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Summary. Two kinds of sorting operators, descendent one and ascendent
one are introduced for finite sequences of reals. They are also called rearrange-

ment of finite sequences of reals. Maximum and minimum values of finite sequ-

ences of reals are also defined. We also discuss relations between these concepts.

MML Identifier: RFINSEQ2.

The articles [13], [12], [15], [4], [5], [2], [1], [9], [14], [10], [6], [7], [3], [11], and [8]

provide the notation and terminology for this paper.

Let f be a finite sequence of elements of R. The functor maxp f yielding a

natural number is defined by the conditions (Def. 1).

(Def. 1)(i) If len f = 0, then maxp f = 0, and

(ii) if len f > 0, then maxp f ∈ dom f and for every natural number i

and for all real numbers r1, r2 such that i ∈ dom f and r1 = f(i) and

r2 = f(maxp f) holds r1 ¬ r2 and for every natural number j such that

j ∈ dom f and f(j) = f(maxp f) holds maxp f ¬ j.

Let f be a finite sequence of elements of R. The functor minp f yields a

natural number and is defined by the conditions (Def. 2).

(Def. 2)(i) If len f = 0, then minp f = 0, and

(ii) if len f > 0, then minp f ∈ dom f and for every natural number i

and for all real numbers r1, r2 such that i ∈ dom f and r1 = f(i) and

r2 = f(minp f) holds r1 ­ r2 and for every natural number j such that

j ∈ dom f and f(j) = f(minp f) holds minp f ¬ j.

Let f be a finite sequence of elements of R. The functor max f yields a real

number and is defined by:

(Def. 3) max f = f(maxp f).

The functor min f yields a real number and is defined by:
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(Def. 4) min f = f(minp f).

The following propositions are true:

(1) Let f be a finite sequence of elements of R and i be a natural number.

If 1 ¬ i and i ¬ len f, then f(i) ¬ f(maxp f) and f(i) ¬ max f.

(2) Let f be a finite sequence of elements of R and i be a natural number.

If 1 ¬ i and i ¬ len f, then f(i) ­ f(minp f) and f(i) ­ min f.

(3) For every finite sequence f of elements of R and for every real number

r such that f = 〈r〉 holds maxp f = 1 and max f = r.

(4) For every finite sequence f of elements of R and for every real number

r such that f = 〈r〉 holds minp f = 1 and min f = r.

(5) Let f be a finite sequence of elements of R and r1, r2 be real numbers. If

f = 〈r1, r2〉, then max f = max(r1, r2) and maxp f = (r1 = max(r1, r2)→

1, 2).

(6) Let f be a finite sequence of elements of R and r1, r2 be real numbers. If

f = 〈r1, r2〉, then min f = min(r1, r2) and minp f = (r1 = min(r1, r2) →

1, 2).

(7) For all finite sequences f1, f2 of elements of R such that len f1 = len f2

and len f1 > 0 holds max(f1 + f2) ¬ max f1 +max f2.

(8) For all finite sequences f1, f2 of elements of R such that len f1 = len f2

and len f1 > 0 holds min(f1 + f2) ­ min f1 +min f2.

(9) Let f be a finite sequence of elements of R and a be a real number. If

len f > 0 and a > 0, then max(a ·f) = a ·max f and maxp(a ·f) = maxp f.

(10) Let f be a finite sequence of elements of R and a be a real number. If

len f > 0 and a > 0, then min(a · f) = a ·min f and minp(a · f) = minp f.

(11) For every finite sequence f of elements of R such that len f > 0 holds

max(−f) = −min f and maxp(−f) = minp f.

(12) For every finite sequence f of elements of R such that len f > 0 holds

min(−f) = −max f and minp(−f) = maxp f.

(13) Let f be a finite sequence of elements of R and n be a natural number.

If 1 ¬ n and n < len f, then max(f⇂n) ¬ max f and min(f⇂n) ­ min f.

(14) For all finite sequences f , g of elements of R such that f and g are

fiberwise equipotent holds max f = max g.

(15) For all finite sequences f , g of elements of R such that f and g are

fiberwise equipotent holds min f = min g.

Let f be a finite sequence of elements of R. The functor sortd f yields a

non-increasing finite sequence of elements of R and is defined by:

(Def. 5) f and sortd f are fiberwise equipotent.

Next we state four propositions:
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(16) For every finite sequence R of elements of R such that lenR = 0 or

lenR = 1 holds R is non-decreasing.

(17) Let R be a finite sequence of elements of R. Then R is non-decreasing

if and only if for all natural numbers n, m such that n ∈ domR and

m ∈ domR and n < m holds R(n) ¬ R(m).

(18) Let R be a non-decreasing finite sequence of elements of R and n be a

natural number. Then R↾n is a non-decreasing finite sequence of elements

of R.

(19) Let R1, R2 be non-decreasing finite sequences of elements of R. If R1

and R2 are fiberwise equipotent, then R1 = R2.

Let f be a finite sequence of elements of R. The functor sorta f yields a

non-decreasing finite sequence of elements of R and is defined as follows:

(Def. 6) f and sorta f are fiberwise equipotent.

Next we state a number of propositions:

(20) For every non-increasing finite sequence f of elements of R holds

sortd f = f.

(21) For every non-decreasing finite sequence f of elements of R holds

sorta f = f.

(22) For every finite sequence f of elements of R holds sortd sortd f = sortd f.

(23) For every finite sequence f of elements of R holds sorta sorta f = sorta f.

(24) For every finite sequence f of elements of R such that f is non-increasing

holds −f is non-decreasing.

(25) For every finite sequence f of elements of R such that f is non-decreasing

holds −f is non-increasing.

(26) Let f , g be finite sequences of elements of R and P be a permutation of

dom g. If f = g · P and len g ­ 1, then −f = (−g) · P.

(27) Let f , g be finite sequences of elements of R. Suppose f and g are

fiberwise equipotent. Then −f and −g are fiberwise equipotent.

(28) For every finite sequence f of elements of R holds sortd(−f) = −sorta f.

(29) For every finite sequence f of elements of R holds sorta(−f) = −sortd f.

(30) For every finite sequence f of elements of R holds dom sortd f = dom f

and len sortd f = len f.

(31) For every finite sequence f of elements of R holds dom sorta f = dom f

and len sorta f = len f.

(32) For every finite sequence f of elements of R such that len f ­ 1 holds

maxp sortd f = 1 and minp sorta f = 1 and (sortd f)(1) = max f and

(sorta f)(1) = min f.
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