
FORMALIZED MATHEMATICS

Volume 12, Number 1, 2004

University of Białystok

A Tree of Execution of a Macroinstruction
1

Artur Korniłowicz

University of Białystok

Summary. A tree of execution of a macroinstruction is defined. It is a tree
decorated by the instruction locations of a computer. Successors of each vertex

are determined by the set of all possible values of the instruction counter after

execution of the instruction placed in the location indicated by given vertex.

MML Identifier: AMISTD 3.

The articles [22], [14], [25], [15], [1], [20], [3], [4], [16], [26], [11], [13], [12], [5], [6],

[21], [9], [8], [10], [2], [7], [18], [23], [19], [24], and [17] provide the notation and

terminology for this paper.

For simplicity, we adopt the following convention: x, y, X are sets, m, n are

natural numbers, O is an ordinal number, and R, S are binary relations.

Let D be a set, let f be a partial function from D to N, and let n be a set.

One can verify that f(n) is natural.

Let R be an empty binary relation and let X be a set. Observe that R↾X is

empty.

One can prove the following two propositions:

(1) If domR = {x} and rngR = {y}, then R = x7−→. y.

(2) field{〈〈x, x〉〉} = {x}.

Let X be an infinite set and let a be a set. One can verify that X 7−→ a is

infinite.

One can check that there exists a function which is infinite.

Let R be a finite binary relation. One can verify that fieldR is finite.

The following proposition is true

(3) If fieldR is finite, then R is finite.

1The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-

versity, Japan.

33
c© 2004 University of Białystok

ISSN 1426–2630



34 artur korniłowicz

Let R be an infinite binary relation. Note that fieldR is infinite.

One can prove the following proposition

(4) If domR is finite and rngR is finite, then R is finite.

Let us observe that ⊆∅ is empty.

Let X be a non empty set. One can verify that ⊆X is non empty.

Next we state two propositions:

(5) ⊆
{x} = {〈〈x, x〉〉}.

(6) ⊆
X ⊆ [:X, X :].

Let X be a finite set. Note that ⊆X is finite.

One can prove the following proposition

(7) If ⊆X is finite, then X is finite.

Let X be an infinite set. One can verify that ⊆X is infinite.

The following propositions are true:

(8) If R and S are isomorphic and R is well-ordering, then S is well-ordering.

(9) If R and S are isomorphic and R is finite, then S is finite.

(10) x7−→. y is an isomorphism between {〈〈x, x〉〉} and {〈〈y, y〉〉}.

(11) {〈〈x, x〉〉} and {〈〈y, y〉〉} are isomorphic.

One can verify that ∅ is empty.

The following propositions are true:

(12) ⊆
O = O.

(13) For every finite set X such that X ⊆ O holds ⊆X = cardX.

(14) If {x} ⊆ O, then ⊆{x} = 1.

(15) If {x} ⊆ O, then the canonical isomorphism between ⊆⊆
{x}
and ⊆{x} =

07−→. x.

Let O be an ordinal number, let X be a subset of O, and let n be a set. One

can check that (the canonical isomorphism between ⊆⊆
X

and ⊆X)(n) is ordinal.

Let X be a natural-membered set and let n be a set. Note that (the canonical

isomorphism between ⊆⊆
X

and ⊆X)(n) is natural.

Next we state three propositions:

(16) If n 7→ x = m 7→ x, then n = m.

(17) For every tree T and for every element t of T holds t↾Seg n ∈ T.

(18) For all trees T1, T2 such that for every natural number n holds

T1-level(n) = T2-level(n) holds T1 = T2.

The functor TrivialInfiniteTree is defined by:

(Def. 1) TrivialInfiniteTree = {k 7→ 0 : k ranges over natural numbers}.

One can check that TrivialInfiniteTree is non empty and tree-like.

We now state the proposition

(19) N ≈ TrivialInfiniteTree .



a tree of execution of a macroinstruction 35

Let us note that TrivialInfiniteTree is infinite.

The following proposition is true

(20) For every natural number n holds TrivialInfiniteTree -level(n) = {n 7→

0}.

For simplicity, we adopt the following convention: N denotes a set with

non empty elements, S denotes a standard IC-Ins-separated definite non empty

non void AMI over N , L, l1 denote instruction-locations of S, J denotes an

instruction of S, and F denotes a subset of the instruction locations of S.

LetN be a set with non empty elements, let S be a standard IC-Ins-separated

definite non empty non void AMI over N , and let F be a finite partial state

of S. Let us assume that F is non empty and F is programmed. The functor

FirstLoc(F ) yields an instruction-location of S and is defined by the condition

(Def. 2).

(Def. 2) There exists a non empty subset M of N such that M = {locnum(l); l

ranges over elements of the instruction locations of S: l ∈ domF} and

FirstLoc(F ) = ilS(minM).

One can prove the following four propositions:

(21) For every non empty programmed finite partial state F of S holds

FirstLoc(F ) ∈ domF.

(22) For all non empty programmed finite partial states F , G of S such that

F ⊆ G holds FirstLoc(G) ¬ FirstLoc(F ).

(23) For every non empty programmed finite partial state F of S such that

l1 ∈ domF holds FirstLoc(F ) ¬ l1.

(24) For every lower non empty programmed finite partial state F of S holds

FirstLoc(F ) = ilS(0).

LetN be a set with non empty elements, let S be a standard IC-Ins-separated

definite non empty non void AMI overN , and let F be a subset of the instruction

locations of S. The functor LocNums(F ) yields a subset of N and is defined by:

(Def. 3) LocNums(F ) = {locnum(l); l ranges over instruction-locations of S: l ∈

F}.

We now state the proposition

(25) locnum(l1) ∈ LocNums(F ) iff l1 ∈ F.

LetN be a set with non empty elements, let S be a standard IC-Ins-separated

definite non empty non void AMI over N , and let F be an empty subset of the

instruction locations of S. Observe that LocNums(F ) is empty.

LetN be a set with non empty elements, let S be a standard IC-Ins-separated

definite non empty non void AMI over N , and let F be a non empty subset of

the instruction locations of S. Observe that LocNums(F ) is non empty.

We now state several propositions:

(26) If F = {ilS(n)}, then LocNums(F ) = {n}.



36 artur korniłowicz

(27) F ≈ LocNums(F ).

(28) F ⊆ ⊆LocNums(F ).

(29) If S is realistic and J is halting, then LocNums(NIC(J, L)) =

{locnum(L)}.

(30) If S is realistic and J is sequential, then LocNums(NIC(J, L)) =

{locnum(NextLocL)}.

LetN be a set with non empty elements, let S be a standard IC-Ins-separated

definite non empty non void AMI over N , and let M be a subset of the instruc-

tion locations of S. The functor LocSeq(M) yielding a transfinite sequence of

elements of the instruction locations of S is defined as follows:

(Def. 4) domLocSeq(M) = M and for every set m such that m ∈ M holds

(LocSeq(M))(m) = ilS((the canonical isomorphism between ⊆⊆
LocNums(M)

and ⊆LocNums(M))(m)).

One can prove the following proposition

(31) If F = {ilS(n)}, then LocSeq(F ) = 07−→. ilS(n).

LetN be a set with non empty elements, let S be a standard IC-Ins-separated

definite non empty non void AMI over N , and let M be a subset of the instruc-

tion locations of S. Note that LocSeq(M) is one-to-one.

LetN be a set with non empty elements, let S be a standard IC-Ins-separated

definite non empty non void AMI over N , and let M be a finite partial state

of S. The functor ExecTree(M) yields a tree decorated with elements of the

instruction locations of S and is defined by the conditions (Def. 5).

(Def. 5)(i) (ExecTree(M))(∅) = FirstLoc(M), and

(ii) for every element t of domExecTree(M) holds succ t = {ta〈k〉; k ranges

over natural numbers: k ∈ NIC(π(ExecTree(M))(t)M, (ExecTree(M))(t))}

and for every natural number m such that

m ∈ NIC(π(ExecTree(M))(t)M, (ExecTree(M))(t)) holds (ExecTree(M))(t a

〈m〉) = (LocSeq(NIC(π(ExecTree(M))(t)M, (ExecTree(M))(t))))(m).

One can prove the following proposition

(32) For every standard halting realistic IC-Ins-separated definite non empty

non void AMI S over N holds ExecTree(StopS) = TrivialInfiniteTree 7−→

ilS(0).

Acknowledgments

The author wishes to thank Andrzej Trybulec and Grzegorz Bancerek for

their very useful comments during writing this article.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.



a tree of execution of a macroinstruction 37

[2] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421–427, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[4] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–
290, 1990.

[5] Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123–129,
1990.

[6] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics,
1(2):265–267, 1990.

[7] Grzegorz Bancerek. König’s lemma. Formalized Mathematics, 2(3):397–402, 1991.
[8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[9] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,
1990.

[10] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[11] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[12] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[13] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[14] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[16] Agata Darmochwał and Andrzej Trybulec. Similarity of formulae. Formalized Mathema-
tics, 2(5):635–642, 1991.

[17] Artur Korniłowicz. On the composition of macro instructions of standard computers.
Formalized Mathematics, 9(2):303–316, 2001.

[18] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[19] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[20] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[21] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329–334, 1990.

[22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[23] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[24] Andrzej Trybulec, Piotr Rudnicki, and Artur Korniłowicz. Standard ordering of instruc-
tion locations. Formalized Mathematics, 9(2):291–301, 2001.

[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received December 10, 2003


