Magnitude Relation Properties of Radix- 2^k SD Number

Masaaki Niimura	Yasushi Fuwa
Shinshu University	Shinshu University
Nagano	Nagano

Summary. In this article, magnitude relation properties of Radix- 2^k SD number are discussed. Until now, the Radix- 2^k SD Number has been proposed for the high-speed calculations for RSA Cryptograms. In RSA Cryptograms, many modulo calculations are used, and modulo calculations need a comparison between two numbers.

In this article, we discuss magnitude relation of $\operatorname{Radix}-2^k$ SD Number. In the first section, we present some useful theorems for operations of $\operatorname{Radix}-2^k$ SD Number. In the second section, we prove some properties of the primary numbers expressed by $\operatorname{Radix}-2^k$ SD Number such as 0, 1, and $\operatorname{Radix}(k)$. In the third section, we prove primary magnitude relations between two $\operatorname{Radix}-2^k$ SD Numbers. In the fourth section, we define $\operatorname{Max}/\operatorname{Min}$ numbers in some cases. And in the last section, we prove some relations between the addition of $\operatorname{Max}/\operatorname{Min}$ numbers.

MML Identifier: $\texttt{RADIX_5}.$

The terminology and notation used here are introduced in the following articles: [7], [8], [1], [6], [4], [2], [3], and [5].

1. Some Useful Theorems

The following propositions are true:

- (1) For every natural number k such that $k \ge 2$ holds $\operatorname{Radix} k 1 \in k \operatorname{SD}$.
- (2) For all natural numbers i, n such that i > 1 and $i \in \text{Seg } n$ holds $i 1 \in \text{Seg } n$.
- (3) For every natural number k such that $2 \leq k$ holds $4 \leq \text{Radix } k$.

C 2004 University of Białystok ISSN 1426-2630

- (4) For every natural number k and for every 1-tuple t_1 of k-SD holds SDDec $t_1 = \text{DigA}(t_1, 1)$.
 - 2. Properties of Primary Radix- 2^k SD Number

Next we state several propositions:

- (5) For all natural numbers i, k, n such that $i \in \text{Seg } n$ holds DigA(DecSD(0, n, k), i) = 0.
- (6) For all natural numbers n, k such that $n \ge 1$ holds SDDec DecSD(0, n, k) = 0.
- (7) For all natural numbers k, n such that $1 \in \text{Seg } n$ and $k \ge 2$ holds DigA(DecSD(1, n, k), 1) = 1.
- (8) For all natural numbers i, k, n such that $i \in \text{Seg } n$ and i > 1 and $k \ge 2$ holds DigA(DecSD(1, n, k), i) = 0.
- (9) For all natural numbers n, k such that $n \ge 1$ and $k \ge 2$ holds SDDec DecSD(1, n, k) = 1.
- (10) For every natural number k such that $k \ge 2$ holds SD_Add_Carry Radix k = 1.
- (11) For every natural number k such that $k \ge 2$ holds SD_Add_Data(Radix k, k) = 0.
 - 3. Primary Magnitude Relation of Radix- 2^k SD Number

Next we state four propositions:

- (12) Let n be a natural number. Suppose $n \ge 1$. Let k be a natural number and t_1 , t_2 be n-tuples of k-SD. If for every natural number i such that $i \in \text{Seg } n$ holds $\text{DigA}(t_1, i) = \text{DigA}(t_2, i)$, then $\text{SDDec } t_1 = \text{SDDec } t_2$.
- (13) Let n be a natural number. Suppose $n \ge 1$. Let k be a natural number and t_1 , t_2 be n-tuples of k-SD. If for every natural number i such that $i \in \text{Seg } n$ holds $\text{DigA}(t_1, i) \ge \text{DigA}(t_2, i)$, then $\text{SDDec } t_1 \ge \text{SDDec } t_2$.
- (14) Let *n* be a natural number. Suppose $n \ge 1$. Let *k* be a natural number. Suppose $k \ge 2$. Let t_1, t_2, t_3, t_4 be *n*-tuples of k-SD. Suppose that for every natural number *i* such that $i \in \text{Seg } n$ holds $\text{DigA}(t_1, i) = \text{DigA}(t_3, i)$ and $\text{DigA}(t_2, i) = \text{DigA}(t_4, i)$ or $\text{DigA}(t_2, i) = \text{DigA}(t_3, i)$ and $\text{DigA}(t_1, i) = \text{DigA}(t_4, i)$. Then $\text{SDDec } t_3 + \text{SDDec } t_4 = \text{SDDec } t_1 + \text{SDDec } t_2$.
- (15) Let n, k be natural numbers. Suppose $n \ge 1$ and $k \ge 2$. Let t_1, t_2, t_3 be n-tuples of k-SD. Suppose that for every natural number i such that $i \in \text{Seg } n$ holds $\text{DigA}(t_1, i) = \text{DigA}(t_3, i)$ and $\text{DigA}(t_2, i) = 0$ or $\text{DigA}(t_2, i) = 0$

6

 $DigA(t_3, i)$ and $DigA(t_1, i) = 0$. Then $SDDec t_3 + SDDec DecSD(0, n, k) = SDDec t_1 + SDDec t_2$.

4. Definition of Max/Min Radix- 2^k SD Numbers in Some Digits

Let *i*, *m*, *k* be natural numbers. Let us assume that $k \ge 2$. The functor SDMinDigit(m, k, i) yielding an element of k-SD is defined as follows:

(Def. 1) SDMinDigit
$$(m, k, i) = \begin{cases} -\text{Radix } k + 1, \text{ if } 1 \leq i \text{ and } i < m, \\ 0, \text{ otherwise.} \end{cases}$$

Let n, m, k be natural numbers. The functor SDMin(n, m, k) yields a *n*-tuple of k-SD and is defined by:

(Def. 2) For every natural number i such that $i \in \text{Seg } n$ holds DigA(SDMin(n, m, k), i) = SDMinDigit(m, k, i).

Let *i*, *m*, *k* be natural numbers. Let us assume that $k \ge 2$. The functor SDMaxDigit(*m*, *k*, *i*) yielding an element of *k*-SD is defined as follows:

(Def. 3) SDMaxDigit
$$(m, k, i) = \begin{cases} \text{Radix } k - 1, \text{ if } 1 \leq i \text{ and } i < m, \\ 0, \text{ otherwise.} \end{cases}$$

Let n, m, k be natural numbers. The functor SDMax(n, m, k) yields a *n*-tuple of k-SD and is defined by:

(Def. 4) For every natural number i such that $i \in \text{Seg } n$ holds DigA(SDMax(n, m, k), i) = SDMaxDigit(m, k, i).

Let *i*, *m*, *k* be natural numbers. Let us assume that $k \ge 2$. The functor FminDigit(m, k, i) yielding an element of k-SD is defined by:

(Def. 5) FminDigit
$$(m, k, i) = \begin{cases} 1, & \text{if } i = m, \\ 0, & \text{otherwise} \end{cases}$$

Let n, m, k be natural numbers. The functor Fmin(n, m, k) yields a *n*-tuple of k-SD and is defined as follows:

(Def. 6) For every natural number i such that $i \in \text{Seg } n$ holds DigA(Fmin(n, m, k), i) = FminDigit(m, k, i).

Let *i*, *m*, *k* be natural numbers. Let us assume that $k \ge 2$. The functor FmaxDigit(*m*, *k*, *i*) yielding an element of *k*-SD is defined as follows:

(Def. 7) FmaxDigit
$$(m, k, i) = \begin{cases} \text{Radix } k - 1, \text{ if } i = m, \\ 0, \text{ otherwise.} \end{cases}$$

Let n, m, k be natural numbers. The functor Fmax(n, m, k) yielding a n-tuple of k-SD is defined as follows:

(Def. 8) For every natural number i such that $i \in \text{Seg } n$ holds DigA(Fmax(n, m, k), i) = FmaxDigit(m, k, i).

MASAAKI NIIMURA AND YASUSHI FUWA

5. Properties of Max/Min Radix- 2^k SD Numbers

Next we state four propositions:

- (16) Let n, m, k be natural numbers. Suppose $n \ge 1$ and $k \ge 2$ and $m \in \text{Seg } n$. Let i be a natural number. If $i \in \text{Seg } n$, then DigA(SDMax(n, m, k), i) + DigA(SDMin(n, m, k), i) = 0.
- (17) Let n be a natural number. Suppose $n \ge 1$. Let m, k be natural numbers. If $m \in \text{Seg } n$ and $k \ge 2$, then SDDec SDMax(n, m, k) + SDDec SDMin(n, m, k) = SDDec DecSD(0, n, k).
- (18) Let n be a natural number. Suppose $n \ge 1$. Let m, k be natural numbers. If $m \in \text{Seg } n$ and $k \ge 2$, then SDDec Fmin(n, m, k) = SDDec SDMax(n, m, k) + SDDec DecSD(1, n, k).
- (19) For all natural numbers n, m, k such that $m \in \text{Seg } n$ and $k \ge 2$ holds SDDec Fmin(n+1, m+1, k) = SDDec Fmin(n+1, m, k) + SDDec Fmax(n+1, m, k).

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [4] Yoshinori Fujisawa and Yasushi Fuwa. Definitions of radix-2^k signed-digit number and its adder algorithm. *Formalized Mathematics*, 9(1):71–75, 2001.
- [5] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):573– 577, 1997.
- [6] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [8] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received November 7, 2003