
FORMALIZED MATHEMATICS

Volume 12, Number 1, 2004

University of Białystok

Banach Space of Bounded Linear Operators

Yasunari Shidama

Shinshu University

Nagano

Summary. In this article, the basic properties of linear spaces which are
defined as the set of all linear operators from one linear space to another, are

described. Especially, the Banach space is introduced. This is defined by the set

of all bounded linear operators.

MML Identifier: LOPBAN 1.

The notation and terminology used in this paper are introduced in the following

articles: [26], [6], [24], [31], [27], [33], [32], [4], [5], [16], [23], [22], [3], [1], [2], [21],

[28], [9], [7], [30], [14], [25], [17], [29], [19], [18], [8], [20], [13], [11], [12], [10], and

[15].

1. Real Vector Space of Operators

Let X be a set, let Y be a non empty set, let F be a function from [: R, Y :]

into Y , let a be a real number, and let f be a function from X into Y . Then

F ◦(a, f) is an element of Y X .

One can prove the following propositions:

(1) Let X be a non empty set and Y be a non empty loop structure. Then

there exists a binary operation A1 on (the carrier of Y )X such that for

all elements f , g of (the carrier of Y )X holds A1(f, g) = (the addition of

Y )◦(f, g).

(2) Let X be a non empty set and Y be a real linear space. Then there exists

a functionM1 from [: R, (the carrier of Y )X :] into (the carrier of Y )X such

that for every real number r and for every element f of (the carrier of

Y )X and for every element s of X holds M1(〈〈r, f〉〉)(s) = r · f(s).
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Let X be a non empty set and let Y be a non empty loop structure. The

functor FuncAdd(X, Y ) yields a binary operation on (the carrier of Y )X and is

defined by:

(Def. 1) For all elements f , g of (the carrier of Y )X holds (FuncAdd(X, Y ))(f,

g) = (the addition of Y )◦(f, g).

Let X be a non empty set and let Y be a real linear space. The functor

FuncExtMult(X, Y ) yields a function from [: R, (the carrier of Y )X :] into (the

carrier of Y )X and is defined by the condition (Def. 2).

(Def. 2) Let a be a real number, f be an element of (the carrier of Y )X , and x

be an element of X. Then (FuncExtMult(X, Y ))(〈〈a, f〉〉)(x) = a · f(x).

Let X be a set and let Y be a non empty zero structure. The functor

FuncZero(X, Y ) yielding an element of (the carrier of Y )X is defined as fol-

lows:

(Def. 3) FuncZero(X, Y ) = X 7−→ 0Y .

We adopt the following rules: X is a non empty set, Y is a real linear space,

and f , g, h are elements of (the carrier of Y )X .

The following two propositions are true:

(3) Let Y be a non empty loop structure and f , g, h be elements of (the

carrier of Y )X . Then h = (FuncAdd(X, Y ))(f, g) if and only if for every

element x of X holds h(x) = f(x) + g(x).

(4) For every element x of X holds (FuncZero(X, Y ))(x) = 0Y .

In the sequel a, b are real numbers.

The following propositions are true:

(5) h = (FuncExtMult(X, Y ))(〈〈a, f〉〉) iff for every element x of X holds

h(x) = a · f(x).

(6) (FuncAdd(X,Y ))(f, g) = (FuncAdd(X, Y ))(g, f).

(7) (FuncAdd(X,Y ))(f, (FuncAdd(X, Y ))(g, h)) = (FuncAdd(X,Y ))

((FuncAdd(X, Y ))(f, g), h).

(8) (FuncAdd(X,Y ))(FuncZero(X, Y ), f) = f.

(9) (FuncAdd(X,Y ))(f, (FuncExtMult(X, Y ))(〈〈−1, f〉〉)) = FuncZero(X, Y ).

(10) (FuncExtMult(X, Y ))(〈〈1, f〉〉) = f.

(11) (FuncExtMult(X, Y ))(〈〈a, (FuncExtMult(X, Y ))(〈〈b, f〉〉)〉〉) =

(FuncExtMult(X,Y ))(〈〈a · b, f〉〉).

(12) (FuncAdd(X,Y ))((FuncExtMult(X, Y ))(〈〈a, f〉〉), (FuncExtMult(X, Y ))

(〈〈b, f〉〉)) = (FuncExtMult(X, Y ))(〈〈a + b, f〉〉).

(13) 〈(the carrier of Y )X ,FuncZero(X, Y ),FuncAdd(X, Y ),FuncExtMult

(X, Y )〉 is a real linear space.

Let X be a non empty set and let Y be a real linear space. The functor

RealVectSpace(X,Y ) yields a real linear space and is defined as follows:
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(Def. 4) RealVectSpace(X, Y ) = 〈(the carrier of Y )X ,FuncZero(X, Y ),

FuncAdd(X,Y ),FuncExtMult(X, Y )〉.

Let X be a non empty set and let Y be a real linear space. One can check

that RealVectSpace(X,Y ) is strict.

Let X be a non empty set and let Y be a real linear space. Note that every

vector of RealVectSpace(X,Y ) is function-like and relation-like.

Let X be a non empty set, let Y be a real linear space, let f be a vector of

RealVectSpace(X,Y ), and let x be an element of X. Then f(x) is a vector of

Y .

One can prove the following propositions:

(14) Let X be a non empty set, Y be a real linear space, and f , g, h be vectors

of RealVectSpace(X,Y ). Then h = f + g if and only if for every element

x of X holds h(x) = f(x) + g(x).

(15) Let X be a non empty set, Y be a real linear space, f , h be vectors of

RealVectSpace(X, Y ), and a be a real number. Then h = a · f if and only

if for every element x of X holds h(x) = a · f(x).

(16) For every non empty set X and for every real linear space Y holds

0RealVectSpace(X,Y ) = X 7−→ 0Y .

2. Real Vector Space of Linear Operators

Let X be a non empty RLS structure, let Y be a non empty loop structure,

and let I1 be a function from X into Y . We say that I1 is additive if and only

if:

(Def. 5) For all vectors x, y of X holds I1(x + y) = I1(x) + I1(y).

Let X, Y be non empty RLS structures and let I1 be a function from X into

Y . We say that I1 is homogeneous if and only if:

(Def. 6) For every vector x of X and for every real number r holds I1(r · x) =

r · I1(x).

Let X be a non empty RLS structure and let Y be a real linear space. Note

that there exists a function from X into Y which is additive and homogeneous.

LetX, Y be real linear spaces. A linear operator fromX into Y is an additive

homogeneous function from X into Y .

Let X, Y be real linear spaces. The functor LinearOperators(X, Y ) yields a

subset of RealVectSpace(the carrier of X, Y ) and is defined as follows:

(Def. 7) For every set x holds x ∈ LinearOperators(X,Y ) iff x is a linear operator

from X into Y .

Let X, Y be real linear spaces. Note that LinearOperators(X, Y ) is non

empty.

One can prove the following propositions:
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(17) For all real linear spaces X, Y holds LinearOperators(X,Y ) is linearly

closed.

(18) Let X, Y be real linear spaces. Then 〈LinearOperators(X,Y ),

Zero (LinearOperators(X,Y ),RealVectSpace(the carrier of X, Y )),

Add (LinearOperators(X, Y ),RealVectSpace(the carrier of X, Y )),

Mult (LinearOperators(X,Y ),RealVectSpace(the carrier of X, Y ))〉 is a

subspace of RealVectSpace(the carrier of X, Y ).

Let X, Y be real linear spaces. One can verify that 〈LinearOperators(X, Y ),

Zero (LinearOperators(X, Y ),RealVectSpace(the carrier of X, Y )),

Add (LinearOperators(X,Y ),RealVectSpace(the carrier of X, Y )),

Mult (LinearOperators(X, Y ),RealVectSpace(the carrier of X, Y ))〉 is Abe-

lian, add-associative, right zeroed, right complementable, and real linear space-

like.

One can prove the following proposition

(19) Let X, Y be real linear spaces. Then 〈LinearOperators(X,Y ),

Zero (LinearOperators(X,Y ),RealVectSpace(the carrier of X, Y )),

Add (LinearOperators(X, Y ),RealVectSpace(the carrier of X, Y )),

Mult (LinearOperators(X,Y ),RealVectSpace(the carrier of X, Y ))〉 is a

real linear space.

Let X, Y be real linear spaces. The functor RVectorSpaceOfLinearOperators

(X, Y ) yielding a real linear space is defined as follows:

(Def. 8) RVectorSpaceOfLinearOperators(X, Y ) = 〈LinearOperators(X, Y ),

Zero (LinearOperators(X,Y ),RealVectSpace(the carrier of X, Y )),

Add (LinearOperators(X, Y ),RealVectSpace(the carrier of X, Y )),

Mult (LinearOperators(X,Y ),RealVectSpace(the carrier of X, Y ))〉.

LetX, Y be real linear spaces. Observe that RVectorSpaceOfLinearOperators

(X, Y ) is strict.

Let X, Y be real linear spaces. Note that every element of

RVectorSpaceOfLinearOperators(X,Y ) is function-like and relation-like.

Let X, Y be real linear spaces, let f be an element of

RVectorSpaceOfLinearOperators(X,Y ), and let v be a vector of X. Then

f(v) is a vector of Y .

We now state four propositions:

(20) Let X, Y be real linear spaces and f , g, h be vectors of

RVectorSpaceOfLinearOperators(X, Y ). Then h = f + g if and only if

for every vector x of X holds h(x) = f(x) + g(x).

(21) Let X, Y be real linear spaces, f , h be vectors

of RVectorSpaceOfLinearOperators(X, Y ), and a be a real number. Then

h = a · f if and only if for every vector x of X holds h(x) = a · f(x).
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(22) For all real linear spaces X, Y holds 0RVectorSpaceOfLinearOperators(X,Y ) =

(the carrier of X) 7−→ 0Y .

(23) For all real linear spaces X, Y holds (the carrier of X) 7−→ 0Y is a linear

operator from X into Y .

3. Real Normed Linear Space of Bounded Linear Operators

One can prove the following proposition

(24) Let X be a real normed space, s1 be a sequence of X, and g be a point

of X. If s1 is convergent and lim s1 = g, then ‖s1‖ is convergent and

lim‖s1‖ = ‖g‖.

Let X, Y be real normed spaces and let I1 be a linear operator from X into

Y . We say that I1 is bounded if and only if:

(Def. 9) There exists a real number K such that 0 ¬ K and for every vector x of

X holds ‖I1(x)‖ ¬ K · ‖x‖.

Next we state the proposition

(25) Let X, Y be real normed spaces and f be a linear operator from X into

Y . If for every vector x of X holds f(x) = 0Y , then f is bounded.

Let X, Y be real normed spaces. One can check that there exists a linear

operator from X into Y which is bounded.

LetX, Y be real normed spaces. The functor BoundedLinearOperators(X,Y )

yields a subset of RVectorSpaceOfLinearOperators(X,Y ) and is defined by:

(Def. 10) For every set x holds x ∈ BoundedLinearOperators(X, Y ) iff x is a bo-

unded linear operator from X into Y .

LetX, Y be real normed spaces. One can verify that BoundedLinearOperators

(X, Y ) is non empty.

One can prove the following two propositions:

(26) For all real normed spaces X, Y holds BoundedLinearOperators(X, Y )

is linearly closed.

(27) For all real normed spaces X, Y holds 〈BoundedLinearOperators(X, Y ),

Zero (BoundedLinearOperators(X,Y ),RVectorSpaceOfLinearOperators

(X, Y )),Add (BoundedLinearOperators(X,Y ),

RVectorSpaceOfLinearOperators(X, Y )),Mult (BoundedLinearOperators

(X, Y ),RVectorSpaceOfLinearOperators(X,Y ))〉 is a subspace

of RVectorSpaceOfLinearOperators(X, Y ).

Let X, Y be real normed spaces.

Observe that 〈BoundedLinearOperators(X, Y ),

Zero (BoundedLinearOperators(X, Y ),RVectorSpaceOfLinearOperators(X,

Y )),Add (BoundedLinearOperators(X, Y ),RVectorSpaceOfLinearOperators

(X, Y )),Mult (BoundedLinearOperators(X, Y ),
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RVectorSpaceOfLinearOperators(X,Y ))〉 is Abelian, add-associative, right

zeroed, right complementable, and real linear space-like.

One can prove the following proposition

(28) For all real normed spaces X, Y holds 〈BoundedLinearOperators(X, Y ),

Zero (BoundedLinearOperators(X, Y ),RVectorSpaceOfLinearOperators

(X, Y )),Add (BoundedLinearOperators(X,Y ),

RVectorSpaceOfLinearOperators(X, Y )),

Mult (BoundedLinearOperators(X, Y ),RVectorSpaceOfLinearOperators

(X, Y ))〉 is a real linear space.

Let X, Y be real normed spaces.

The functor RVectorSpaceOfBoundedLinearOperators(X, Y ) yields a real li-

near space and is defined by:

(Def. 11) RVectorSpaceOfBoundedLinearOperators(X, Y ) =

〈BoundedLinearOperators(X,Y ),Zero (BoundedLinearOperators(X, Y ),

RVectorSpaceOfLinearOperators(X, Y )),Add (BoundedLinearOperators

(X, Y ),RVectorSpaceOfLinearOperators(X,Y )),

Mult (BoundedLinearOperators(X, Y ),RVectorSpaceOfLinearOperators

(X, Y ))〉.

Let X, Y be real normed spaces.

Observe that RVectorSpaceOfBoundedLinearOperators(X,Y ) is strict.

Let X, Y be real normed spaces. Note that every element of

RVectorSpaceOfBoundedLinearOperators(X,Y ) is function-like and relation-

like.

Let X, Y be real normed spaces, let f be an element of

RVectorSpaceOfBoundedLinearOperators(X,Y ), and let v be a vector of X.

Then f(v) is a vector of Y .

One can prove the following propositions:

(29) Let X, Y be real normed spaces and f , g, h be vectors of

RVectorSpaceOfBoundedLinearOperators(X, Y ). Then h = f + g if and

only if for every vector x of X holds h(x) = f(x) + g(x).

(30) Let X, Y be real normed spaces, f , h be vectors

of RVectorSpaceOfBoundedLinearOperators(X, Y ), and a be a real num-

ber. Then h = a · f if and only if for every vector x of X holds

h(x) = a · f(x).

(31) For all real normed spaces X, Y holds

0RVectorSpaceOfBoundedLinearOperators(X,Y ) = (the carrier of X) 7−→ 0Y .

Let X, Y be real normed spaces and let f be a set. Let us assume that

f ∈ BoundedLinearOperators(X, Y ). The functor modetrans(f, X, Y ) yields a

bounded linear operator from X into Y and is defined by:

(Def. 12) modetrans(f, X, Y ) = f.
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Let X, Y be real normed spaces and let u be a linear operator from X into

Y . The functor PreNorms(u) yielding a non empty subset of R is defined as

follows:

(Def. 13) PreNorms(u) = {‖u(t)‖; t ranges over vectors of X: ‖t‖ ¬ 1}.

We now state three propositions:

(32) Let X, Y be real normed spaces and g be a bounded linear operator

from X into Y . Then PreNorms(g) is non empty and upper bounded.

(33) Let X, Y be real normed spaces and g be a linear operator from X into

Y . Then g is bounded if and only if PreNorms(g) is upper bounded.

(34) Let X, Y be real normed spaces. Then there exists a func-

tion N1 from BoundedLinearOperators(X, Y ) into R such that for

every set f if f ∈ BoundedLinearOperators(X,Y ), then N1(f) =

supPreNorms(modetrans(f,X, Y )).

LetX, Y be real normed spaces. The functor BoundedLinearOperatorsNorm

(X, Y ) yielding a function from BoundedLinearOperators(X,Y ) into R is

defined as follows:

(Def. 14) For every set x such that x ∈ BoundedLinearOperators(X, Y ) holds

(BoundedLinearOperatorsNorm(X,Y ))(x) = supPreNorms(modetrans(x,

X, Y )).

The following two propositions are true:

(35) For all real normed spaces X, Y and for every bounded linear operator

f from X into Y holds modetrans(f, X, Y ) = f.

(36) For all real normed spaces X, Y and for every bounded linear opera-

tor f from X into Y holds (BoundedLinearOperatorsNorm(X, Y ))(f) =

supPreNorms(f).

Let X, Y be real normed spaces.

The functor RNormSpaceOfBoundedLinearOperators(X,Y ) yielding a non

empty normed structure is defined as follows:

(Def. 15) RNormSpaceOfBoundedLinearOperators(X, Y ) =

〈BoundedLinearOperators(X, Y ),Zero (BoundedLinearOperators(X,Y ),

RVectorSpaceOfLinearOperators(X, Y )),Add (BoundedLinearOperators

(X, Y ),RVectorSpaceOfLinearOperators(X,Y )),

Mult (BoundedLinearOperators(X,Y ),RVectorSpaceOfLinearOperators

(X, Y )),BoundedLinearOperatorsNorm(X, Y )〉.

The following propositions are true:

(37) For all real normed spaces X, Y holds (the carrier of X) 7−→ 0Y =

0RNormSpaceOfBoundedLinearOperators(X,Y ).

(38) Let X, Y be real normed spaces, f be a point
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of RNormSpaceOfBoundedLinearOperators(X, Y ), and g be a bounded

linear operator from X into Y . If g = f, then for every vector t of X holds

‖g(t)‖ ¬ ‖f‖ · ‖t‖.

(39) For all real normed spaces X, Y and for every point f of

RNormSpaceOfBoundedLinearOperators(X,Y ) holds 0 ¬ ‖f‖.

(40) For all real normed spaces X, Y and for every point f

of RNormSpaceOfBoundedLinearOperators(X, Y ) such that f =

0RNormSpaceOfBoundedLinearOperators(X,Y ) holds 0 = ‖f‖.

Let X, Y be real normed spaces. Observe that every element of

RNormSpaceOfBoundedLinearOperators(X, Y ) is function-like and relation-

like.

Let X, Y be real normed spaces, let f be an element of

RNormSpaceOfBoundedLinearOperators(X, Y ), and let v be a vector of X.

Then f(v) is a vector of Y .

The following propositions are true:

(41) Let X, Y be real normed spaces and f , g, h be points of

RNormSpaceOfBoundedLinearOperators(X,Y ). Then h = f + g if and

only if for every vector x of X holds h(x) = f(x) + g(x).

(42) Let X, Y be real normed spaces, f , h be points

of RNormSpaceOfBoundedLinearOperators(X,Y ), and a be a real num-

ber. Then h = a · f if and only if for every vector x of X holds

h(x) = a · f(x).

(43) LetX be a real normed space, Y be a real normed space, f , g be points of

RNormSpaceOfBoundedLinearOperators(X,Y ), and a be a real number.

Then ‖f‖ = 0 iff f = 0RNormSpaceOfBoundedLinearOperators(X,Y ) and ‖a · f‖ =

|a| · ‖f‖ and ‖f + g‖ ¬ ‖f‖+ ‖g‖.

(44) For all real normed spaces X, Y holds

RNormSpaceOfBoundedLinearOperators(X,Y ) is real normed space-like.

(45) For all real normed spaces X, Y holds

RNormSpaceOfBoundedLinearOperators(X,Y ) is a real normed space.

Let X, Y be real normed spaces.

Note that RNormSpaceOfBoundedLinearOperators(X, Y ) is real normed

space-like, real linear space-like, Abelian, add-associative, right zeroed, and right

complementable.

One can prove the following proposition

(46) Let X, Y be real normed spaces and f , g, h be points of

RNormSpaceOfBoundedLinearOperators(X,Y ). Then h = f − g if and

only if for every vector x of X holds h(x) = f(x)− g(x).
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4. Real Banach Space of Bounded Linear Operators

Let X be a real normed space. We say that X is complete if and only if:

(Def. 16) For every sequence s1 of X such that s1 is Cauchy sequence by norm

holds s1 is convergent.

Let us note that there exists a real normed space which is complete.

A real Banach space is a complete real normed space.

We now state three propositions:

(47) Let X be a real normed space and s1 be a sequence of X. If s1 is conver-

gent, then ‖s1‖ is convergent and lim‖s1‖ = ‖lim s1‖.

(48) Let X, Y be real normed spaces. Suppose Y is complete. Let s1 be a se-

quence of RNormSpaceOfBoundedLinearOperators(X,Y ). If s1 is Cauchy

sequence by norm, then s1 is convergent.

(49) For every real normed space X and for every real Banach space Y holds

RNormSpaceOfBoundedLinearOperators(X, Y ) is a real Banach space.

Let X be a real normed space and let Y be a real Banach space. Observe

that RNormSpaceOfBoundedLinearOperators(X, Y ) is complete.
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