then x Uy € D.

(17) Let R, S be relational structures and a, b be sets. Suppose that

(i)  (the carrier of R) N (the carrier of S) is an upper subset of R,
(ii)  (a, b) € the internal relation of R ® S, and
(iii)  a € the carrier of S.
Then b € the carrier of S.

(18) Let R, S be relational structures and a, b be elements of R ® S. Suppose
(the carrier of R) N (the carrier of S) is an upper subset of R and a < b
and a € the carrier of S. Then b € the carrier of S.

(19) Let R, S be antisymmetric reflexive transitive non empty relational
structures with Lu.b.’s, x, y be elements of R, and a, b be elements of
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S. Suppose that
) (the carrier of R) N (the carrier of ) is a lower directed subset of .S,
) (the carrier of R) N (the carrier of S) is an upper subset of R,
(iii) R~ S,
) x=a,and
) y=b.

Then x Uy =a Ub.

(20) Let R, S be lower-bounded antisymmetric reflexive transitive non empty
relational structures with Lu.b.’s. Suppose (the carrier of R) N (the carrier
of §) is a non empty lower directed subset of S. Then Lg € the carrier of
R.

(21) Let R, S be relational structures and a, b be sets. Suppose that

(i)  (the carrier of R) N (the carrier of S) is a lower subset of S,
(ii)  (a, b) € the internal relation of R ® S, and
(ili) b € the carrier of R.
Then a € the carrier of R.

(22) Let x, y be sets and R, S be relational structures. Suppose (z, y) € the
internal relation of R ® S and (the carrier of R) N (the carrier of S) is an
upper subset of R. Then

(i) « € the carrier of R and y € the carrier of R, or
(ii) « € the carrier of S and y € the carrier of S, or
(ili) =« € (the carrier of R)\ (the carrier of S) and y € (the carrier of S)\ (the
carrier of R).

(23) Let R, S be relational structures and a, b be elements of R® S. Suppose
(the carrier of R) N (the carrier of ) is a lower subset of S and a < b and
b € the carrier of R. Then a € the carrier of R.

(24) Let R, S be relational structures. Suppose that

) R=S,

) (the carrier of R) N (the carrier of S) is an upper subset of R,

(iii)  (the carrier of R) N (the carrier of S) is a lower subset of S,

) R is transitive and antisymmetric, and

) S is transitive and antisymmetric.

Then R ® S is antisymmetric.

(25) Let R, S be relational structures. Suppose that

) (the carrier of R) N (the carrier of S) is an upper subset of R,

) (the carrier of R) N (the carrier of S) is a lower subset of S,
(i) R~S,

) R is transitive, and

) S is transitive.
Then R ® S is transitive.
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Summary. In this paper we define a discrete subset family of a topological
space and basis sigma locally finite and sigma discrete. First, we prove an au-
xiliary fact for discrete family and sigma locally finite and sigma discrete basis.
We also show the necessary condition for the Nagata Smirnov theorem: every
metrizable space is T3 and has a sigma locally finite basis. Also, we define a suf-
ficient condition for a T3 topological space to be T4. We introduce the concept of
pseudo metric.

MML Identifier: NAGATA_1.

The terminology and notation used in this paper have been introduced in the
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In this paper T', T denote non empty topological spaces and P; denotes a
non empty metric structure.

Let T be a topological space and let F' be a family of subsets of T'. We say
that F' is discrete if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let p be a point of T'. Then there exists an open subset O of T" such that
p € O and for all subsets A, B of T such that A € F and B € F holds if
O meets A and O meets B, then A = B.

Let T be a non empty topological space. Note that there exists a family of
subsets of T which is discrete.

Let us consider T'. One can check that there exists a family of subsets of T'
which is empty and discrete.
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For simplicity, we adopt the following convention: F'; G, H denote families
of subsets of T', A, B denote subsets of T, O, U denote open subsets of T', p
denotes a point of T', and x, X denote sets.
The following propositions are true:
(1) For every F such that there exists A such that F' = {A} holds F is
discrete.

(2) For all F, G such that FF C G and G is discrete holds F' is discrete.
(3) For all F', G such that F' is discrete holds F'N G is discrete.

(4) For all F', G such that F' is discrete holds F'\ G is discrete.

()

For all F', G, H such that F is discrete and G is discrete and FmG = H
holds H is discrete.
(6) For all F, A, B such that F is discrete and A € F and B € F holds
A = B or A misses B.
(7) If F is discrete, then for every p there exists O such that p € O and
{O}m F\ {0} is trivial.
(8) F is discrete if and only if the following conditions are satisfied:
(i)  for every p there exists O such that p € O and {O}m F \ {0} is trivial,
and
(ii) for all A, B such that A € F and B € F holds A = B or A misses B.

Let us consider T" and let F' be a discrete family of subsets of T'. Observe
that clf F' is discrete.
Next we state three propositions:
(9) For every F such that F is discrete and for all A, B such that A € F
and B € F holds ANB=ANB.

(10) For every F such that F is discrete holds |J F' = [Jclf F.
(11) For every F such that F is discrete holds F' is locally finite.

Let T be a topological space. A family sequence of T is a function from N
into 22the carrier of T

In the sequel U7 denotes a family sequence of T, r denotes a real number, n
denotes a natural number, and f denotes a function.

Let us consider T', Uy, n. Then U;(n) is a family of subsets of T'.

Let us consider 7', U;. Then |JU; is a family of subsets of T'.

Let T be a non empty topological space and let U; be a family sequence of

T. We say that U; is sigma-discrete if and only if:
(Def. 2) For every natural number n holds Uj(n) is discrete.
Let T be a non empty topological space. Note that there exists a family
sequence of 1" which is sigma-discrete.
Let T be a non empty topological space and let U; be a family sequence of
T. We say that U is sigma-locally-finite if and only if:
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(Def. 3) For every natural number n holds Uj(n) is locally finite.

Let us consider T and let F' be a family of subsets of 7. We say that F' is
sigma-discrete if and only if:
(Def. 4) There exists a sigma-discrete family sequence f of T' such that F' = f.
Let X be a set. We introduce X is uncountable as an antonym of X is
countable.
One can verify that every set which is uncountable is also non empty.
Let T be a non empty topological space. One can check that there exists a
family sequence of T" which is sigma-locally-finite.
Next we state two propositions:
(12) For every U; such that U; is sigma-discrete holds Uj is sigma-locally-
finite.
(13) Let A be an uncountable set. Then there exists a family F' of subsets of
{} A, A]}top such that F is locally finite and F is not sigma-discrete.

Let T be a non empty topological space and let U; be a family sequence of
T. We say that U; is Basis-sigma-discrete if and only if:

(Def. 5) Uy is sigma-discrete and |JU; is a basis of T'.

Let T be a non empty topological space and let U; be a family sequence of
T. We say that U; is Basis-sigma-locally finite if and only if:

(Def. 6) Uy is sigma-locally-finite and | U; is a basis of T'.
The following propositions are true:

(14) Let r be a real number. Suppose P; is a non empty metric space. Let z
be an element of P;. Then Qp) \ Ball(x,r) € the open set family of P;.

(15) For every T such that T' is metrizable holds 7' is a T3 space and a T}
space.

(16) For every T such that T is metrizable holds there exists a family sequence
of T which is Basis-sigma-locally finite.

into 2the carrier of T

(17) For every function U from N such that for every n

holds U(n) is open holds |JU is open.

(18) Suppose that for all A, U such that A is closed and U is open and A C U
there exists a function W from N into 2the carrier of T gch that A C |JW
and |JW C U and for every n holds W(n) C U and W (n) is open. Then
T is a Ty space.

(19) Let given T'. Suppose T is a T3 space. Let By be a family sequence of T'.
Suppose | J By is a basis of T'. Let U be a subset of T" and p be a point of
T. Suppose U is open and p € U. Then there exists a subset O of T" such
that p € O and O C U and O € | B;.

(20) For every T such that T'is a T3 space and a Tj space and there exists
a family sequence of T" which is Basis-sigma-locally finite holds 7" is a Ty
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space.

Let us consider T" and let F'; G be real maps of T'. The functor F'+ G yielding
a real map of T is defined as follows:

(Def. 7) For every element ¢ of T holds (F + G)(t) = F(t) + G(t).
Next we state four propositions:

(21) Let f be a real map of T. Suppose f is continuous. Let F' be a real map
of [T, T]. Suppose that for all elements =, y of the carrier of T' holds
F({z,y)) = |f(z) — f(y)|- Then F is continuous.

(22) For all real maps F', G of T such that F' is continuous and G is continuous
holds F' 4 G is continuous.

(23) Let A; be a binary operation on Rthe carrier of T qy5505e that for all real
maps f1, fo of T holds A1(f1, f2) = f1 + fo. Then A; is commutative and
associative and has a unity.

(24) Let A; be a binary operation on Rthe carrier of 7' Qupnoge that for all

real maps f1, fo of T holds A;(f1, f2) = f1 + f2. Let m be an element of
Rthe carrier of T Tf pof g a unity w.r.t. A;, then m/ is continuous.

Let T, T7 be non empty topological spaces, let S be a function from the
carrier of T into 2the carrier of T 51 let Fy be a function from the carrier of T
into (the carrier of Ty)the carrier of T The functor F} ~ S; yields a map from T
into 77 and is defined by:

(Def. 8) For every point p of T holds (F; ~ S1)(p) = Fi(p)(p).

The following propositions are true:

(25) Let A; be a binary operation on Rthe carrier of T "qy5p05e that for all real
maps f1, fo of T holds A1(f1, fo) = fi1 + fo. Let F be a finite sequence
of elements of Rthe carrier of T' " Qyip65e that for every m such that 0 # n
and n < len F' holds F'(n) is a continuous real map of T'. Then A; ® F' is
a continuous real map of 7T'.

(26) Let F be a function from the carrier of T into (the carrier of
Ty )the carrier of T Qupnose that for every point p of T holds F(p) is a con-
tinuous map from 7 into 7. Let S be a function from the carrier of T
into 2the carrier of T "Qupnose that for every point p of T holds p € S(p)

and S(p) is open and for all points p, ¢ of T such that p € S(g) holds
F(p)(p) = F(q)(p). Then F =~ S is continuous.

In the sequel m denotes a function from [ the carrier of T', the carrier of T'{
into R.
Let us consider X, r and let f be a function from X into R. The functor
min(r, f) yielding a function from X into R is defined as follows:
(Def. 9) For every x such that x € X holds (min(r, f))(z) = min(r, f(x)).

One can prove the following proposition
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(27) For every real number r and for every real map f of T' such that f is
continuous holds min(r, f) is continuous.

Let X be a set and let f be a function from [ X, X ] into R. We say that f
is a pseudometric of if and only if:

(Def. 10) f is Reflexive, symmetric, and triangle.
One can prove the following propositions:

(28) Let f be a function from [ X, X | into R. Then f is a pseudometric of
if and only if for all elements a, b, ¢ of X holds f(a, a) = 0 and f(a,
c) < f(a, b) + f(c, b).

(29) For every function f from [ X, X ] into R such that f is a pseudometric
of and for all elements x, y of X holds f(z, y) > 0.

(30) For all r, m such that » > 0 and m is a pseudometric of holds min(r, m)
is a pseudometric of.

(31) For all r, m such that » > 0 and m is a metric of the carrier of T holds
min(r,m) is a metric of the carrier of 7'
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Summary. In this article we formalize theorems from Chapter 1 of [7].
Our article covers Theorems 1.5.4, 1.5.5 (inequality on indices), 1.5.6 (equality of
indices), Lemma 1.6.1 and several other supporting theorems needed to complete
the formalization.

MML Identifier: GROUP_S.

The articles [1], [12], [5], [19], [20], [3], [4], [13], [16], [6], [14], [15], [10], [8], [17],
[18], [11], [2], and [9] provide the terminology and notation for this paper.

For simplicity, we adopt the following rules: G is a strict group, a, b, z, y, z
are elements of the carrier of G, H, K are strict subgroups of G, p is a natural
number, and A is a subset of the carrier of G.

We now state a number of propositions:

(1) If pis prime and ord(G) = p and G is finite, then there exists a such
that ord(a) = p.

(2) Let a1, ag be elements of the carrier of H and by, by be elements of the
carrier of G. If a1 = b1 and ao = by, then ay - as = by - bo.

(3) Let a be an element of the carrier of H and b be an element of the carrier
of G. If a = b, then for every natural number n holds a™ = b™.

(4) Let a be an element of the carrier of H and b be an element of the carrier
of G. If a = b, then for every integer i holds a’ = b'.
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00102.
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(5) Let a be an element of the carrier of H and b be an element of the carrier
of G. If a = b and G is finite, then ord(a) = ord(b).

(6) For every element h of the carrier of G such that h € H holds H-h C the
carrier of H.

(7) For every a such that a # 1¢ holds gr({a}) # {1}¢.
(8) For every integer m holds (15)™ = 1¢.
(9) For every integer m holds amorda) — 1q.
(10) For every a such that a is not of order 0 and for every integer m holds
q™ = gmmod ord(a)'

If b is not of order 0, then gr({b}) is finite.
If b is of order 0, then b~! is of order 0.
b is of order 0 iff for every integer n such that b = 15 holds n = 0.
Let given G. Given a such that a # 1g. Then for every H holds H = G
or H = {1}¢ if and only if the following conditions are satisfied:
(i) G is a cyclic group and finite, and
(ii)  there exists a natural number p such that ord(G) = p and p is prime.
(15) Let x, y, z be elements of the carrier of G and A be a subset of the
carrier of G. Then z € - A -y if and only if there exists an element a of
the carrier of G such that z=x-a-y and a € A.
(16) For every non empty subset A of G and for every element x of the carrier
of Gholds A =z 1-A-x.
Let us consider G, H, K. The functor DoubleCosets(H, K) yielding a family
of subsets of the carrier of GG is defined as follows:
(Def. 1) A € DoubleCosets(H, K) iff there exists a such that A= H -a - K.
We now state two propositions:
(17) z € H -z - K iff there exist elements g, h of the carrier of G such that
z=g-x-hand g€ H and h € K.
(18) Forall H, K holds H-x-K = H -y- K or it is not true that there exists
zsuch that z€e H-x-Kand z€ H -y - K.
In the sequel B, A denote strict subgroups of G and D denotes a strict
subgroup of A.
Let us consider G, A. Observe that the left cosets of A is non empty.
Let us consider G and let H be a subgroup of G. We introduce [G : H|y as
a synonym of |e: H|y.
Next we state several propositions:
(19) IfG=AUBand D= ANB and G is finite, then [G : Bly > [A: D]y.
(20) If G is finite, then [G : H]y > 0.
(21) Let G be a strict group. Suppose G is finite. Let C' be a strict subgroup
of G and A, B be strict subgroups of C. Suppose C' = AU B. Let D be a
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strict subgroup of A. Suppose D = ANB. Let F be a strict subgroup of B.
Suppose E = ANB. Let F be a strict subgroup of C. Suppose F' = ANB.
Suppose the left cosets of B is finite and the left cosets of A is finite and
[A: C]y and [B : C]y are relative prime. Then [B : C]y = [D : A]y and
[A : C]N = [E : B]N

(22) For every element a of the carrier of G such that a € H and for every
integer j holds a’ € H.

(23) For every strict group G such that G # {1} there exists an element b
of the carrier of G such that b # 15.

(24) Let G be a strict group and a be an element of the carrier of G. Suppose
G =gr({a}) and G # {1}¢. Let H be a strict subgroup of G. If H # {1},
then there exists a natural number k such that 0 < k and o* € H.

(25) Let G be a strict cyclic group. Suppose G # {1}g. Let H be a strict
subgroup of G. If H # {1}, then H is a cyclic group.
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Summary. In this paper, we define Catalan sequence (starting from 0) and
prove some of its basic properties. The Catalan numbers (0,1,1,2,5,14,42,...)
arise in a number of problems in combinatorics. They can be computed e.g. using
the formula

2n
_ n

T on41’

their recursive definition is also well known:

n

Ci=1, Cn=3'7CiCni, n>2.

Among other things, the Catalan numbers describe the number of ways in which
parentheses can be placed in a sequence of numbers to be multiplied, two at a
time.

MML Identifier: CATALAN1.

The articles [2], [3], [4], [1], [5], [8], [6], and [7] provide the terminology and
notation for this paper.

1. PRELIMINARIES

One can prove the following propositions:

(1) For every natural number n such that n > 1 holds n —'1<2-n —'3.
(2) For every natural number n such that n > 1 holds n - 1< 2-n —'2.
(3) For every natural number n such that n > 1 holds n < 2-n —'1.

(4) For every natural number n such that n > 1 holds (n —'2)+1=n—"1.
(5) For every natural number n such that n > 1 holds % > 1.

IThis work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102.
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(6) For every natural number n such that n > 1 holds (2:-n—'2)!'n-(n+1) <
(2-n)l
3

(7) For every natural number n holds 2 - (2 — 47) < 4.

2. DEFINITION OF CATALAN NUMBERS

Let n be a natural number. The functor Catalan(n) yields a real number
and is defined as follows:
2-n—’2)

(Def. 1) Catalan(n) = Croy)

n
The following propositions are true:
(8) For every natural number n such that n > 1 holds Catalan(n) =

(2:n—"2)!

(9) For every natural number n such that n > 1 holds Catalan(n) = 4 -

) = b

(10) Catalan(0) = 0.

(11) Catalan(1) = 1.

(12) Catalan(2) = 1.

(13) For every natural number n holds Catalan(n) is an integer.

(14) For every natural number k such that £ > 1 holds Catalan(k + 1) =
k'((Zklj-)'l)'

3. BAsic PROPERTIES OF CATALAN NUMBERS

We now state several propositions:

(15) For every natural number n such that n > 1 holds Catalan(n) <
Catalan(n + 1).

(16) For every natural number n holds Catalan(n) < Catalan(n + 1).

(17) For every natural number n holds Catalan(n) > 0.

(18) For every natural number n holds Catalan(n) is a natural number.

(19) For every natural number n such that n > 0 holds Catalan(n + 1) =

2-(2—- %_H) - Catalan(n).
Let n be a natural number. Note that Catalan(n) is natural.

Next we state the proposition
(20) For every natural number n such that n > 0 holds Catalan(n) > 0.
Let n be a non empty natural number. One can verify that Catalan(n) is
non empty.
One can prove the following proposition
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(21) For every natural number n such that n > 0 holds Catalan(n + 1) <

ECENS)

=

4 - Catalan(n).
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Summary. We formalized another axiomatization of Boolean algebras.
The classical one is introduced in [9], “the fourth set of postulates” due to Hun-
tington [3] ([2] in Mizar) and the single axiom in terms of disjunction and ne-
gation is codified recently in [7]. In this article, we aimed at the description of
Boolean algebras using Sheffer stroke according to [6], namely by the following
three axioms:

(a]2)(zl) = @

z|(yl(yly)) = x|z
(] (yl2)(=[(y]2)) = ((yly)|=)[((2]2)|=)

(I is used instead of | in the translation of our Mizar article). Since Sheffer in his
original paper proved its equivalence and Huntington’s “first set of postulates”,
we have also introduced this axiomatization of BAs.

MML Identifier: SHEFFER1.

The terminology and notation used here are introduced in the following articles:
[8], [9], [5], [1], [4], and [2].

1. PRELIMINARIES

The following two propositions are true:

(1) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b be elements of L. Then (a+b)¢ =
a® x b°.

IThis work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-

00102.
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(2) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b be elements of L. Then (a*b)¢ =
a® + b°.

2. HUNTINGTON’S FIRST AXIOMATIZATION OF BOOLEAN ALGEBRAS

Let I; be a non empty lattice structure. We say that I is upper-bounded’
if and only if:
(Def. 1) There exists an element ¢ of I; such that for every element a of I; holds
cMa=aandallc=a.
Let L be a non empty lattice structure. Let us assume that L is upper-
bounded’. The functor T/, yields an element of L and is defined by:
(Def. 2) For every element a of L holds T/, Ma=a and aM T} = a.
Let I; be a non empty lattice structure. We say that I is lower-bounded’ if
and only if:
(Def. 3) There exists an element ¢ of I; such that for every element a of I; holds
cla=aand alc=a.
Let L be a non empty lattice structure. Let us assume that L is lower-
bounded’. The functor L yields an element of L and is defined as follows:
(Def. 4) For every element a of L holds 1} Ua=a and aU 1} = a.
Let I; be a non empty lattice structure. We say that I is distributive’ if
and only if:
(Def. 5) For all elements a, b, ¢ of I holds a U (bMe¢) = (aUb) M (alc).
Let L be a non empty lattice structure and let a, b be elements of L. We say
that a is a complement’ of b if and only if:
(Def. 6) bUa=T, and aUb=T, andbMa=_17 andaMb=17.
Let I; be a non empty lattice structure. We say that I; is complemented’ if
and only if:
(Def. 7) For every element b of I; holds there exists an element of I; which is a
complement’ of b.

Let L be a non empty lattice structure and let x be an element of L. Let
us assume that L is complemented’, distributive, upper-bounded’, and meet-
commutative. The functor ¢ yields an element of L and is defined as follows:

(Def. 8) z¢ is a complement’ of z.

Let us mention that there exists a non empty lattice structure which is
Boolean, join-idempotent, upper-bounded’, complemented’, distributive’, lower-
bounded’, and lattice-like.

Next we state several propositions:
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(3) Let L be a complemented’ join-commutative meet-commutative distri-
butive upper-bounded’ distributive’ non empty lattice structure and x be
an element of L. Then z U z¢ = T

(4) Let L be a complemented’ join-commutative meet-commutative distri-
butive upper-bounded’ distributive’ non empty lattice structure and x be
an element of L. Then z Mz = 17,

(5) Let L be a complemented’ join-commutative meet-commutative join-
idempotent distributive upper-bounded’ distributive’ non empty lattice
structure and = be an element of L. Then x U T} = T7.

(6) Let L be a complemented’ join-commutative meet-commutative join-
idempotent distributive upper-bounded’ lower-bounded’ distributive’ non
empty lattice structure and x be an element of L. Then z M 1} = 1.

(7) Let L be a join-commutative meet-absorbing meet-commutative join-
absorbing join-idempotent distributive non empty lattice structure and x,
y, z be elements of L. Then (x Uy LU z) Nz = x.

(8) Let L be a join-commutative meet-absorbing meet-commutative join-
absorbing join-idempotent distributive’ non empty lattice structure and
x, y, z be elements of L. Then (zMyMz) Uz = x.

Let G be a non empty M-semi lattice structure. We say that G is meet-
idempotent if and only if:
(Def. 9) For every element x of G holds z Mz = x.
Next we state a number of propositions:

(9) Every complemented’ join-commutative meet-commutative distributive
upper-bounded’ lower-bounded’ distributive’ non empty lattice structure
is meet-idempotent.

(10) Every complemented’ join-commutative meet-commutative distributive
upper-bounded’ lower-bounded’ distributive’ non empty lattice structure
is join-idempotent.

(11) Every complemented’ join-commutative meet-commutative
join-idempotent distributive upper-bounded’ distributive’ non empty lat-
tice structure is meet-absorbing.

(12) Every complemented’ join-commutative upper-bounded’
meet-commutative join-idempotent distributive distributive’ lower-
bounded’ non empty lattice structure is join-absorbing.

(13) Every complemented’ join-commutative meet-commutative upper-
bounded’ lower-bounded’ join-idempotent distributive distributive’ non
empty lattice structure is upper-bounded.

(14) Every Boolean lattice-like non empty lattice structure is upper-bounded’.

(15) Every complemented’ join-commutative meet-commutative upper-
bounded’ lower-bounded’ join-idempotent distributive distributive’ non
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empty lattice structure is lower-bounded.

(16) Every Boolean lattice-like non empty lattice structure is lower-bounded’.

(17) Every join-commutative meet-commutative meet-absorbing
join-absorbing join-idempotent distributive non empty lattice structure is
join-associative.

(18) Every join-commutative meet-commutative meet-absorbing
join-absorbing join-idempotent distributive’ non empty lattice structure is
meet-associative.

(19) Let L be a complemented’ join-commutative meet-commutative lower-
bounded’ upper-bounded’ join-idempotent distributive distributive’ non
empty lattice structure. Then Tz = T’.

(20) Let L be a complemented’ join-commutative meet-commutative lower-
bounded’ upper-bounded’ join-idempotent distributive distributive’ non
empty lattice structure. Then L, = 1/ .

(21) For every Boolean distributive’ lattice-like non empty lattice structure
L holds Tp =T7.

(22) Let L be a Boolean complemented lower-bounded upper-bounded distri-
butive distributive’ lattice-like non empty lattice structure. Then 1 =
17,

(23) Let L be a complemented’ lower-bounded’ upper-bounded’ join-
commutative meet-commutative join-idempotent distributive distributive’
non empty lattice structure and z, y be elements of L. Then z is a com-
plement’ of y if and only if = is a complement of y.

(24) Every complemented’ join-commutative meet-commutative lower-
bounded’ upper-bounded’ join-idempotent distributive distributive’ non
empty lattice structure is complemented.

(25) Every Boolean lower-bounded’ upper-bounded’ distributive’ lattice-like
non empty lattice structure is complemented’.

(26) Let L be a non empty lattice structure. Then L is a Boolean lattice if
and only if L is lower-bounded’, upper-bounded’, join-commutative, meet-
commutative, distributive, distributive’, and complemented’.

Let us note that every non empty lattice structure which is Boolean
and lattice-like is also lower-bounded’, upper-bounded’, complemented’, join-
commutative, meet-commutative, distributive, and distributive’ and every non
empty lattice structure which is lower-bounded’, upper-bounded’, complemen-
ted’, join-commutative, meet-commutative, distributive, and distributive’ is also
Boolean and lattice-like.
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3. AXIOMATIZATION BASED ON SHEFFER STROKE

We introduce Sheffer structures which are extensions of 1-sorted structure
and are systems

( a carrier, a Sheffer stroke ),
where the carrier is a set and the Sheffer stroke is a binary operation on the
carrier.

We consider Sheffer lattice structures as extensions of Sheffer structure and
lattice structure as systems

( a carrier, a join operation, a meet operation, a Sheffer stroke ),
where the carrier is a set, the join operation is a binary operation on the carrier,
the meet operation is a binary operation on the carrier, and the Sheffer stroke
is a binary operation on the carrier.

We consider Sheffer ortholattice structures as extensions of Sheffer structure
and ortholattice structure as systems

( a carrier, a join operation, a meet operation, a complement operation, a
Sheffer stroke ),
where the carrier is a set, the join operation is a binary operation on the car-
rier, the meet operation is a binary operation on the carrier, the complement
operation is a unary operation on the carrier, and the Sheffer stroke is a binary
operation on the carrier.

The Sheffer ortholattice structure TrivShefferOrthoLattStr is defined by:

(Def. 10) TrivShefferOrthoLattStr = ({0}, opy, 0py, 0p;, 0ps)-
One can verify the following observations:
* there exists a Sheffer structure which is non empty,
* there exists a Sheffer lattice structure which is non empty, and
* there exists a Sheffer ortholattice structure which is non empty.

Let L be a non empty Sheffer structure and let x, y be elements of L. The
functor x[y yields an element of L and is defined as follows:

(Def. 11) x|y = (the Sheffer stroke of L)(z, y).

Let L be a non empty Sheffer ortholattice structure. We say that L is pro-
perly defined if and only if the conditions (Def. 12) are satisfied.
(Def. 12)(i)  For every element x of L holds x|z = ¢,
(ii)  for all elements x, y of L holds z Uy = z[z[(y|y),
(iii)  for all elements x, y of L holds z My = z[y[(x]y), and
(iv) for all elements z, y of L holds z[y = z° + y°.
Let L be a non empty Sheffer structure. We say that L satisfies (Sheffer;) if
and only if:
(Def. 13) For every element z of L holds z|z|(z|z) = x.

We say that L satisfies (Sheffery) if and only if:



360 VIOLETTA KOZARKIEWICZ AND ADAM GRABOWSKI

(Def. 14) For all elements z, y of L holds z[(y[(yly)) = x|x.
We say that L satisfies (Sheffers) if and only if:
(Def. 15) For all elements z, y, z of L holds (z[(y[2))[(z[(y[2)) = ylylz|(z]z]z).
Let us note that every non empty Sheffer structure which is trivial satisfies
also (Sheffer;), (Sheffers), and (Sheffers).
One can verify that every non empty U-semi lattice structure which is trivial

is also join-commutative and join-associative and every non empty M-semi lattice
structure which is trivial is also meet-commutative and meet-associative.

Let us note that every non empty lattice structure which is trivial is also
join-absorbing, meet-absorbing, and Boolean.
One can check the following observations:
x  TrivShefferOrthoLattStr is non empty,
*  TrivShefferOrthoLattStr is trivial, and
*  TrivShefferOrthoLattStr is properly defined and well-complemented.
Let us mention that there exists a non empty Sheffer ortholattice structure
which is properly defined, Boolean, well-complemented, and lattice-like and sa-
tisfies (Sheffer;), (Sheffers), and (Sheffers).
Next we state three propositions:
(27) Every properly defined Boolean well-complemented lattice-like non
empty Sheffer ortholattice structure satisfies (Sheffery).
(28) Every properly defined Boolean well-complemented lattice-like non
empty Sheffer ortholattice structure satisfies (Sheffers).
(29) Every properly defined Boolean well-complemented lattice-like non
empty Sheffer ortholattice structure satisfies (Sheffers).

Let L be a non empty Sheffer structure and let @ be an element of L. The
functor a~! yielding an element of L is defined as follows:
(Def. 16) a!=ala.
One can prove the following propositions:
(30) Let L be a non empty Sheffer ortholattice structure satisfying (Sheffers)
and z, y, z be elements of L. Then (x[(y[2))~! =y~ z[(z7z).
(31) For every non empty Sheffer ortholattice structure L satisfying (Sheffer;)
and for every element x of L holds z = (z~1)7L.

(32) Let L be a properly defined non empty Sheffer ortholattice structure
satisfying (Sheffer;), (Sheffers), and (Sheffers) and z, y be elements of L.
Then x|y = ylz.

(33) Let L be a properly defined non empty Sheffer ortholattice structure
satisfying (Sheffer;), (Sheffery), and (Sheffers) and z, y be elements of L.
Then z[(z]z) = yl(yly).
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(34) Every properly defined non empty Sheffer ortholattice structure satisfy-
ing (Sheffer;), (Sheffery), and (Sheffers) is join-commutative.

(35) Every properly defined non empty Sheffer ortholattice structure satisfy-
ing (Sheffer;), (Sheffers), and (Sheffers) is meet-commutative.

(36) Every properly defined non empty Sheffer ortholattice structure satisfy-
ing (Sheffer;), (Sheffery), and (Sheffers) is distributive.

(37) Every properly defined non empty Sheffer ortholattice structure satisfy-
ing (Sheffer;), (Sheffers), and (Sheffers) is distributive’.

(38) Every properly defined non empty Sheffer ortholattice structure satisfy-
ing (Sheffer;), (Sheffery), and (Sheffers) is a Boolean lattice.
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Summary. We continue the description of Boolean algebras in terms of
the Sheffer stroke as defined in [2]. The single axiomatization for BAs in terms
of disjunction and negation was shown in [3]. As was checked automatically with
the help of automated theorem prover Otter, single axiom of the form

(@[((y|2)|=))(yl(2[x)) =y (Sh1)

is enough to axiomatize the class of all Boolean algebras (] is used instead of | in
translation of our Mizar article). Many theorems in Section 2 were automatically
translated from the Otter proof object.

MML Identifier: SHEFFER2.

The terminology and notation used in this paper are introduced in the following
papers: [4], [1], and [2].

1. FIRST IMPLICATION

Let L be a non empty Sheffer structure. We say that L satisfies (Sh;) if and

only if:
(Def. 1) For all elements x, y, z of L holds z[(y[z[z)[(y[(z]x)) = y.

Let us observe that every non empty Sheffer structure which is trivial satisfies
also (Shy).

Let us observe that there exists a non empty Sheffer structure which satisfies
(Shy), (Sheffer;), (Sheffers), and (Sheffers).

In the sequel L is a non empty Sheffer structure satisfying (Shy).

One can prove the following propositions:

IThis work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102.
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(1) For all elements x, y, z, u of L holds
@yl (@@ (yT) (@22 [ (ul(z](y[2))) = 2[(z]2]2).

(2) For all elements z, y, z of L holds (z[y[(y[(zlyly)[(z[y)(xz]y)))]lz =
yl(zlyly).

(3) For all elements z, y, z of L holds z[(y|

(4) For all elements x, y of L holds z[(z[(z|z[z)[(y](z](
zl(xlz|x).

For every element x of L holds z[(z[z[z) = z[z.
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zl(yl2)[(ylz).
(30) For all elements z, y, z of L holds (z[(y[(z[2)))ly = y[(z[z).
[

(31) For all elements z, y, z, u of L holds x[(y[z)[(z
(32) For all elements z, y of L holds z[(y[(zy)) = x|x.
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W
N

For all elements x, y, z of L holds z[(y[y)

(33) For all elements z, y, z of L holds z[(y[z) = z[(z[y).

(34) For all elements x, y, z of L holds z[(y[(z[(z[(y]x)))) = x|x.

(35) For all elements z, y, z of L holds (z[(y[2))[(ylz[z) = z[(y[z)[(z[(y[2))
(36) For all elements z, y, z of L holds z[(y[z)[y = yly.

(37) For all elements z, y, z of L holds (z[y)[z = z[(y[x).

(38) For all elements z, y, z of L holds z[(y[(z](x]y))) = z[(y]y).

(39) For all elements z, y, z of L holds (z]y[y)[(y[(z[z)) = y[(z[z)[(y](z]x))
(40) For all elements z, y, z, u of L holds (z[y)[(z[u) = ulz[(y|z)

(41) For all elements z, y, z of L holds z[(y[(y[z[2)) = z[(y[y).

(42) For all elements x, y of L holds z[(y[z) = x[(yy).

(43) For all elements z, y of L holds (z]y)ly = y[(z|z).

(44) =

(45)

(
For all elements z, y, z of L holds (z[(yly))l(z[(zly)) =
z[(zly) [(z](z]y)).
(46) For all elements =z, y, z of L holds (z[(yl2))[(z[(yly)) =
z[(yl2) (=] (y[2)).
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For all elements z, y, z of L holds z[(y[(z]x)[(y[(z]z))[(2]z)) =
z[(yl(z]z)).
(61) For all elements z, y, z of L holds z[(y[(z]z)) = z[(y[(z]x)).
(62) For all elements x, y, z of L holds z[(y[(z]z[z)) =z
(63) For all elements z, y, z of L holds (z[(y[y))[(z](z](ylylz))) =
zl(zly)[(z](z]y))-
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(64) For all elements x, y, z of L holds (x[(yly))[(z](z[(z[(yly)))) =
z](zly) (2] (z]y))-

(65) For all elements z, y, z of L holds (z[(yly))[(z](z]z)) =
e[ (z1y) [(z[(z1y))-

(66) For all elements x, y, z of L holds (z[zly)[(z]z]y) = y[(z[2)[(y[(x]z)).

(67) For every non empty Sheffer structure L such that L satisfies (Sh;) holds
L satisfies (Sheffer;).

(68) For every non empty Sheffer structure L such that L satisfies (Sh;) holds
L satisfies (Sheffers).

(69) For every non empty Sheffer structure L such that L satisfies (Sh;) holds
L satisfies (Sheffers).

Let us mention that there exists a non empty Sheffer ortholattice struc-
ture which is properly defined, Boolean, well-complemented, lattice-like, and de
Morgan and satisfies (Sheffer;), (Sheffers), (Sheffers), and (Shy).

Let us mention that every non empty Sheffer ortholattice structure which
is properly defined satisfies (Sheffer;), (Sheffers), and (Sheffers) is also Bo-
olean and lattice-like and every non empty Sheffer ortholattice structure which

is Boolean, lattice-like, well-complemented, and properly defined satisfies also
(Sheffer; ), (Sheffers), and (Sheffers).

2. SECOND IMPLICATION

We adopt the following rules: L denotes a non empty Sheffer structure satis-
fying (Sheffer;), (Sheffers), and (Sheffers) and v, ¢, p, w, z, y,  denote elements
of L.

One can prove the following propositions:
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For all z, w holds w|(z]z]x) = wlw.

For all p, z holds z = z|z|(p|(pIp)).

For all y, w holds wlw[(w[(y[(yly))) = w.

For all ¢, p, y, w holds (w[(y[(yly))Ip)(qlqlp) = pl(w[q)[(pl(w]q)).
For all ¢, p, = holds (x[p)[(qlqlp) = pl(zlz[q)[(p(z[2[q)).

(wlwlp) (gl (y(yly))Ip) = pl(wlg) I (pl(wlq)).
For all p, = holds = = x|z [(p[p[p)-
For all y, w holds wlw[(w|(ylyly)
For all y, w holds w[(ylyly)]
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(116)
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(138)
(139)
(140)
(141)

(142)
(143)
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For all ¢, 2, =z holds (qf(xz[z[2)[(q](zlz[2)))(z]ql(2[2]q)) =
z[2[(212)[(xq) [(qlq[(z[q))-

For all g 2z @ holds (ql(zlzls)l(@l@lzlo)(@lal(zl2lg) =
z1(zlg)(galql(z]q))-

For all w, ¢, z holds (wlwl(zz]q))[(ql(alql=)I(ql(qlql2))) =
zlzlql(wlq)[(z]z1q](w]q)).

For all ¢, p, x holds p[(z[p)[(pl(x[p))I(al(qlq)) = (z]z)]p.

For all p, z holds p[(x|p) = (x]x)[p.

For all p, y holds (y[p)[(ylylp) = pIp[(yIp).

For all z, y holds z = z[x]

For all z, y holds (y[z)[z = z[(yly

For all z, z, y holds z[(y[y[2)[(x[(yly| i

For all z, y, z holds z[(z[(2[2)[(z[(212))[y) [ (x](

T
For all z, z, y holds (z[(yly[2))lz = z[(y[|z).

For all z, y holds z[(y|z|z)
For all z, y,  holds y = x|
For all z, y holds y[(y[yl2)
I

w.
For all y, p, w holds wip[(w[(yl(yly))) = w
For all p, ¢, w, y, z holds (z[(y[(y[y)) [w[(glqlw))[(w[(x[q)[(w[(x]q))) =
wl(pl(plp)) [(wl(z[q)[(zlql(z]q) [(w](z]q)))

wl(xlq[(zlg)[(w[(x]q)))-
For all ¢, w, y, x holds (z[(y[(yly))[w[(¢glqlw)) [(wl(z[g)[(w](z]q))) =
wl(x]q).

For all z, p, q, y, = holds
(z[z[(pI(pTP)) (2] (y [ (y1y))
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(144) For all y, w, z, v, = holds (w[(z[(z[v)))[(z[(y[(yly))Iz[(vv]z)) =
z[(z]v).

(145) For all y, z, = holds (yl(zlz12) [(yl(zl22) (2 lyl(=]21y) = yl(2lz]2)

(146) For all z, y, « holds (z[(z[y))ly = y[(z]z]z)

(147) For all z, w, y, z holds (x]zw|(z](y[(y[y))w))[w = w[(z]z)

(148) For all z, w, x holds w[(z[(z[z|w)) = w|(x[z).

(149) For all p, 2z, y, « holds (z[(x[p)[(z[(z[p)))[(z[(y[(yly))Iz[(plpl2)) =
plplz1 ([ (yI(yTy) 1) (pIplz (] (y [ (YY) 12)).

(150) For all p, z, y, « holds z[(xz[p) =

(151) For all 2, p, y, « holds z[(z[p) = z[(p[(z[(y[(yIy¥)) [(z[(y[(y]¥)))))
(152) For all z, p, x holds z[(x|p) = z[(plx)

(153) For all w, g, p holds (p[q)[w = w(q[p).

(154) For all w, p, q holds (q[plw)lq = q[(pIplw).

(155) For all z, w, y,  holds wlz = w((z[z[(z[(y[(yIy) [ (= (y[(yly)))Iw))
(156) For all w, z, x holds wlx = w|(z|z](z[w)).

(157)

For all ¢, z, z, y holds (z[y)[(z[(y[(z[(z]2)
zlyl (@ (yl(z](2]2))))-
(158) For all =, g, z, y holds (x[y)[(z[(yl(z[(2]2))[(yI(2[(2[2)))Iq)) =
zlyl(z[(yl(z[(z]2))))-
(159) For all z, z, ¢, y holds (z]y)[(z|(y
(160) For all z, ¢, y holds z[y[(z[(y]q))
(161) L satisfies (Shy).

Let us mention that every non empty Sheffer structure which satisfies
(Sheffer;), (Sheffers), and (Sheffers) satisfies also (Sh;) and every non empty
Sheffer structure which satisfies (Sh;) satisfies also (Sheffer;), (Sheffers), and
(Sheffers).

Let us observe that every non empty Sheffer ortholattice structure which

N—

=

=
<

=
&

N—
I

is properly defined satisfies (Shj) is also Boolean and lattice-like and every
non empty Sheffer ortholattice structure which is Boolean, lattice-like, well-
complemented, and properly defined satisfies also (Shy).

REFERENCES

[1] Adam Grabowski. Robbins algebras vs. Boolean algebras. Formalized Mathematics,
9(4):681-690, 2001.

[2] Violetta Kozarkiewicz and Adam Grabowski. Axiomatization of Boolean algebras based
on Sheffer stroke. Formalized Mathematics, 12(3):355-361, 2004.

[3] Wioletta Truszkowska and Adam Grabowski. On the two short axiomatizations of ortho-
lattices. Formalized Mathematics, 11(3):335-340, 2003.

[4] Stanistaw Zukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215-222,
1990.



370 ANETA LUKASZUK AND ADAM GRABOWSKI

Received May 31, 2004



FORMALIZED MATHEMATICS
Volume 12, Number 3, 2004
University of Bialystok

Differentiable Functions on Normed Linear
Spaces. Part 11

Hiroshi Imura Yuji Sakai Yasunari Shidama
Shinshu University Shinshu University Shinshu University
Nagano Nagano Nagano

Summary. A continuation of [7], the basic properties of the differentiable
functions on normed linear spaces are described.

MML Identifier: NDIFF_2.

The terminology and notation used in this paper have been introduced in the
following articles: [16], [3], [19], [5], [4], [1], [15], [6], [17], [18], [9], [8], [2], [20],
[12], [14], [10], [13], [7], and [11].

For simplicity, we adopt the following rules: S, T' denote non trivial real
normed spaces, xg denotes a point of S, f denotes a partial function from S to
T, h denotes a convergent to 0 sequence of S, and ¢ denotes a constant sequence
of S.

Let X, Y, Z be real normed spaces, let f be an element of BALinOps(X,Y'),
and let g be an element of BdLinOps(Y, Z). The functor g- f yielding an element
of BdLinOps(X, Z) is defined by:

(Def. 1) ¢ - f = modetrans(g,Y, Z) - modetrans(f, X,Y).

Let X, Y, Z be real normed spaces, let f be a point of
RNormSpaceOfBoundedLinearOperators(X,Y), and let g be a point of
RNormSpaceOfBoundedLinearOperators(Y, Z). The functor g - f yields a po-
int of RNormSpaceOfBoundedLinearOperators(X, Z) and is defined by:

(Def. 2) ¢ - f = modetrans(g,Y, Z) - modetrans(f, X,Y).
Next we state three propositions:
(1) Let xo be a point of S. Suppose f is differentiable in zp. Then there
exists a neighbourhood N of z( such that
(i) N Cdom f, and
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(ii)  for every point z of S and for every convergent to 0 sequence h of real
numbers and for every ¢ such that rnge = {xo} and rng(h -z +¢) C N
holds h=! (f - (h-z+4¢) — f - ¢) is convergent and f’(zg)(2) = lim(h~! (f -
(h-z+c¢c)—f-0).

(2) Let g be a point of S. Suppose f is differentiable in xy. Let z be a point
of S, h be a convergent to 0 sequence of real numbers, and given c. Suppose
g c = {zo} and rng(h-z+c¢) C dom f. Then h™' (f - (h-z+¢c)— f-c) is
convergent and f'(zg)(z) = lim(h™' (f - (h-z+¢c)— f-¢)).

(3) Let xo be a point of S and N be a neighbourhood of xy. Suppose N C
dom f. Let z be a point of S and dy be a point of 7. Then the following
statements are equivalent

(i)  for every convergent to 0 sequence h of real numbers and for every ¢
such that tngc = {7} and rng(h-z+c) € N holds b= (f-(h-z+c)— f-¢)
is convergent and dy = lim(h= (f - (h-z+4+¢) — f - ¢)),

(ii)  for every real number e such that e > 0 there exists a real number d
such that d > 0 and for every real number h such that |h| < d and h # 0
and h -z +zo € N holds |71 (frotae — fro) — dal| <e.

Let us consider S, T', let us consider f, let xg be a point of S, and let z be
a point of S. We say that f is Gateaux differentiable in xg, z if and only if the
condition (Def. 3) is satisfied.

(Def. 3) There exists a neighbourhood N of x such that
(i) N Cdom f, and
(ii)  there exists a point d; of T such that for every real number e such
that e > 0 there exists a real number d such that d > 0 and for every
real number h such that |h| < d and h # 0 and h -z + 9 € N holds
10 o — Foo) — ] < e
One can prove the following proposition

(4) For every real normed space X and for all points x, y of X holds ||[z—y|| >
0 iff x # y and for every real normed space X and for all points x, y of
X holds ||z — y|| = ||y — z|| and for every real normed space X and for all
points z, y of X holds ||z — y|| = 0 iff z = y and for every real normed
space X and for all points z, y of X holds ||z — y|| # 0 iff  # y and for
every real normed space X and for all points x, y, z of X and for every
real number e such that e > 0 holds if ||z — 2|| < § and ||z —y[| < §, then
lx — y|| < e and for every real normed space X and for all points z, y, z
of X and for every real number e such that e > 0 holds if |z — 2| < §
and ||y — z|| < §, then ||z —y|| < e and for every real normed space X and
for every point x of X such that for every real number e such that e > 0
holds ||z|| < e holds x = 0x and for every real normed space X and for all
points x, y of X such that for every real number e such that e > 0 holds
|z —y|| < e holds z =y.
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Let us consider S, T', let us consider f, let ¢ be a point of S, and let z be a
point of S. Let us assume that f is Gateaux differentiable in zg, z. The functor
GateauxDiff,(f, xo) yields a point of T" and is defined by the condition (Def. 4).

(Def. 4) There exists a neighbourhood N of xy such that

(i) N Cdom f, and

(ii)  for every real number e such that e > 0 there exists a real number d
such that d > 0 and for every real number h such that |h| < d and h # 0
and h-z+ 29 € N holds ||h™1 (froawe — fro) — GateauxDiff, (f, xo)| < e.

We now state two propositions:

(5) Let 29 be a point of S and z be a point of S. Then f is Gateaux differen-
tiable in zq, z if and only if there exists a neighbourhood N of xg such that
N C dom f and there exists a point d; of T such that for every convergent
to 0 sequence h of real numbers and for every ¢ such that rnge = {zo}
and rng(h -z +¢) € N holds h™' (f - (h-2z+¢) — f - c) is convergent and
di =lim(h=t(f-(h-z+4+¢c)— f-c)).

(6) Let z¢ be a point of S. Suppose f is differentiable in z. Let z be a point
of S. Then

(i)  fis Gateaux differentiable in xg, z,

(il)  GateauxDiff,(f, xg) = f'(x0)(z), and

(iii)  there exists a neighbourhood N of zg such that N C dom f and for
every convergent to 0 sequence h of real numbers and for every ¢ such that
mgc = {zo} and rng(h -2z +¢) € N holds A=t (f - (h-2+¢) — f-c¢)is
convergent and GateauxDiff,(f,zo) = lim(h~ ! (f-(h-z+¢)— f-¢)).

In the sequel U is a non trivial real normed space.

Next we state several propositions:

(7) Let R be a rest of S, T. Suppose Ry, = O7. Let e be a real number.
Suppose e > 0. Then there exists a real number d such that d > 0 and for
every point h of S such that ||| < d holds ||Ry| < e ||h].

(8) Let R be arest of T', U. Suppose Ro, = Oy. Let L be a bounded linear
operator from S into T'. Then R - L is a rest of S, U.

(9) For every rest R of S, T and for every bounded linear operator L from
T into U holds L - R is a rest of S, U.

(10) Let Ry be a rest of S, T'. Suppose (R1)og = Or. Let Ry be a rest of T,
U. If (R2)o, = Oy, then Ry - Ry is a rest of S, U.

(11) Let Ry be a rest of S, T. Suppose (R1)os = O7. Let Ry be a rest of T,
U. Suppose (R2)o, = Op. Let L be a bounded linear operator from S into
T. Then Ry - (L + Ry) is arest of S, U.

(12) Let R; be a rest of S, T. Suppose (R1)os = Or. Let Rz be a rest of
T, U. Suppose (R2)o, = Oy. Let L; be a bounded linear operator from
S into T and Lo be a bounded linear operator from 7 into U. Then



374 HIROSHI IMURA et al.

Lo-Ri+ Ry (L1 +R1) is arest of S, U.

(13) Let f; be a partial function from S to T'. Suppose f; is differentiable in
xo. Let fy be a partial function from 7" to U. Suppose f> is differentiable
in (f1)z,- Then fo- f1 is differentiable in zg and (f2- f1)"(x0) = f2'((f1)z0) "
fi'(zo).
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Summary. In C-program, vectors of n-dimension are sometimes represen-
ted by arrays, where the dimension n is saved in the O-th element of each array.
If we write the program in non-overwriting type, we can give Logical-Model to
each program. Here, we give a program calculating inner product of 2 vectors,
as an example of such a type, and its Logical-Model. If the Logical-Model is well
defined, and theorems tying the model with previous definitions are given, we can
say that the program is logically correct. In case the program is given as implicit
function form (i.e., the result of calculation is given by a variable of one of argu-
ments of a function), its Logical-Model is given by a definition of a new predicate
form. Logical correctness of such a program is shown by theorems following the
definition. As examples of such programs, we presented vector calculation of add,
sub, minus and scalar product.

MML Identifier: PRGCOR_2.

The articles [16], [18], [14], [20], [8], [4], [5], [11], [3], [10], [2], [6], [19], [17], [12],
9], [13], [1], [15], and [7] provide the terminology and notation for this paper.
In this paper m, n, ¢ are natural numbers and D is a set.
The following proposition is true
(1) For all n, m holds n € m iff n < m.

Let D be a non empty set. One can check that there exists a finite 0-sequence
of D which is non empty.
The following proposition is true

(2) For every non empty set D and for every non empty finite 0-sequence f
of D holds len f > 0.

Let D be a set and let ¢ be a finite sequence of elements of D. The functor
FS2XFS(q) yields a finite 0-sequence of D and is defined by:
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(Def. 1) len FS2XFS(gq) = len g and for every ¢ such that i < leng holds ¢(i+1) =
(FS2XFS(q))(4).

Let D be a set and let g be a finite 0-sequence of D. The functor XFS2FS(q)
yielding a finite sequence of elements of D is defined as follows:

(Def. 2) len XFS2FS(q) = len ¢ and for every i such that 1 < and ¢ < len ¢ holds
q(i ='1) = (XFS2FS(q))(i)-
One can prove the following two propositions:

(3) For every natural number k and for every set a holds k — a is a finite
0-sequence.

(4) Let D be a set, n be a natural number, and r be a set. Suppose r € D.

Then n —— r is a finite 0-sequence of D and for every finite 0-sequence go
such that ¢ = n +— r holds len gz = n.

Let D be a non empty set, let g be a finite sequence of elements of D, and let
n be a natural number. Let us assume that n > leng and N C D. The functor
FS2XFS*(q,n) yields a non empty finite 0-sequence of D and is defined by the
conditions (Def. 3).
(Def. 3)(i) lengq = (FS2XFS*(q,n))(0),
(ii) lenFS2XFS*(¢,n) = n,
(iii)  for every i such that 1 < i and ¢ < lengq holds (FS2XFS*(¢,n))(i) =
q(i), and
(iv)  for every natural number j such that lenqg < j and j < n holds
(FS2XFS*(¢,n))(y) = 0.

Let D be a non empty set and let p be a non empty finite 0-sequence of D.
Let us assume that N C D and p(0) is a natural number and p(0) € lenp. The
functor XFS2FS*(p) yielding a finite sequence of elements of D is defined by:

(Def. 4) For every m such that m = p(0) holds len XFS2FS*(p) = m and for
every ¢ such that 1 < and ¢ < m holds (XFS2FS*(p)) (i) = p(i).

The following proposition is true

(5) For every non empty set D and for every non empty finite O0-sequence p
of D such that N C D and p(0) = 0 and 0 < len p holds XFS2FS*(p) = 0.

Let D be a non empty set, let p be a finite 0-sequence of D, and let ¢ be a
finite sequence of elements of D. We say that p is an xrep of ¢ if and only if:

(Def. 5) N C D and p(0) =lenq and leng < lenp and for every i such that 1 <1
and 7 < leng holds p(i) = ¢(7).
The following proposition is true

(6) Let D be a non empty set and p be a non empty finite O-sequence of D.
Suppose N C D and p(0) is a natural number and p(0) € lenp. Then p is
an xrep of XFS2FS*(p).



LOGICAL CORRECTNESS OF VECTOR CALCULATION ... 377

Let z, y, a, b, ¢ be sets. The functor IFLGT(z,y,a,b,c) yielding a set is
defined by:
a, if x € y,
(Def. 6) IFLGT(z,y,a,b,c) =< b, if z =y,
¢, otherwise.
Next we state the proposition
(7) Let D be a non empty set, ¢ be a finite sequence of elements of D, and
n be a natural number. Suppose N C D and n > lenq. Then there exists
a finite 0-sequence p of D such that lenp = n and p is an xrep of ¢.
Let b be a finite 0-sequence of R and let n be a natural number. Then b(n)
is a real number.
Let a, b be finite O-sequences of R. Let us assume that b(0) is a natural
number and 0 < b(0) and b(0) < lena. The functor InnerPrdPrg(a,b) yielding
a real number is defined by the condition (Def. 7).

(Def. 7) There exists a finite O-sequence s of R and there exists an integer n such

that
(i) lens=lena,

(i) s(0) =0,

(iii) n = b(0),
) ifn # 0, then for every natural number ¢ such that ¢ < n holds s(i+1) =

s(i)+a(i+1)-b(i+1), and

(v) InnerPrdPrg(a,b) = s(n).

The following propositions are true:

(iv

(8) Let a be a finite sequence of elements of R and s be a finite 0-sequence
of R. Suppose len s > lena and s(0) = 0 and for every ¢ such that i < lena
holds s(i +1) = s(i) + a(i + 1). Then ) a = s(lena).

(9) Let a be a finite sequence of elements of R. Then there exists a finite
0-sequence s of R such that lens =lena + 1 and s(0) = 0 and for every 4
such that i < lena holds s(i +1) = s(i) + a(i + 1) and > a = s(lena).

(10) Let a, b be finite sequences of elements of R and n be a na-
tural number. If lena = lenb and n > lena, then |(a,b) =
InnerPrdPrg(FS2XFS*(a,n), FS2XFS*(b,n)).

Let b, ¢ be finite 0-sequences of R, let a be a real number, and let m be an
integer. We say that m scalar prd prg of ¢, a, b if and only if the conditions
(Def. 8) are satisfied.

(Def. 8)(i) lenc=m,

(ii)) lenb=m, and

(ili)  there exists an integer n such that ¢(0) = b(0) and n = b(0) and if
n # 0, then for every natural number ¢ such that 1 < 4 and ¢ < n holds
c(i) = a-b(i).
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We now state the proposition

(11) Let b be a non empty finite 0-sequence of R, a be a real number, and m

be a natural number. Suppose b(0) is a natural number and lenb = m and
0 < b(0) and b(0) < m. Then

(i)  there exists a finite 0-sequence ¢ of R such that m scalar prd prg of ¢,
a, b, and

(ii)  for every non empty finite 0-sequence ¢ of R such that m scalar prd prg
of ¢, a, b holds XFS2FS*(c¢) = a - XFS2FS*(b).

Let b, ¢ be finite 0-sequences of R and let m be an integer. We say that m

vector minus prg of ¢, b if and only if the conditions (Def. 9) are satisfied.

(Def. 9)(i) lenc =m,
(ii) lenb=m, and
(iii)  there exists an integer n such that ¢(0) = b(0) and n = b(0) and if
n # 0, then for every natural number ¢ such that 1 < 4 and ¢ < n holds
c(i) = —b(1).
The following proposition is true
(12) Let b be a non empty finite 0-sequence of R and m be a natural number.
Suppose b(0) is a natural number and lenb = m and 0 < 5(0) and b(0) <
m. Then
(i)  there exists a finite 0-sequence ¢ of R such that m vector minus prg of
¢, b, and
(ii)  for every non empty finite 0-sequence ¢ of R such that m vector minus
prg of ¢, b holds XFS2FS*(c) = —XFS2FS*(b).

Let a, b, ¢ be finite 0-sequences of R and let m be an integer. We say that
m vector add prg of ¢, a, b if and only if the conditions (Def. 10) are satisfied.

(Def. 10)(i) lenc = m,
(i) lena =m,
(iii) lenb = m, and

)  there exists an integer n such that ¢(0) = b(0) and n = b(0) and if
n # 0, then for every natural number 4 such that 1 < ¢ and ¢ < n holds
c(i) = a(i) + b(i).

Next we state the proposition

(iv

(13) Let a, b be non empty finite 0-sequences of R and m be a natural number.
Suppose b(0) is a natural number and lena = m and lenb = m and
a(0) = b(0) and 0 < b(0) and b(0) < m. Then

(i)  there exists a finite O-sequence ¢ of R such that m vector add prg of ¢,
a, b, and

(ii)  for every non empty finite 0-sequence ¢ of R such that m vector add
prg of ¢, a, b holds XFS2FS*(c) = XFS2FS*(a) + XFS2FS*(b).
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Let a, b, ¢ be finite 0-sequences of R and let m be an integer. We say that
m vector sub prg of ¢, a, b if and only if the conditions (Def. 11) are satisfied.
(Def. 11)(i) lenc=m,
(i)
(iii) lenb = m, and
)  there exists an integer n such that ¢(0) = b(0) and n = b(0) and if
n # 0, then for every natural number 4 such that 1 < ¢ and ¢ < n holds
c(i) = a(i) — b(3).

One can prove the following proposition

lena = m,

(iv

(14) Let a, b be non empty finite 0-sequences of R and m be a natural number.
Suppose b(0) is a natural number and lena = m and lenb = m and
a(0) = b(0) and 0 < b(0) and b(0) < m. Then

(i)  there exists a finite 0-sequence ¢ of R such that m vector sub prg of c,
a, b, and

(ii)  for every non empty finite O-sequence ¢ of R such that m vector sub
prg of ¢, a, b holds XFS2FS*(¢) = XFS2FS*(a) — XFS2FS*(b).
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Summary. We showed relations between separateness and inflation ope-
ration. We also gave some relations between separateness and connectedness de-
fined before. For two finite topological spaces, we defined a continuous function
from one to another. Some topological concepts are preserved by such continuous
functions. We gave one-dimensional concrete models of finite topological space.

MML Identifier: FINTOP04.

The notation and terminology used here are introduced in the following articles:
[12], [5], [13], (1], [14], [3], [4], [2], [6], [10], [9], [11], [7], and [8].
Let F} be a non empty finite topology space and let A, B be subsets of Fj.
We say that A and B are separated if and only if:
(Def. 1) AP misses B and A misses B°.
Next we state a number of propositions:
(1) Let Fy be a filled non empty finite topology space, A be a subset of F7,
and n, m be natural numbers. If n < m, then Finf(A,n) C Finf(A, m).
(2) Let Fj be a filled non empty finite topology space, A be a subset of F},
and n, m be natural numbers. If n < m, then Fcl(A,n) C Fcl(A, m).
(3) Let Fy be a filled non empty finite topology space, A be a subset of F},
and n, m be natural numbers. If n < m, then Fdfl(A,m) C Fdfl(A,n).
(4) Let F; be a filled non empty finite topology space, A be a subset of F},
and n, m be natural numbers. If n < m, then Fint(A, m) C Fint(A4,n).

(5) Let F} be a non empty finite topology space and A, B be subsets of Fj.
If A and B are separated, then B and A are separated.
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(6) Let F} be a filled non empty finite topology space and A, B be subsets
of Fi. If A and B are separated, then A misses B.

(7) Let F} be a non empty finite topology space and A, B be subsets of Fj.
Suppose F is symmetric. Then A and B are separated if and only if Af
misses B and A misses BY.

(8) Let Fy be a filled non empty finite topology space and A, B be subsets
of Fy. If Fy is symmetric and A® misses B, then A misses B®.

(9) Let Fy be a filled non empty finite topology space and A, B be subsets
of Fy. If F} is symmetric and A misses B’ then A misses B.

(10) Let Fy be a filled non empty finite topology space and A, B be subsets
of Fi. Suppose F} is symmetric. Then A and B are separated if and only
if A® misses B.

(11) Let Fy be a filled non empty finite topology space and A, B be subsets
of Fi. Suppose F} is symmetric. Then A and B are separated if and only
if A misses BY.

(12) Let F; be a filled non empty finite topology space and I be a subset of
Fy. Suppose Fi is symmetric. Then I is connected if and only if for all
subsets A, B of F} such that [y = AUDB and A and B are separated holds
A= Il or B = Il.

(13) Let Fy be a filled non empty finite topology space and B be a subset of
Fy. Suppose F} is symmetric. Then B is connected if and only if it is not
true that there exists a subset C' of Fy such that C # ) and B\ C # ()
and C' C B and C® misses B\ C.

Let F5, F3 be non empty finite topology spaces, let f be a function from the
carrier of F5 into the carrier of F3, and let n be a natural number. We say that
f is continuous n if and only if:

(Def. 2) For every element z of F» and for every element y of Fj such that = € the
carrier of F» and y = f(x) holds f°U(z,0) C U(y,n).
Next we state four propositions:

(14) Let F» be a non empty finite topology space, F3 be a filled non empty
finite topology space, n be a natural number, and f be a function from
the carrier of F5 into the carrier of F3. If f is continuous 0, then f is
continuous n.

(15) Let Fy be a non empty finite topology space, F3 be a filled non empty
finite topology space, ng, n be natural numbers, and f be a function from
the carrier of F» into the carrier of F3. If f is continuous ng and ng < n,
then f is continuous n.

(16) Let Fy, F3 be non empty finite topology spaces, A be a subset of Fb,

B be a subset of F3, and f be a function from the carrier of F5 into the
carrier of Fy. If f is continuous 0 and B = f°A, then f°A? C B°.
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(17) Let F,, F3 be non empty finite topology spaces, A be a subset of Fy,
B be a subset of F3, and f be a function from the carrier of F5 into the
carrier of F3. Suppose A is connected and f is continuous 0 and B = f°A.
Then B is connected.

Let n be a natural number. The functor Nbdll(n) yielding a function from
Segn into 258" is defined as follows:
(Def. 3) dom Nbdll(n) = Segn and for every natural number ¢ such that i € Segn
holds (Nbdll(n))(i) = {i,max(i =" 1,1), min(i + 1,n)}.
Let n be a natural number. Let us assume that n > 0. The functor FTSL1(n)
yielding a non empty finite topology space is defined as follows:
(Def. 4) FTSL1(n) = (Segn, Nbdll(n)).
We now state two propositions:
(18) For every natural number n such that n > 0 holds FTSL1(n) is filled.
(19) For every natural number n such that n > 0 holds FTSL1(n) is symme-
tric.
Let n be a natural number. The functor Nbdcl(n) yielding a function from
Segn into 25%8™ is defined by the conditions (Def. 5).
(Def. 5)(i) domNbdcl(n) = Segn, and
(ii)  for every natural number i such that i € Segn holds if 1 < ¢ and
i < n, then (Nbdcl(n))(z) = {i,i —"1,i+ 1} and if i = 1 and i < n, then
(Nbdel(n))(i) = {i,n,i+ 1} and if 1 < i and 7 = n, then (Nbdcl(n))(i) =
{i,i—"1,1} and if i = 1 and i = n, then (Nbdcl(n))(:) = {i}.
Let n be a natural number. Let us assume that n > 0. The functor FTSC1(n)
yielding a non empty finite topology space is defined as follows:
(Def. 6) FTSC1(n) = (Segn,Nbdcl(n)).
We now state two propositions:
(20) For every natural number n such that n > 0 holds FTSC1(n) is filled.
(21) For every natural number n such that n > 0 holds FTSC1(n) is symme-
tric.
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Summary. In this paper we show some auxiliary facts for sequence func-
tion to be pseudo-metric. Next we prove the Nagata-Smirnov theorem that every
topological space is metrizable if and only if it has o-locally finite basis. We attach
also the proof of the Bing’s theorem that every topological space is metrizable if
and only if its basis is o-discrete.

MML Identifier: NAGATA_2.

The terminology and notation used in this paper have been introduced in the
following articles: [9], [27], [28], [32], [20], [5], [12], [8], [21], [15], [2], [17], [14],
18], [19], [6], [10], [11], [24], (28], [4], [33], [1], [3], [25], [16], [26], [7], [13], [29];
[31], [34], [30], and [22].

For simplicity, we adopt the following convention: i, k, m, n denote natural
numbers, r, s denote real numbers, X denotes a set, T', T1, T denote non empty
topological spaces, p denotes a point of T', A denotes a subset of T', A’ denotes
a non empty subset of T', p; denotes an element of [ the carrier of T, the carrier
of T'], pa denotes a function from [ the carrier of T, the carrier of T'] into R, p/}
denotes a real map of [ T, T'], f denotes a real map of T', F» denotes a sequence
of partial functions from [the carrier of T, the carrier of T'] into R, and s;
denotes a sequence of real numbers.

The following proposition is true

(1) For every i such that ¢ > 0 there exist n, m such that i = 2" (2-m+1).
The function PairFunc from [N, N] into N is defined by:
(Def. 1) For all n, m holds PairFunc({n, m)) =2"-(2-m+1) — 1.

We now state the proposition

IThis work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-
00102 and KBN grant 4 T11C 039 24.
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(2) PairFunc is bijective.

Let X be a set, let f be a function from [ X, X ] into R, and let « be an
element of X. The functor p(f,z) yielding a function from X into R is defined
as follows:

(Def. 2) For every element y of X holds (p(f,z))(y) = f(z, y).
The following two propositions are true:

(3) Let D be a subset of [ T7, To ]. Suppose D is open. Let 21 be a point of
T1, xo be a point of T, X7 be a subset of T, and X5 be a subset of T5.
Then

(i) if X; = m1((the carrier of T7) x the carrier of 75)°(D N [ the carrier of
Ty, {z2} 1), then X is open, and

(ii)  if Xo = ma((the carrier of T7) x the carrier of T5)°(D N[ {z1}, the carrier
of T ), then X5 is open.

(4) For every po such that for every p) such that ps = p} holds p} is conti-
nuous and for every point x of T" holds p(pe, z) is continuous.

Let X be a non empty set, let f be a function from [ X, X ] into R, and let
A be a subset of X. The functor inf(f, A) yielding a function from X into R is
defined by:

(Def. 3) For every element = of X holds (inf(f, A))(z) = inf((p(f,x))°A).
One can prove the following propositions:

(5) Let X be a non empty set and f be a function from [ X, X | into R.
Suppose f is a pseudometric of. Let A be a non empty subset of X and x
be an element of X. Then (inf(f, 4))(x) > 0.

(6) Let X be a non empty set and f be a function from [ X, X ] into R.
Suppose f is a pseudometric of. Let A be a subset of X and x be an
element of X. If x € A, then (inf(f, A))(z) = 0.

(7) Let given py. Suppose p2 is a pseudometric of. Let x, y be points of 7" and
A be a non empty subset of 7. Then |(inf(p2, A))(z) — (inf(p2, A))(y)| <
P2 ($7 y)

(8) Let given py. Suppose py is a pseudometric of and for every p holds
p(p2,p) is continuous. Let A be a non empty subset of 7. Then inf(p2, A)
is continuous.

(9) For every function f from [ X, X | into R such that f is a metric of X
holds f is a pseudometric of.

(10) Let given po. Suppose pg is a metric of the carrier of 7" and for every

non empty subset A of T holds A = {p;p ranges over points of T
(inf(p2, A))(p) = 0}. Then T is metrizable.

(11) Let given Fy. Suppose for every n there exists py such that Fa(n) = po
and po is a pseudometric of and for every p; holds Fo#p; is summable.
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Let given po. If for every p; holds pa(p1) = > (Fa#p1), then py is a pseu-
dometric of.

(12) For all n, s; such that for every m such that m < n holds s;(m) < r and
for every m such that m < n holds (35 _,(s1)(@))wen(m) <7 - (m+1).

(13)  For every k holds [(325_o(s1)(a))xen(k)| < (3-a_ols1l(c))wen (k).
(14) Let Fy be a sequence of partial functions from the carrier of 7" into R.
Suppose that
(i)  for every n there exists f such that Fj(n) = f and f is continuous and
for every p holds f(p) > 0, and
(ii)  there exists s; such that s; is summable and for all n, p holds
(Futp)(n) < 51(n).
Let given f. If for every p holds f(p) = > (F1#p), then f is continuous.
(15) Let given s, Fy. Suppose that for every n there exists ps such that
F5(n) = p2 and p9 is a pseudometric of and for every p; holds pa(p1) < s
and for every p| such that ps = p} holds p) is continuous. Let given ps.
Suppose that for every pi holds pa(p1) = S(((3)%)wen (Fo#p1)). Then
p2 is a pseudometric of and for every p| such that ps = p} holds p} is
continuous.

(16) Let given pa. Suppose ps is a pseudometric of and for every p| such that
p2 = pj holds p} is continuous. Let A be a non empty subset of T" and
given p. If p € A, then (inf(pa, 4))(p) = 0.

(17) Let given T. Suppose T is a 17 space. Let given s, F,. Suppose that

(i) for every n there exists po such that F»(n) = py and ps is a pseudometric
of and for every p; holds p2(p1) < s and for every p) such that ps = p)
holds p} is continuous, and

(ii)  for all p, A’ such that p ¢ A" and A’ is closed there exists n such that
for every py such that Fy(n) = py holds (inf(p2, A’))(p) > 0.

Then there exists ps such that ps is a metric of the carrier of T and for
every py holds pa(p1) = 3(((3)%)sen (Fo#p1)) and T is metrizable.

(18) Let D be a non empty set, p, ¢ be finite sequences of elements of D, and
B be a binary operation on D. Suppose that
) pis one-to-one,
) g is one-to-one,
(iii) rngq C rngp,
) B is commutative and associative, and
) B has a unity or leng > 1 and lenp > leng.
Then there exists a finite sequence r of elements of D such that r is one-
to-one and rngr =rngp \rmgqgand BOp=B(Bogq, BOT).
(19) Let given T. Then T is a T3 space and a T space and there exists a
family sequence of T" which is Basis-sigma-locally finite if and only if T is
metrizable.

387
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(20) Suppose T is metrizable. Let F3 be a family of subsets of T'. Suppose F3
is a cover of T and open. Then there exists a family sequence Uy of T" such
that (JU; is open and |JUyj is a cover of T and |JU; is finer than F3 and
U, is sigma-discrete.

(21) For every T such that T is metrizable holds there exists a family sequence
of T which is Basis-sigma-discrete.

(22) For every T holds T is a T3 space and a T} space and there exists a
family sequence of T which is Basis-sigma-discrete iff 1" is metrizable.
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The terminology and notation used here have been introduced in the following
articles: [24], [7], [27], [28], [22], [4], [29], [5], [2], [18], [23], [3], [6], [21], [19], [26],
[25], [9], [8], [20], [16], [11], [10], [1], [13], [14], [12], [15], and [17].

1. PRELIMINARIES

One can prove the following propositions:

(1) Let A, B, a, b be sets and f be a function from A into B. If a € A and
b € B, then f+-(a——b) is a function from A into B.

(2) For every function f and for all sets X, = such that f[X is one-to-one
and z € rng(fX) holds (f - (f1X)™1)(z) = z.

(3) Let z,y, X,Y, Z be sets, f be a function from [ X, Y | into Z, and ¢
be a function. If Z # () and x € X and y € Y, then (¢ f)(z, y) = g(f (=,
Y))-

(4) For all sets X, a, b and for every function f from X into {a,b} holds
X =f"({a}) U ({0

(5) For all non empty 1-sorted structures S, T' and for every point s of S
and for every point ¢ of T holds (S — t)(s) = t.

(6) Let T be a non empty topological structure, ¢t be a point of 7', and A be
a subset of T'. If A = {t}, then Sspace(t) = T'TA.

!The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-
versity, Japan. This work has been partially supported by KBN grant 4 T11C 039 24.
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(7) Let T be a topological space, A, B be subsets of T', and C, D be subsets
of the topological structure of T'. Suppose A = C' and B = D. Then A
and B are separated if and only if C and D are separated.

(8) For every non empty topological space T" holds T is connected iff there
exists no map from 7" into {{0, 1} }+op which is continuous and onto.

One can verify that every topological structure which is empty is also con-
nected.
We now state the proposition
(9) For every topological space T such that the topological structure of T is
connected holds T is connected.
Let T be a connected topological space. One can check that the topological
structure of T" is connected.
One can prove the following proposition
(10) Let S, T be non empty topological spaces. Suppose S and T' are home-
omorphic and S is arcwise connected. Then T' is arcwise connected.
One can verify that every non empty topological space which is trivial is also
arcwise connected.
One can prove the following propositions:
(11) For every subspace T of £2 such that the carrier of T is a simple closed
curve holds T is arcwise connected.
(12) Let T be a topological space. Then there exists a family F' of subsets of
T such that F' = {the carrier of T'} and F is a cover of T' and open.
Let T be a topological space. Note that there exists a family of subsets of T’
which is non empty, mutually-disjoint, open, and closed.
The following proposition is true
(13) Let T be a topological space, D be a mutually-disjoint open family of
subsets of T', A be a subset of T', and X be a set. If A is connected and
X € D and X meets A and D is a cover of A, then A C X.

2. ON THE PrRoDUCT OF TOPOLOGIES

One can prove the following three propositions:

(14) Let S, T be topological spaces. Then the topological structure of [ S,
T ] = | the topological structure of S, the topological structure of T'{.
(15) For all topological spaces S, T' and for every subset A of S and for every

subset B of T'holds [ A, B] =[ A, BJ.
(16) Let S, T be topological spaces, A be a closed subset of S, and B be a
closed subset of T. Then [ A, B is closed.
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Let A, B be connected topological spaces. One can check that [ A, B{ is
connected.
One can prove the following propositions:

(17) Let S, T be topological spaces, A be a subset of S, and B be a subset
of T. If A is connected and B is connected, then [ A, B ] is connected.

(18) Let S, T be topological spaces, Y be a non empty topological space, A
be a subset of S, f be a map from [S, T] into Y, and g be a map from
FSTA, T into Y. If g = f[} A, the carrier of T'] and f is continuous, then
g is continuous.

(19) Let S, T be topological spaces, Y be a non empty topological space, A
be a subset of 7', f be a map from [.S, T'] into Y, and g be a map from
FS, TTA]into Y. If g = f]} the carrier of S, A] and f is continuous, then
g is continuous.

(20) Let S, T, Ty, T», Y be non empty topological spaces, f be a map from
FY, T ] into S, g be a map from [Y, T>] into S, and Fi, F» be closed
subsets of T'. Suppose that T} is a subspace of T' and 75 is a subspace of T'
and F1 = Q) and Fy = Qp,y and Q) UQp,y = Qr and [ is continuous
and g is continuous and for every set p such that p € Qpy 7,3 N Qpy, 7,
holds f(p) = g(p). Then there exists a map h from [Y, T'] into S such
that h = f+-g and h is continuous.

(21) Let S, T, Ty, To, Y be non empty topological spaces, f be a map from
FTy, Y] into S, g be a map from [T5, Y | into S, and Fy, F5 be closed
subsets of T'. Suppose that 77 is a subspace of T" and 75 is a subspace of T'
and F} = Q(Tl) and Fp = Q(TQ) and Q(Tl) UQ(TQ) = Qr and f is continuous
and g is continuous and for every set p such that p € Qpp, vy N Q7 vy
holds f(p) = g(p). Then there exists a map h from [T, Y | into S such
that h = f+-g and h is continuous.

3. ON THE FUNDAMENTAL GROUPS

Let T be a non empty topological space and let ¢ be a point of T. Observe
that every loop of ¢ is continuous.
We now state a number of propositions:
(22) Let T be a non empty topological space, ¢t be a point of T', x be a point
of I, and P be a constant loop of ¢. Then P(x) = t.

(23) For every non empty topological space T" and for every point ¢ of T and
for every loop P of ¢t holds P(0) =t and P(1) =t.

(24) Let S, T be non empty topological spaces, f be a continuous map from
S into T, and a, b be points of S. If a, b are connected, then f(a), f(b)
are connected.
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(25) Let S, T be non empty topological spaces, f be a continuous map from
S into T, a, b be points of S, and P be a path from a to b. If a, b are
connected, then f - P is a path from f(a) to f(b).

(26) Let S be a non empty arcwise connected topological space, T' be a non
empty topological space, f be a continuous map from S into 7', a, b be
points of S, and P be a path from a to b. Then f - P is a path from f(a)
to f(b).

(27) Let S, T be non empty topological spaces, f be a continuous map from
S into T', a be a point of S, and P be a loop of a. Then f - P is a loop of
f(a).

(28) Let S, T be non empty topological spaces, f be a continuous map from
S into T, a, b be points of S, P, () be paths from a to b, and Py, Q1 be
paths from f(a) to f(b). Suppose P, ) are homotopic and P; = f - P and
Q1= f-Q. Then P, ()1 are homotopic.

(29) Let S, T be non empty topological spaces, f be a continuous map from
S into T, a, b be points of S, P, ) be paths from a to b, P;, ()1 be paths
from f(a) to f(b), and F be a homotopy between P and Q. Suppose P, @
are homotopic and P, = f- P and Q1 = f - Q. Then f - F is a homotopy
between P; and Q1.

(30) Let S, T be non empty topological spaces, f be a continuous map from
S into T, a, b, ¢ be points of S, P be a path from a to b, ) be a path
from b to ¢, Py be a path from f(a) to f(b), and @ be a path from f(b)
to f(c). Suppose a, b are connected and b, ¢ are connected and P; = f - P
and Q1 = f-Q. Then Py + @, :f(P+Q)
(31) Let S be a non empty topological space, s be a point of S, z, y be
elements of (S, s), and P, @ be loops of s. If z = [Plg e s, and
Y = [Qlgqrei(s,s)> then @ -y = [P + Qlgrei(s,s)-
Let S, T be non empty topological spaces, let s be a point of S, and let
f be a map from S into T. Let us assume that f is continuous. The functor
FundGrlso(f, s) yielding a map from 71 (.S, s) into 71 (7, f(s)) is defined by the
condition (Def. 1).

(Def. 1) Let = be an element of m1(S,s). Then there exists a loop l; of s and
there exists a loop Iy of f(s) such that x = [ll]EqRel(&s) and Iy = f-1; and
(FundGrlso(f, s))(z) = [ZQ]EqRel(T,f(s))'

The following proposition is true
(32) Let S, T be non empty topological spaces, s be a point of S, f be a
continuous map from S into T', = be an element of 71(S,s), l; be a loop
of s, and I be a loop of f(s). If © = [l]gqreys,s) and l2 = f -1, then

(FundGrlso(f, s))(z) = [ZQ]EqRel(T,f(s))'
Let S, T be non empty topological spaces, let s be a point of S, and let f
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be a continuous map from S into 7. Then FundGrlso(f, s) is a homomorphism
from 71(S, s) to i (T, f(s)).
We now state three propositions:

(33) Let S, T be non empty topological spaces, s be a point of S, and f
be a continuous map from S into T. If f is a homeomorphism, then
FundGrlso(f, s) is an isomorphism.

(34) Let S, T be non empty topological spaces, s be a point of S, ¢ be a
point of T', f be a continuous map from S into T, P be a path from
t to f(s), and h be a homomorphism from (S5, s) to m(7,t). Suppose
f is a homeomorphism and f(s), ¢ are connected and h = m-iso(P) -
FundGrlso(f, s). Then h is an isomorphism.

(35) Let S be a non empty topological space, T" be a non empty arcwise
connected topological space, s be a point of S, and ¢ be a point of T'. If S
and T are homeomorphic, then 71(S, s) and (7, t) are isomorphic.
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The notation and terminology used here have been introduced in the following
papers: [12], [15], [2], [11], (4], [16], [3], [7], [14], (9], [8], [3], [1), [13], [10], and [6].

For simplicity, we follow the rules: M denotes a non empty set, V' denotes
a complex normed space, f, fi, fo, f3 denote partial functions from M to the
carrier of V', and z, z1, 22 denote complex numbers.

Let M be a non empty set, let V be a complex normed space, and let fi,
f2 be partial functions from M to the carrier of V. The functor fi + fo yields a
partial function from M to the carrier of V and is defined by:

(Def. 1) dom(f1 + f2) = dom f; Ndom f5 and for every element ¢ of M such that
¢ € dom(f1 + f2) holds (f1 + fa)e = (fi)e + (f2)e-
The functor f; — fo yields a partial function from M to the carrier of V' and is
defined as follows:
(Def. 2) dom(f1 — f2) = dom f; Ndom fy and for every element ¢ of M such that
¢ € dom(f1 — f2) holds (f1 — f2)e = (f1)e — (f2)e-

Let M be a non empty set, let V' be a complex normed space, let f; be a
partial function from M to C, and let fo be a partial function from M to the
carrier of V. The functor fi fs yielding a partial function from M to the carrier
of V is defined by:

(Def. 3) dom(f; fo) = dom f; N dom fo and for every element ¢ of M such that
¢ € dom(f1 f2) holds (f1 f2)e = (f1)e - (f2)e-

Let X be a non empty set, let V' be a complex normed space, let f be a
partial function from X to the carrier of V', and let z be a complex number. The
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functor z f yields a partial function from X to the carrier of V' and is defined
as follows:
(Def. 4) dom(z f) = dom f and for every element x of X such that x € dom(z f)
holds (2 f)y = 2+ fa-
Let X be a non empty set, let V be a complex normed space, and let f be a

partial function from X to the carrier of V. The functor ||f|| yielding a partial
function from X to R is defined as follows:

(Def. 5) doml||f|| = dom f and for every element x of X such that z € dom]||f]|
holds || f[/(x) = || fll

The functor —f yields a partial function from X to the carrier of V and is
defined by:

(Def. 6) dom(—f) = dom f and for every element x of X such that x € dom(— f)
holds (—f)z = —fa-
The following propositions are true:

(1) Let f1 be a partial function from M to C and fy be a partial function
from M to the carrier of V. Then dom(f1 f2)\ (f1 f2) 1 ({Ov}) = (dom f1\

S {0}) N (dom fo \ fom ' ({0v })).
2) IfFIFHH0}) = f~ ({ov}) and (=f)"'({Ov}) = fH({Ov }).
(3) If z # Oc, then (z f)"'({Ov}) = f1({Ov }).
4) h+fo=rfotfr
(5) (fitfo)+fz=fi+(fat f3)
(6)

Let fi1, fo be partial functions from M to C and f3 be a partial function
from M to the carrier of V. Then (f1 f2) f3 = f1 (f2 f3).
(7) For all partial functions fi, fo from M to C holds (f1 + f2) fs = f1 fs +
f2 I3
(8) For every partial function f3 from M to C holds f3 (f1 + f2) = f3 f1 +
I3 fa
(9) For every partial function f; from M to C holds z (f1 f2) = (2 f1) fo.
(10) For every partial function f; from M to C holds z (f1 f2) = f1 (2 f2)-
(11) For all partial functions f1, fo from M to C holds (f1 — f2) f3 = f1 f3 —
f2 3.
(12) For every partial function f3 from M to C holds f3 f1 — f3 fo = f3 (f1 —
f2)-
(13) z(fi+fo)=2fi+zfo
(14) (21 22) f = 21 (22 ).
(15) z(fi—fo)=zf1— =2 fo.
(16) fi— foa=(=1c) (fa — f1).
(A7) fi—(fo+ f3) = f1 — fa — fs.
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(18) 1cf=f.

(19) fi—(fa—f3)=(fi—f2) + f5.

(20) fi+(fa—f3)=(fr+ f2) = f5.

(21) For every partial function f; from M to C holds || f1 fal = |fil || f2||-
(22) = fll =zl IIf]-

(23) —f=(-1c) f.

(24) ——f=".

(25) fi—fo=fit+—fo

(26) fi——fo=fi+ fo

In the sequel X, Y denote sets.
We now state a number of propositions:

27) (it f)IX = il X+[o] X and (f1+f2) [ X = fil X+f2 and (f1+f2) [ X =
i+ 21X,

(28) For every partial function f; from M to C holds (f1 fo)[X =
(f11X) (f21X) and (f1 f2)[X = (f11X) f2 and (f1 f2)[X = f1 (f21X).

(29) (=/)IX =—fI1X and |[f|[IX = [[f1X].

(30) (fi—f)IX = fil X—fol X and (f1—f2)[X = filX—foand (f1—f2)[X =
Ji— f2lX.

(31) (= HIX ==z (f1X).

(32) fi1 is total and fs is total iff fi + fo is total and f; is total and fs is total
iff f1 — fo is total.

(33) For every partial function f; from M to C holds f; is total and fo is
total iff f1 fo is total.

(34) f is total iff z f is total.

(35) f is total iff —f is total.

(36) f is total iff || f]| is total.

(37) For every element = of M such that f; is total and fy is total holds

(fi+ f2)e = (f1)e + (f2)e and (f1 — f2)e = (f1)a — (f2)a-

(38) Let fi be a partial function from M to C and z be an element of M. If
f1 is total and fs is total, then (f1 f2)z = (f1)z - (f2)z-

(39) For every element x of M such that f is total holds (z f)z = z - fa.

(40) For every element x of M such that f is total holds (—f), = —f, and
£l () = [l fz]l-

Let us consider M, let us consider V', and let us consider f, Y. We say that
f is bounded on Y if and only if:

(Def. 7) There exists a real number r such that for every element z of M such
that x € Y Ndom f holds || fz|| < 7.

One can prove the following propositions:
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(41) IfY C X and f is bounded on X, then f is bounded on Y.

(42) If X misses dom f, then f is bounded on X.

(43) Oc f is bounded on Y.

(44) 1If f is bounded on Y, then z f is bounded on Y.

(45) If f is bounded on Y, then || f|| is bounded on Y and —f is bounded on
Y.

(46) If f1 is bounded on X and f; is bounded on Y, then f; + fo is bounded
on XNY.

(47) For every partial function f; from M to C such that f; is bounded on
X and f5 is bounded on Y holds f; f5 is bounded on X NY.

(48) If f1 is bounded on X and f; is bounded on Y, then f; — fo is bounded
on X NY.

(49) If f is bounded on X and bounded on Y, then f is bounded on X UY.

(50) If f1 is a constant on X and fo is a constant on Y, then f; + fo is a
constant on X NY and f; — fo is a constant on X NY.

(51) Let f1 be a partial function from M to C. Suppose fi is a constant on
X and f; is a constant on Y. Then f; fo is a constant on X NY.

(52) If f is a constant on Y, then z f is a constant on Y.

(53) If fis a constant on Y, then || f|| is a constant on Y and — f is a constant
onY.

(54) 1If f is a constant on Y, then f is bounded on Y.

(55) If f is a constant on Y, then for every z holds z f is bounded on Y and
—f is bounded on Y and || f]| is bounded on Y.

(56) If f1 is bounded on X and f5 is a constant on Y, then f; + fo is bounded
on X NY.

(57) 1If f1 is bounded on X and fs is a constant on Y, then f; — fo is bounded
on X NY and fo — f1 is bounded on X NY.
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The notation and terminology used here are introduced in the following papers:
[25], [28], [29], [4], [30], [6], [14], [5], [2], [24], [10], [26], [27], [19], [15], [12], [13],
11, [31], [20], [3], [1], [16], [21], [17], [23], [7], [8], [22], [18], and [9].

For simplicity, we use the following convention: n denotes a natural number,
r, s denote real numbers, z denotes a complex number, Ci, Cs, C3 denote
complex normed spaces, and R; denotes a real normed space.

Let C4 be a complex linear space and let s; be a sequence of C4. The functor
—s1 yields a sequence of Cy and is defined by:

(Def. 1) For every n holds (—s1)(n) = —s1(n).
The following propositions are true:
(1) For all sequences sg, s3 of Cq holds sy — s3 = s9 + —s3.
(2) For every sequence s1 of C7 holds —s1 = (—1¢) - s1.
Let us consider (5, C3 and let f be a partial function from Cy to C5. The
functor || f|| yielding a partial function from the carrier of Cy to R is defined by:
(Def. 2) doml||f|| = dom f and for every point ¢ of Cy such that ¢ € dom]||f]|

holds || f[l(¢) = [ fe]-

Let us consider Cy, Ry and let f be a partial function from C; to R;. The
functor || f|| yielding a partial function from the carrier of C to R is defined as
follows:

(Def. 3) doml||f|| = dom f and for every point ¢ of Cy such that ¢ € dom]||f]|

holds [ f1[(¢) = |[fell-
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Let us consider Ry, C7 and let f be a partial function from R; to Cy. The
functor || f|| yielding a partial function from the carrier of R; to R is defined by:
(Def. 4) dom||f|| = dom f and for every point ¢ of R; such that ¢ € dom||f||
holds [ f[[(c) = [|fe[l-
Let us consider C; and let xy be a point of C7. A subset of C; is called a
neighbourhood of zg if:
(Def. 5) There exists a real number g such that 0 < g and {y; y ranges over points
of C1: ||y — xo|| < g} Cit.
Next we state two propositions:
(3) Let zp be a point of C; and g be a real number. If 0 < g, then {y;y
ranges over points of C1: ||y — zo|| < ¢} is a neighbourhood of .
(4) For every point xg of C; and for every neighbourhood N of xy holds
zg € N.
Let us consider C7 and let X be a subset of C;. We say that X is compact
if and only if the condition (Def. 6) is satisfied.
(Def. 6) Let s4 be a sequence of Cj. Suppose rngsy C X. Then there exists a
sequence s5 of C7 such that s5 is a subsequence of s4 and convergent and
limss; € X.
Let us consider C; and let X be a subset of C;. We say that X is closed if
and only if:
(Def. 7) For every sequence s4 of C; such that rngsy C X and s4 is convergent
holds lim sy € X.
Let us consider C] and let X be a subset of C';. We say that X is open if
and only if:

(Def. 8) X¢ is closed.

Let us consider Cy, Cs, let f be a partial function from Cy to C3, and let
s1 be a sequence of Cy. Let us assume that rmgs; C dom f. The functor f - s;
yields a sequence of C3 and is defined by:

(Def. 9) f-s1 = (f qua function) -(s1).
Let us consider Ci, Ry, let f be a partial function from Cy to Ry, and let

s1 be a sequence of C7. Let us assume that rngs; C dom f. The functor f - s;
yielding a sequence of R, is defined by:

(Def. 10) f-s1 = (f qua function) -(s1).
Let us consider C7, Ry, let f be a partial function from Ry to C7, and let
s1 be a sequence of R;. Let us assume that rngs; C dom f. The functor f - s;
yields a sequence of C and is defined by:
(Def. 11)  f-s1 = (f qua function) -(s7).
Let us consider C1, let f be a partial function from the carrier of C; to C,
and let s; be a sequence of C. Let us assume that rng s; C dom f. The functor
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f - s1 yields a complex sequence and is defined as follows:
(Def. 12)  f-s; = (f qua function) -(s7).
Let us consider Ry, let f be a partial function from the carrier of R; to C,

and let s; be a sequence of R;. Let us assume that rng s; C dom f. The functor
f - s1 yielding a complex sequence is defined by:

(Def. 13) f-s1 = (f qua function) -(s1).
Let us consider C1, let f be a partial function from the carrier of C; to R,
and let s; be a sequence of C7. Let us assume that rngs; C dom f. The functor
f - s1 yielding a sequence of real numbers is defined as follows:

(Def. 14)  f - s1 = (f qua function) -(s1).
Let us consider Cy, ('3, let f be a partial function from Cy to C3, and let xg

be a point of C5. We say that f is continuous in zg if and only if the conditions
(Def. 15) are satisfied.

(Def. 15)(i) xg € dom f, and
(ii)  for every sequence s; of C such that rngs; C dom f and s; is conver-
gent and lim s; = xg holds f - s1 is convergent and fg, = lim(f - s1).
Let us consider C, Ry, let f be a partial function from Cy to R1, and let xq

be a point of C;. We say that f is continuous in xg if and only if the conditions
(Def. 16) are satisfied.

(Def. 16)(1) 2o € dom f, and

(ii)  for every sequence s; of C; such that rngs; C dom f and s; is conver-

gent and lim s; = xo holds f - s1 is convergent and f, = lim(f - s1).

Let us consider Ry, let us consider Cq, let f be a partial function from R
to C1, and let xg be a point of R;. We say that f is continuous in zq if and only
if the conditions (Def. 17) are satisfied.

(Def. 17)(i) o € dom f, and

(ii)  for every sequence s; of R such that rngs; C dom f and s; is conver-

gent and lim s; = xo holds f - s1 is convergent and f, = lim(f - s1).

Let us consider C, let f be a partial function from the carrier of C; to C,
and let g be a point of C7. We say that f is continuous in zg if and only if the
conditions (Def. 18) are satisfied.

(Def. 18)(1) o € dom f, and

(ii)  for every sequence s1 of C; such that rngs; C dom f and s; is conver-

gent and lim s; = xo holds f - s1 is convergent and f,, = lim(f - s1).

Let us consider Cq, let f be a partial function from the carrier of C; to R,
and let zg be a point of C7. We say that f is continuous in zq if and only if the
conditions (Def. 19) are satisfied.

(Def. 19)(i) o € dom f, and

(ii)  for every sequence s; of Cj such that rngs; C dom f and s; is conver-

gent and lim s; = xo holds f - s1 is convergent and f,, = lim(f - s1).

405



406 NOBORU ENDOU

Let us consider Ry, let f be a partial function from the carrier of R; to C,
and let zg be a point of R;. We say that f is continuous in zq if and only if the
conditions (Def. 20) are satisfied.

(Def. 20)(i) o € dom f, and

(ii)  for every sequence s; of Ry such that rngs; C dom f and s; is conver-
gent and lim s; = xo holds f - s1 is convergent and f,, = lim(f - s1).
The following propositions are true:
(5) For every sequence s; of Cy and for every partial function h from Cj to
C3 such that rngs; C dom h holds s;(n) € dom h.
(6) For every sequence s; of Cy and for every partial function h from Cj to
R such that rng s; C dom A holds s1(n) € dom h.

(7) For every sequence s; of Ry and for every partial function h from R; to
(4 such that rng s; C dom h holds s1(n) € dom h.

(8) For every sequence sy of Cy and for every set x holds x € rng s; iff there
exists n such that z = s1(n).

(9) For all sequences s1, sy of C; such that s is a subsequence of s; holds
rng s2 C rng sj.

(10) Let f be a partial function from Cy to C3 and C5 be a sequence of Ch.
If rng C5 C dom f, then for every n holds (f - C5)(n) = foym)-

(11) Let f be a partial function from Cy to Ry and C5 be a sequence of Cj.
If rng C5 C dom f, then for every n holds (f - C5)(n) = foymn)-

(12) Let f be a partial function from R; to C; and Rs be a sequence of Rj.
If rng Re C dom f, then for every n holds (f - R2)(n) = fryn)-

(13) Let f be a partial function from the carrier of C; to C and C5 be a
sequence of C;. If rng Cs C dom f, then for every n holds (f - C5)(n) =
fesmy-

(14) Let f be a partial function from the carrier of C7 to R and C5 be a
sequence of C;. If rngCs C dom f, then for every n holds (f - C5)(n) =
fesmy-

(15) Let f be a partial function from the carrier of R; to C and Ry be a
sequence of R;. If rng Re C dom f, then for every n holds (f - Re)(n) =
FRo(n)-

(16) Let h be a partial function from Cy to C3, C5 be a sequence of Cy,
and N7 be an increasing sequence of naturals. If rng Cs C domh, then
(h-C5)-Ny=h-(C5-Ny).

(17) Let h be a partial function from C; to R, Cg be a sequence of Cf,
and Nj be an increasing sequence of naturals. If rngCg C dom h, then
(hCG)Nl :h(C6N1)

(18) Let h be a partial function from R; to Ci, Rs be a sequence of R,
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and N; be an increasing sequence of naturals. If rng R3 C dom A, then
(h-R3)- N1 =h-(R3- Ny).

(19) Let h be a partial function from the carrier of Cy to C, Cg be a sequence
of C'1, and Nj be an increasing sequence of naturals. If rng Cg C dom h,
then (h . 06) -N1=h- (Cﬁ . Nl).

(20) Let h be a partial function from the carrier of C to R, Cg be a sequence
of C1, and Nj be an increasing sequence of naturals. If rng Cg C dom h,
then (h . CG) -N1=h- (Cﬁ . Nl).

(21) Let h be a partial function from the carrier of Ry to C, R3 be a sequence
of Ry, and Nj be an increasing sequence of naturals. If rng R3 C dom h,
then (h . R3) . N1 = h . (Rg . Nl).

(22) Let h be a partial function from C to C3 and C%, Cg be sequences of
Cy. If rngC7; C domh and Cg is a subsequence of C7, then h - Cy is a
subsequence of h - C.

(23) Let h be a partial function from Cy to R; and C7, Cs be sequences of
Ci. If rngC7; C domh and Cg is a subsequence of C7, then h - Cy is a
subsequence of h - Cy.

(24) Let h be a partial function from R; to C7 and R4, Rs be sequences of
Ry. If mg Ry C domh and Rj is a subsequence of Ry, then h - Ry is a
subsequence of h - Ry.

(25) Let s; be a complex sequence, n be a natural number, and No be an
increasing sequence of naturals. Then (s1 - N2)(n) = s1(Na(n)).

(26) Let h be a partial function from the carrier of C; to C and C7, Cs be
sequences of C1. If rng Cy C dom h and Cg is a subsequence of C7, then
h - Cg is a subsequence of h - Cr.

(27) Let h be a partial function from the carrier of C1 to R and C7, Cs be
sequences of Cy. If rng C7 C domh and Cg is a subsequence of C7, then
h - Cy is a subsequence of h - Cx.

(28) Let h be a partial function from the carrier of R; to C and Ry, R5 be
sequences of Ry. If rng Ry C dom A and Rj is a subsequence of Ry, then
h - R5 is a subsequence of h - Ry.

(29) Let f be a partial function from Cs to C3 and xy be a point of Co. Then
f is continuous in zq if and only if the following conditions are satisfied:

(i) xo € dom f, and

(ii)  for every r such that 0 < r there exists s such that 0 < s and for
every point x; of Cy such that x; € dom f and ||z1 — zo|| < s holds
[fer = faoll <7

(30) Let f be a partial function from C; to Ry and xg be a point of C;. Then
f is continuous in zq if and only if the following conditions are satisfied:

(i)  xo € dom f, and



408 NOBORU ENDOU

(ii)  for every r such that 0 < r there exists s such that 0 < s and for
every point x; of Cy such that z; € dom f and |x; — zo|| < s holds
||le - fIOH < T

(31) Let f be a partial function from R; to Cy and zp be a point of R;. Then
f is continuous in zq if and only if the following conditions are satisfied:

(i) o € dom f, and

(ii)  for every r such that 0 < r there exists s such that 0 < s and for
every point x; of R; such that 1 € dom f and |z — z¢]| < s holds
”fﬂh - fQCoH <7

(32) Let f be a partial function from the carrier of C to R and xy be a point
of C1. Then f is continuous in xg if and only if the following conditions
are satisfied:

(i) o € dom f, and

(ii)  for every r such that 0 < r there exists s such that 0 < s and for every
point z1 of Cj such that 21 € dom f and ||z1 —xo|| < s holds | fz, — fz,| < 7

(33) Let f be a partial function from the carrier of C; to C and zp be a point
of C1. Then f is continuous in xq if and only if the following conditions
are satisfied:

(i) o € dom f, and
(ii)  for every r such that 0 < r there exists s such that 0 < s and for every
point x1 of Cy such that 1 € dom f and ||z1—x¢|| < s holds | fo; — fao| < 7

(34) Let f be a partial function from the carrier of R; to C and zp be a point
of R;. Then f is continuous in xg if and only if the following conditions
are satisfied:

(i) o € dom f, and
(ii) for every r such that 0 < r there exists s such that 0 < s and for every
point x; of Ry such that z; € dom f and ||x1 —z|| < s holds | fz, — fao| < 7
(35) Let f be a partial function from Co to C3 and xo be a point of Cy. Then
f is continuous in x( if and only if the following conditions are satisfied:
(i) o € dom f, and
(ii)  for every neighbourhood N3 of f;, there exists a neighbourhood N of
xg such that for every point x; of C5 such that 1 € dom f and 1 € N
holds fz, € Ns.

(36) Let f be a partial function from C; to Ry and xg be a point of C;. Then
f is continuous in zq if and only if the following conditions are satisfied:

(i) o € dom f, and

(ii)  for every neighbourhood N3 of f;, there exists a neighbourhood N of
o such that for every point z1 of Cy such that 1 € dom f and 1 € N
holds fﬂﬂl € Njs.

(37) Let f be a partial function from R; to Cy and z( be a point of R;. Then
f is continuous in zq if and only if the following conditions are satisfied:
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(i) =z € dom f, and
(ii)  for every neighbourhood N3 of f,, there exists a neighbourhood N of

xo such that for every point x; of R; such that z1 € dom f and 1 € N
holds f;, € Ns.

(38) Let f be a partial function from Cs to C3 and xg be a point of Co. Then
f is continuous in zq if and only if the following conditions are satisfied:

(i) =z € dom f, and
(ii)  for every neighbourhood N3 of f;, there exists a neighbourhood N of
xo such that f°N C Nj.

(39) Let f be a partial function from C} to Ry and xg be a point of C. Then
f is continuous in zq if and only if the following conditions are satisfied:

(i) xo € dom f, and
(ii)  for every neighbourhood N3 of f;, there exists a neighbourhood N of
xg such that f°N C Ns.

(40) Let f be a partial function from R; to C7 and zp be a point of R;. Then
f is continuous in zq if and only if the following conditions are satisfied:

(i) o € dom f, and
(ii)  for every neighbourhood N3 of f,, there exists a neighbourhood N of
xo such that f°N C Nj.

(41) Let f be a partial function from C to C3 and zp be a point of Ch.
Suppose xg € dom f and there exists a neighbourhood N of xg such that
dom f NN = {zp}. Then f is continuous in xg.

(42) Let f be a partial function from Cj to R; and zp be a point of Cf.
Suppose xg € dom f and there exists a neighbourhood N of x( such that
dom f NN = {zp}. Then f is continuous in zg.

(43) Let f be a partial function from R; to C; and xo be a point of Rj.
Suppose xg € dom f and there exists a neighbourhood N of xg such that
dom f NN = {xg}. Then f is continuous in xg.

(44) Let hy, hg be partial functions from Cy to C3 and s; be a sequence of
Cy. If rng s; € dom hy Ndom hg, then (hy + he) - s1 = hy - 51+ he - $1 and
(hl—h2)~81:h1-51—h2-51.

(45) Let hy, hg be partial functions from Cj to R; and s; be a sequence of
Cy. If rng sy € dom hy N'dom hg, then (hy + he) - s1 = hy - s1 + hg - $1 and
(hl—hg)'sl :hl-Slth-Sl.

(46) Let hy, hy be partial functions from R; to Cy and s; be a sequence of
R;. If rng s; € dom hy Ndom hg, then (hy + h2) - s1 = hy1 - s1+ he - s1 and
(hl—hz)'sl :hl-Sl—hQ-Sl.

(47) Let h be a partial function from Cy to C3, s1 be a sequence of Co, and
z be a complex number. If rng s; C dom h, then (zh)-s1 =z (h-s1).
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(48) Let h be a partial function from Cy to Ri, s; be a sequence of C7, and
r be a real number. If rng s; C dom h, then (rh)-s; =7 (h-s1).

(49) Let h be a partial function from R; to C1, s1 be a sequence of R;, and
z be a complex number. If rngs; C domh, then (zh)-s; =z (h-s1).
(50) Let h be a partial function from Cy to C3 and s; be a sequence of Cy. If

rng s C dom h, then ||h - si|| = ||h] - s1 and —h - s3 = (—h) - s1.

(51) Let h be a partial function from C to R; and s; be a sequence of Cy. If
rng s1 C dom h, then ||h - s1|| = [|h]| - s1 and —h - s1 = (—h) - s1.

(52) Let h be a partial function from R; to C; and s; be a sequence of R;.
If rng s; C dom h, then ||h-s1|| = ||h| - s1 and —h - s1 = (=h) - s1.

(53) Let f1, fo be partial functions from Cs to C3 and xy be a point of Cs.
Suppose f1 is continuous in zg and fo is continuous in xg. Then fi + fo is
continuous in zg and fi — f5 is continuous in xg.

(54) Let f1, fo be partial functions from Cy to Ry and xy be a point of Cf.
Suppose fi is continuous in xg and fs is continuous in zg. Then fi + fo is
continuous in zg and fi — f5 is continuous in xg.

(55) Let f1, f2 be partial functions from R; to Cj and zy be a point of R;.
Suppose f1 is continuous in zg and fo is continuous in xg. Then fi + fo is
continuous in zg and f; — fo is continuous in xg.

(56) Let f be a partial function from Cy to Cs, xg be a point of Cy, and z be
a complex number. If f is continuous in xg, then z f is continuous in xg.

(57) Let f be a partial function from Cy to Ry, zp be a point of Cq, and r be
a real number. If f is continuous in g, then r f is continuous in xg.

(58) Let f be a partial function from Ry to C1, xg be a point of Ry, and z be
a complex number. If f is continuous in xg, then z f is continuous in x.

(59) Let f be a partial function from Cy to Cs and xo be a point of Cy. If f
is continuous in g, then || f|| is continuous in zy and — f is continuous in
xg.

(60) Let f be a partial function from C; to R; and xo be a point of Cy. If f
is continuous in xg, then || f|| is continuous in z¢ and —f is continuous in
xQ.

(61) Let f be a partial function from R; to C; and z( be a point of Ry. If f
is continuous in xg, then || f|| is continuous in z¢ and —f is continuous in
ZQ-

Let Cs, C3 be complex normed spaces, let f be a partial function from Co
to Cs, and let X be a set. We say that f is continuous on X if and only if:
(Def. 21) X C dom f and for every point zy of Co such that zp € X holds f[X is

continuous in xg.

Let Cy be a complex normed space, let R; be a real normed space, let f be a
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partial function from C; to Rp, and let X be a set. We say that f is continuous
on X if and only if:
(Def. 22) X C dom f and for every point xg of Cy such that o9 € X holds f[X is
continuous in xg.

Let R; be a real normed space, let C; be a complex normed space, let g be a
partial function from R; to C1, and let X be a set. We say that g is continuous
on X if and only if:

(Def. 23) X C dom g and for every point g of R; such that xg € X holds g[X is
continuous in xg.

Let C7 be a complex normed space, let f be a partial function from the
carrier of C to C, and let X be a set. We say that f is continuous on X if and
only if:

(Def. 24) X C dom f and for every point zy of C; such that zp € X holds f[X is
continuous in xg.

Let C7 be a complex normed space, let f be a partial function from the
carrier of C to R, and let X be a set. We say that f is continuous on X if and
only if:

(Def. 25) X C dom f and for every point zy of C; such that zp € X holds f[X is
continuous in xg.

Let R; be a real normed space, let f be a partial function from the carrier
of R; to C, and let X be a set. We say that f is continuous on X if and only if:

(Def. 26) X C dom f and for every point zy of R; such that zp € X holds f[X is
continuous in zg.
In the sequel X, X; denote sets.
The following propositions are true:
(62) Let f be a partial function from Cs to C3. Then f is continuous on X if
and only if the following conditions are satisfied:
(i) X Cdom f, and
(ii)  for every sequence s4 of Co such that rngsy C X and sy4 is convergent
and lim sq € X holds f - sy is convergent and fiims, = lim(f - s4).
(63) Let f be a partial function from C; to R;. Then f is continuous on X if
and only if the following conditions are satisfied:
(i) X Cdom f, and
(ii)  for every sequence s4 of C; such that rngss C X and sy is convergent
and lim sq € X holds f - sy is convergent and flims, = im(f - s4).
(64) Let f be a partial function from R; to Cy. Then f is continuous on X if
and only if the following conditions are satisfied:
(i) X Cdom f, and
(ii)  for every sequence sy of Ry such that rngss C X and sy is convergent
and lim sy € X holds f - s4 is convergent and fiims, = Um(f - s4).
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(65) Let f be a partial function from Cs to C3. Then f is continuous on X if
and only if the following conditions are satisfied:
(i) X Cdom f, and
(ii)  for every point xg of Cy and for every r such that zp € X and 0 < r
there exists s such that 0 < s and for every point x1 of C5 such that
xz1 € X and ||z1 — xo|| < s holds || fz, — faol <7
(66) Let f be a partial function from C to R;. Then f is continuous on X if
and only if the following conditions are satisfied:
(i) X Cdom f, and
(ii)  for every point z of Cy and for every r such that xp € X and 0 < r
there exists s such that 0 < s and for every point z; of Cy such that
x1 € X and ||z1 — xo|| < s holds || fz, — faoll <
(67) Let f be a partial function from R; to Cy. Then f is continuous on X if
and only if the following conditions are satisfied:
(i) X Cdom f, and
(ii)  for every point zg of R; and for every r such that zop € X and 0 < r
there exists s such that 0 < s and for every point z1 of Ry such that
x1 € X and ||z1 — 20| < s holds || fz, — faoll < 7
(68) Let f be a partial function from the carrier of Cy to C. Then f is conti-
nuous on X if and only if the following conditions are satisfied:
(i) X Cdom f, and
(ii)  for every point zp of Cy and for every r such that xp € X and 0 < r
there exists s such that 0 < s and for every point x; of C; such that
z1 € X and ||z1 — zo|| < s holds |fz, — fao| <7
(69) Let f be a partial function from the carrier of C to R. Then f is conti-
nuous on X if and only if the following conditions are satisfied:
(i) X Cdom f, and
(ii)  for every point g of C} and for every r such that zo € X and 0 < r
there exists s such that 0 < s and for every point x1 of C7 such that
x1 € X and ||z1 — zo|| < s holds | fz, — fao| < 7.
(70) Let f be a partial function from the carrier of Ry to C. Then f is conti-
nuous on X if and only if the following conditions are satisfied:
(i) X Cdom f, and
(ii)  for every point zg of Ry and for every r such that g € X and 0 < r
there exists s such that 0 < s and for every point x; of R; such that
z1 € X and ||z1 — zo|| < s holds |fz, — fao| < T
(71) For every partial function f from Cs to C3 holds f is continuous on X
iff f]X is continuous on X.
(72) For every partial function f from C; to Ry holds f is continuous on X
iff f]X is continuous on X.
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(73) For every partial function f from R; to Cj holds f is continuous on X
iff f1X is continuous on X.

(74) Let f be a partial function from the carrier of C to C. Then f is conti-
nuous on X if and only if f[X is continuous on X.

(75) Let f be a partial function from the carrier of C to R. Then f is conti-
nuous on X if and only if f[X is continuous on X.

(76) Let f be a partial function from the carrier of Ry to C. Then f is conti-
nuous on X if and only if f[X is continuous on X.

(77) For every partial function f from C5 to Cs such that f is continuous on
X and X; C X holds f is continuous on Xj.

(78) For every partial function f from C; to R; such that f is continuous on
X and X; C X holds f is continuous on Xj.

(79) For every partial function f from R; to C; such that f is continuous on
X and X; C X holds f is continuous on Xj.

(80) For every partial function f from Cs to C3 and for every point zg of Co
such that z¢ € dom f holds f is continuous on {x¢}.

(81) For every partial function f from C; to Ry and for every point zg of C}
such that z¢ € dom f holds f is continuous on {xg}.

(82) For every partial function f from R; to C; and for every point xo of Ry
such that z¢ € dom f holds f is continuous on {xg}.

(83) Let fi, fo be partial functions from Cs to Cs5. Suppose fi is continuous
on X and fs is continuous on X. Then f; + f2 is continuous on X and
f1 — fo is continuous on X.

(84) Let f1, fo be partial functions from C to R;. Suppose f; is continuous
on X and fs5 is continuous on X. Then f; + fo is continuous on X and
f1 — fo is continuous on X.

(85) Let f1, fo be partial functions from R; to C;. Suppose f; is continuous
on X and fs5 is continuous on X. Then f; + fo is continuous on X and
f1 — fo is continuous on X.

(86) Let f1, fo be partial functions from Cy to C5. Suppose fi is continuous
on X and fy is continuous on Xi. Then f1 + fo is continuous on X N X3
and f1 — fs is continuous on X N Xj.

(87) Let f1, fo be partial functions from Cy to R;. Suppose fi is continuous
on X and f5 is continuous on Xi. Then f; + f5 is continuous on X N X3
and f1 — f5 is continuous on X N X;.

(88) Let f1, fa be partial functions from R; to C1. Suppose fi is continuous
on X and f5 is continuous on Xi. Then f; + f5 is continuous on X N X3
and f1 — f5 is continuous on X N Xj.

(89) For every partial function f from Cs to C3 such that f is continuous on
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X holds z f is continuous on X.

(90) For every partial function f from C; to R; such that f is continuous on
X holds r f is continuous on X.
(91) For every partial function f from R; to C; such that f is continuous on
X holds z f is continuous on X.
(92) Let f be a partial function from Cy to Cs. If f is continuous on X, then
I ]| is continuous on X and —f is continuous on X.
(93) Let f be a partial function from Cy to R;. If f is continuous on X, then
| Il is continuous on X and — f is continuous on X.
(94) Let f be a partial function from R; to Cy. If f is continuous on X, then
| Il is continuous on X and — f is continuous on X.
(95) Let f be a partial function from Cs to Cs3. Suppose f is total and for all
points 1, x3 of Cy holds f;, 14, = fz, + fz, and there exists a point zy of
C5 such that f is continuous in xg. Then f is continuous on the carrier of
Cs.
(96) Let f be a partial function from C; to R;. Suppose f is total and for all
points 1, 23 of Cy holds f;, 414, = fz, + fz, and there exists a point zy of
(1 such that f is continuous in xg. Then f is continuous on the carrier of
Ch.
(97) Let f be a partial function from R; to Cy. Suppose f is total and for all
points x1, x2 of Ry holds fz, 12, = fz, + fz, and there exists a point xg of
R such that f is continuous in xg. Then f is continuous on the carrier of
R;.
(98) For every partial function f from Co to Cs such that dom f is compact
and f is continuous on dom f holds rng f is compact.
(99) For every partial function f from Cy to R; such that dom f is compact
and f is continuous on dom f holds rng f is compact.
(100) For every partial function f from R; to C; such that dom f is compact
and f is continuous on dom f holds rng f is compact.
(101) Let f be a partial function from the carrier of Cy to C. If dom f is
compact and f is continuous on dom f, then rng f is compact.
(102) Let f be a partial function from the carrier of Cy to R. If dom f is
compact and f is continuous on dom f, then rng f is compact.
(103) Let f be a partial function from the carrier of Ry to C. If dom f is
compact and f is continuous on dom f, then rng f is compact.
(104) Let Y be a subset of Cy and f be a partial function from Cy to Cs.
If Y C dom f and Y is compact and f is continuous on Y, then f°Y is
compact.

(105) Let Y be a subset of C; and f be a partial function from C; to R;.
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If Y € dom f and Y is compact and f is continuous on Y, then f°Y is
compact.

(106) Let Y be a subset of Ry and f be a partial function from R; to C.
If Y C dom f and Y is compact and f is continuous on Y, then f°Y is
compact.

(107) Let f be a partial function from the carrier of C; to R. Suppose dom f #
() and dom f is compact and f is continuous on dom f. Then there exist
points x1, x2 of Cy such that 1 € dom f and 9 € dom f and f,;, =
suprng f and f;, = infrng f.

(108) Let f be a partial function from Cs to Cs. Suppose dom f # () and dom f
is compact and f is continuous on dom f. Then there exist points x1, o
of Cy such that z; € dom f and z3 € dom f and || f||;, = suprng|| f|| and
1/ [, = inf rng]| f[].

(109) Let f be a partial function from C; to R;. Suppose dom f # () and dom f
is compact and f is continuous on dom f. Then there exist points z1, z2
of C} such that z; € dom f and z3 € dom f and || f||z, = suprng||f|| and
[[fllz = inf rng]| f]].

(110) Let f be a partial function from R; to Cy. Suppose dom f # () and dom f
is compact and f is continuous on dom f. Then there exist points x1, 2
of Ry such that z; € dom f and x2 € dom f and || f||;, = suprng|| f|| and

[f]lz, = inf rog[| f]].

(111) For every partial function f from Cs to C3 holds ||f||IX = || f1X]|.
(112) For every partial function f from C; to Ry holds ||f||[[X = || f1X]|.
(113) For every partial function f from R; to Cy holds ||f||[[X = || f1X]|.
(114) Let f be a partial function from C to C3 and Y be a subset of Ch.

Suppose Y # 0 and Y C dom f and Y is compact and f is continuous on
Y. Then there exist points x1, x2 of Cy such that 1 € Y and z9 € Y and
[fller = sup(||f[[°Y) and || f]lz, = inf([[f]°Y).

(115) Let f be a partial function from C; to Ry and Y be a subset of Cj.
Suppose Y # () and Y C dom f and Y is compact and f is continuous on
Y. Then there exist points x1, s of C such that 1 € Y and 2o € Y and
[ lley = sup([|f]I°Y) and [|f|[e; = inf(||£]°Y).

(116) Let f be a partial function from R; to C7 and Y be a subset of Rj.
Suppose Y # ) and Y C dom f and Y is compact and f is continuous on
Y. Then there exist points x1, x2 of Ry such that 1 € Y and z3 € Y and
1lley = sup(I£1°Y) and [[£la; = inf(I£°Y).

(117) Let f be a partial function from the carrier of C; to R and Y be a
subset of Cy. Suppose Y # () and Y C dom f and Y is compact and f is
continuous on Y. Then there exist points z1, x2 of C7 such that z1 € Y
and z2 € Y and f;;, =sup(f°Y) and f;, = inf(f°Y).
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Let C2, ('3 be complex normed spaces, let X be a set, and let f be a partial
function from Cs to C3. We say that f is Lipschitzian on X if and only if:

(Def. 27) X C dom f and there exists r such that 0 < r and for all points x, x2
of Cy such that 1 € X and x2 € X holds || fz, — fa, || <7 |z1 — 22|
Let C1 be a complex normed space, let Ry be a real normed space, let X be a
set, and let f be a partial function from Cj to R;. We say that f is Lipschitzian
on X if and only if:

(Def. 28) X C dom f and there exists r such that 0 < r and for all points x1, x2
of C; such that 1 € X and x9 € X holds || fz, — fa,|| <7 |z1 — 22|
Let Ry be a real normed space, let C; be a complex normed space, let X be a
set, and let f be a partial function from R; to C;. We say that f is Lipschitzian
on X if and only if:

(Def. 29) X C dom f and there exists r such that 0 < r and for all points x1, x2
of Ry such that 1 € X and zo € X holds || fz; — fa, || <7 - ||lx1 — 22|
Let C; be a complex normed space, let X be a set, and let f be a partial
function from the carrier of C to C. We say that f is Lipschitzian on X if and
only if:
(Def. 30) X C dom f and there exists r such that 0 < r and for all points x1, x2
of C; such that 1 € X and xo € X holds |fz, — fao| <7+ ||x1 — 22|
Let (7 be a complex normed space, let X be a set, and let f be a partial
function from the carrier of C; to R. We say that f is Lipschitzian on X if and
only if:
(Def. 31) X C dom f and there exists r such that 0 < r and for all points z1, 2
of C1 such that z; € X and z3 € X holds |fz, — fao| <7 |21 — 22]|-
Let Ry be a real normed space, let X be a set, and let f be a partial function
from the carrier of Ry to C. We say that f is Lipschitzian on X if and only if:
(Def. 32) X C dom f and there exists r such that 0 < r and for all points z1, 2
of Ry such that 1 € X and zo € X holds |fy, — fz,| <7 |1 — 22|
Next we state a number of propositions:

(118) For every partial function f from Cy to Cs such that f is Lipschitzian
on X and X; C X holds f is Lipschitzian on Xj.

(119) For every partial function f from C; to R; such that f is Lipschitzian
on X and X; C X holds f is Lipschitzian on Xj.

(120) For every partial function f from R; to Cj such that f is Lipschitzian
on X and X; C X holds f is Lipschitzian on X;.

(121) Let fi1, fo be partial functions from Cy to Cs. Suppose fi is Lipschitzian
on X and fs is Lipschitzian on X;. Then f; + f2 is Lipschitzian on X N .X;.

(122) Let f1, fo be partial functions from C; to R;. Suppose f; is Lipschitzian
on X and fs is Lipschitzian on Xi. Then f; + f2 is Lipschitzian on X N .X7.
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(123) Let f1, fa be partial functions from R; to C;. Suppose fi is Lipschitzian
on X and f5 is Lipschitzian on X7. Then fi + fs is Lipschitzian on X N Xj.

(124) Let fi1, fo be partial functions from Co to Cs. Suppose fi is Lipschitzian
on X and fs is Lipschitzian on X;. Then f; — fo is Lipschitzian on X N .X7.

(125) Let f1, fo be partial functions from C; to R;. Suppose f; is Lipschitzian
on X and fs is Lipschitzian on X;. Then f; — fo is Lipschitzian on X N .X7.

(126) Let f1, fo be partial functions from R; to C1. Suppose f; is Lipschitzian
on X and fs is Lipschitzian on X;. Then f; — f5 is Lipschitzian on X N .X7.

(127) For every partial function f from Cy to C3 such that f is Lipschitzian
on X holds z f is Lipschitzian on X.

(128) For every partial function f from C; to R; such that f is Lipschitzian
on X holds r f is Lipschitzian on X.

(129) For every partial function f from R; to Cj such that f is Lipschitzian
on X holds z f is Lipschitzian on X.

(130) Let f be a partial function from Cy to Cs. Suppose f is Lipschitzian on
X. Then —f is Lipschitzian on X and || f|| is Lipschitzian on X.

(131) Let f be a partial function from Cj to R;. Suppose f is Lipschitzian on
X. Then —f is Lipschitzian on X and || f|| is Lipschitzian on X.

(132) Let f be a partial function from R; to C;. Suppose f is Lipschitzian on
X. Then —f is Lipschitzian on X and || f|| is Lipschitzian on X.

(133) Let X be aset and f be a partial function from Cy to Cs. If X C dom f
and f is a constant on X, then f is Lipschitzian on X.

(134) Let X be a set and f be a partial function from Cy to R;. If X C dom f
and f is a constant on X, then f is Lipschitzian on X.

(135) Let X be a set and f be a partial function from Ry to C;. If X C dom f
and f is a constant on X, then f is Lipschitzian on X.

(136) For every subset Y of C holds idy is Lipschitzian on Y.

(137) For every partial function f from Cy to Cs such that f is Lipschitzian
on X holds f is continuous on X.

(138) For every partial function f from C; to R; such that f is Lipschitzian
on X holds f is continuous on X.

(139) For every partial function f from R; to C; such that f is Lipschitzian
on X holds f is continuous on X.

(140) Let f be a partial function from the carrier of C; to C. If f is Lipschitzian
on X, then f is continuous on X.

(141) Let f be a partial function from the carrier of C; to R. If f is Lipschitzian
on X, then f is continuous on X.

(142) Let f be a partial function from the carrier of Ry to C. If f is Lipschitzian
on X, then f is continuous on X.
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(143) For every partial function f from Cj to C3 such that there exists a point
r of C5 such that rng f = {r} holds f is continuous on dom f.

(144) For every partial function f from C to R; such that there exists a point
r of Ry such that rng f = {r} holds f is continuous on dom f.

(145) For every partial function f from R; to C such that there exists a point
r of C7 such that rng f = {r} holds f is continuous on dom f.

(146) For every partial function f from Co to C3 such that X C dom f and f
is a constant on X holds f is continuous on X.

(147) For every partial function f from Cj to Ry such that X C dom f and f
is a constant on X holds f is continuous on X.

(148) For every partial function f from R; to C such that X C dom f and f
is a constant on X holds f is continuous on X.

(149) Let f be a partial function from C; to C. Suppose that for every point
xo of C; such that zp € dom f holds f;, = xo. Then f is continuous on
dom f.

(150) For every partial function f from C; to C; such that f = idgom ¢ holds
f is continuous on dom f.

(151) Let f be a partial function from C; to C7 and Y be a subset of C;. If
Y Cdom f and f[Y =idy, then f is continuous on Y.

(152) Let f be a partial function from Cj to C1, z be a complex number, and
p be a point of C. Suppose X C dom f and for every point zg of Cj such
that xgp € X holds f;, = 2 - o + p. Then f is continuous on X.

(153) Let f be a partial function from the carrier of C; to R. Suppose that for
every point zg of C; such that zyp € dom f holds fy, = ||zo||. Then f is
continuous on dom f.

(154) Let f be a partial function from the carrier of C7 to R. Suppose X C
dom f and for every point zp of C; such that z¢p € X holds fz, = ||zo]|-
Then f is continuous on X.
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The articles [15], [7], [14], [19], [5], [20], [6], [3], [4], [1], [2], [12], [17], [18], [10],
[13], [16], [8], [9], and [11] provide the terminology and notation for this paper.

1. ON THE PropucT OF GROUPS

The following proposition is true
(1) Let G, H be non empty groupoids and x be an element of [[(G, H).
Then there exists an element g of G and there exists an element h of H
such that = = (g, h).
Let G1, G2, H1, Hs be non empty groupoids, let f be a map from G; into
Hip, and let g be a map from G into Hy. The functor Gr2Iso(f, g) yields a map
from [[(G1,G2) into [[(H1, H2) and is defined by the condition (Def. 1).
(Def. 1) Let x be an element of [[(G1,G2). Then there exists an element x;
of G and there exists an element xo of Gy such that x = (x1,z9) and

(Gr2Iso(f, 9))(z) = (f(21), g(22))-

The following proposition is true
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(2) Let G1, G2, H1, Hs be non empty groupoids, f be a map from G; into
Hy, g be a map from G5 into Hy, x1 be an element of G, and x2 be an
element of G5. Then (Gr2Iso(f, g))({(x1,x2)) = (f(x1), g(x2)).

Let G1, Go, H1, H> be groups, let f be a homomorphism from G to Hy, and
let g be a homomorphism from G9 to Ho. Then Gr2Iso(f, g) is a homomorphism
from H<G1,G2> to H<H1,H2>.

One can prove the following four propositions:

(3) Let G1, G2, Hy, Hs be non empty groupoids, f be a map from G; into
Hy, and g be a map from G» into H». If f is one-to-one and ¢ is one-to-one,
then Gr2Iso(f, g) is one-to-one.

(4) Let G1, G2, Hi, Hs be non empty groupoids, f be a map from G; into
Hi, and g be a map from G9 into Hs. If f is onto and g is onto, then
Gr2Iso(f, g) is onto.

(5) Let Gy, Go, Hy, Hy be groups, f be a homomorphism from G; to Hy,
and g be a homomorphism from Gy to Ho. If f is an isomorphism and ¢
is an isomorphism, then Gr2Iso(f,g) is an isomorphism.

(6) Let G1, Go, Hy, Hy be groups. Suppose G and H; are isomorphic and G
and Hj are isomorphic. Then [[(G1,G2) and [[(H1, H2) are isomorphic.

2. ON THE FUNDAMENTAL GROUPS OF PRODUCTS OF TOPOLOGICAL SPACES

For simplicity, we adopt the following rules: S, T, Y denote non empty
topological spaces, s, s1, S2, s3 denote points of S, t, t1, to, t3 denote points
of T, l1, Iy denote paths from (s1, t1) to (s2, t2), and H denotes a homotopy
between [; and [s.

We now state two propositions:

(7) For all functions f, g such that dom f = dom g holds pr1({f, g)) = f.
(8) For all functions f, g such that dom f = dom g holds pr2({f,g)) = g.

Let us consider S, T', Y, let f be a map from Y into S, and let g be a map
from Y into 7. Then (f,g) is a map from Y into [ S, T'].
Let us consider S, T, Y and let f be a map from Y into [ .S, T ]. Then prl(f)
is a map from Y into S. Then pr2(f) is a map from Y into 7.
The following propositions are true:
(9) For every continuous map f from Y into [.S, 7] holds prl(f) is conti-
nuous.
(10) For every continuous map f from Y into [ S, 7' holds pr2(f) is conti-
nuous.
(11) If (s1, t1), (s2, t2) are connected, then s;, sp are connected.

(12) If (s1, t1), (s2, to) are connected, then t1, to are connected.
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(13) If (s1, t1), (s2, t2) are connected, then for every path L from (si, ¢1) to
(s2, t2) holds prl(L) is a path from s; to so.

(14) If (s1, t1), (s2, t2) are connected, then for every path L from (si, 1) to
(s2, t2) holds pr2(L) is a path from ¢; to ts.

(15) 1If s1, so are connected and t1, to are connected, then (s1, t1), (s2, t2)
are connected.

(16) Suppose s1, sy are connected and t1, to are connected. Let L be a path
from s; to sp and Lo be a path from t; to to. Then (L1, Lo) is a path from
(81, tl) to (SQ, tg).

Let S, T be non empty arcwise connected topological spaces, let si, so be
points of S, let #1, to be points of T, let L; be a path from s to s9, and let Lo
be a path from t; to to. Then (L1, Lo) is a path from (s1, t1) to (s, t2).

Let S, T be non empty topological spaces, let s be a point of 5, let t be a
point of 7', let L; be a loop of s, and let Ly be a loop of t. Then (L, L) is a
loop of (s, t).

Let S, T be non empty arcwise connected topological spaces. One can verify
that [ .S, T'] is arcwise connected.

Let S, T be non empty arcwise connected topological spaces, let si, so be
points of S, let t1, t2 be points of T, and let L be a path from (s, t1) to (s,
t2). Then pr1(L) is a path from s; to sg. Then pr2(L) is a path from ¢; to to.

Let S, T be non empty topological spaces, let s be a point of 5, let t be a
point of 7', and let L be a loop of (s, t). Then prl1(L) is a loop of s. Then pr2(L)
is a loop of t.

Next we state a number of propositions:

(17) Let p, ¢ be paths from s; to se. Suppose p = prl(l;) and ¢ = prl(l2) and
l1, l2 are homotopic. Then pr1(H) is a homotopy between p and q.

(18) Let p, g be paths from ¢; to to. Suppose p = pr2(l;) and ¢ = pr2(ly) and
l1, l2 are homotopic. Then pr2(H) is a homotopy between p and q.

(19) For all paths p, ¢ from s; to sy such that p = prl(ly) and ¢ = pri(la)
and [, ls are homotopic holds p, ¢ are homotopic.

(20) For all paths p, g from t; to to such that p = pr2(l;) and ¢ = pr2(l3) and
l1, ls are homotopic holds p, ¢ are homotopic.

(21) Let p, ¢ be paths from s; to s2, z, y be paths from t; to ta, f be
a homotopy between p and ¢, and g be a homotopy between x and y.
Suppose p = prl(l;) and ¢ = prl(ly) and =z = pr2(l;) and y = pr2(ly) and
p, q are homotopic and x, y are homotopic. Then (f,g) is a homotopy
between {; and 5.

(22) Let p, q be paths from s; to sg and z, y be paths from ¢; to ta. Suppose
p =prl(ly) and ¢ = prl(ly) and = = pr2(ly) and y = pr2(l2) and p, g are
homotopic and z, y are homotopic. Then 1, l2 are homotopic.
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(23) Let [ be a path from (s1, ¢1) to (s2, t2), l2 be a path from (s2, t2) to (s,
t3), p1 be a path from s; to s2, and py be a path from sy to s3. Suppose
(s1, t1), (s2, t2) are connected and (so, t2), (s3, t3) are connected and
p1 = prl(ly) and pa = prl(lz). Then prl(ly + l2) = p1 + po.

(24) Let S, T be non empty arcwise connected topological spaces, s1, S2, S3
be points of S, t1, te, t3 be points of T, I be a path from (s, t1) to
(s2, t2), and Iy be a path from (sq, t2) to (s3, t3). Then prl(ly + l3) =
prl(ly) + pri(ls).

(25) Let [ be a path from (s1, ¢1) to (s2, t2), Iz be a path from (sg, t2) to (s,
t3), p1 be a path from ¢; to t9, and pa be a path from t to t3. Suppose
(s1, t1), (s2, t2) are connected and (so, ta), (s3, t3) are connected and
p1 = pr2(ly) and po = pr2(lz). Then pr2(ly + l3) = p1 + po.

(26) Let S, T be non empty arcwise connected topological spaces, s1, S2, S3
be points of S, ¢, to, t3 be points of T', I; be a path from (s1, ¢;) to
(s2, t2), and Iz be a path from (sq2, t2) to (s3, t3). Then pr2(ly + l2) =
pr2(ly) + pr2(ls).

Let S, T be non empty topological spaces, let s be a point of S, and let t be
a point of T. The functor FGPrlIso(s, t) yielding a map from 71 ([ S, T'{, (s, t))
into [[(m1(S,s), m1(T,t)) is defined as follows:

(Def. 2) For every point = of m1(} S, T'], (s, t)) there exists a loop [ of (s, t) such
that z = [Z]EqRel([:S,T:},(s,t)) and (FGPrlso(s,t))(z) = <[pr1(l)]EqRel(S7s),
[prQ(l)]EqRel(T,t)>'

The following propositions are true:

(27) For every point x of w1 ([ S, T'{, (s, t)) and for every loop [ of (s, t) such
that © = [l]EqRel([:&T:]’(s’t)) holds (FGPrlso(s, t))(z) = ([pr1(D)]gqrel(s.s):
[Pr2(D)]gqrer(r,t))-

(28) For every loop I of (s, t) holds (FGPrIso(s,t))([!]

<[pr1(l)]EqRel(S,s)7 [pr2<l)]EqRel(T,t)>'
Let S, T' be non empty topological spaces, let s be a point of S, and let ¢ be
a point of T'. Observe that FGPrlso(s,t) is one-to-one and onto.

EqRel(f S, T :],(s,t)))

Let S, T be non empty topological spaces, let s be a point of S, and let ¢ be
a point of 7. Then FGPrlso(s,t) is a homomorphism from ([ S, T'], (s, t)) to

[[{m1 (S, s), m1(T,1)).

The following propositions are true:
(29) FGPrlso(s,t) is an isomorphism.
(30) mi(fS, T4, (s, t)) and [[(m1(S,s),m1(T,t)) are isomorphic.
(31) Let f be a homomorphism from (S, s1) to m1(S, s2) and g be a homo-
morphism from 71 (T, ¢1) to 71 (7T, t2). Suppose f is an isomorphism and g
is an isomorphism. Then Gr2Iso(f, g) - FGPrlIso(s1,t1) is an isomorphism.
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(32) Let S, T be non empty arcwise connected topological spaces, s1, s2
be points of S, and t1, to be points of T. Then 71 ([S, T'], (s1, t1)) and
[1{m1(S, s2), m1 (T, t2)) are isomorphic.
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