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Summary. We present basic concepts concerning rough set theory. We
define tolerance and approximation spaces and rough membership function. Dif-

ferent rough inclusions as well as the predicate of rough equality of sets are also

introduced.

MML Identifier: ROUGHS 1.

The notation and terminology used here are introduced in the following papers:

[21], [9], [25], [19], [1], [13], [22], [11], [20], [26], [28], [6], [2], [10], [5], [27], [8], [3],

[15], [14], [7], [4], [16], [23], [24], [17], [18], and [12].

1. Preliminaries

Let A be a set. One can verify that 〈A, idA〉 is discrete.

The following proposition is true

(1) For every set X such that ∇X ⊆ idX holds X is trivial.

Let A be a relational structure. We say that A is diagonal if and only if:

(Def. 1) The internal relation of A ⊆ idthe carrier of A.

Let A be a non trivial set. Observe that 〈A,∇A〉 is non diagonal.

We now state the proposition

(2) For every reflexive relational structure L holds idthe carrier of L ⊆ the

internal relation of L.

1This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-

00102.
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Let us note that every reflexive relational structure which is non discrete is

also non trivial and every relational structure which is reflexive and trivial is

also discrete.

One can prove the following proposition

(3) For every set X and for every total reflexive binary relation R on X

holds idX ⊆ R.

One can verify that every relational structure which is discrete is also dia-

gonal and every relational structure which is non diagonal is also non discrete.

One can verify that there exists a relational structure which is non diagonal

and non empty.

We now state three propositions:

(4) Let A be a non diagonal non empty relational structure. Then there exist

elements x, y of A such that x 6= y and 〈〈x, y〉〉 ∈ the internal relation of A.

(5) For every set D and for all finite sequences p, q of elements of D holds
⋃

(p a q) =
⋃

p ∪
⋃

q.

(6) For all functions p, q such that q is disjoint valued and p ⊆ q holds p is

disjoint valued.

One can verify that every function which is empty is also disjoint valued.

Let A be a set. One can verify that there exists a finite sequence of elements

of A which is disjoint valued.

Let A be a non empty set. Observe that there exists a finite sequence of

elements of A which is non empty and disjoint valued.

Let A be a set, let X be a finite sequence of elements of 2A, and let n be a

natural number. Then X(n) is a subset of A.

Let A be a set and let X be a finite sequence of elements of 2A. Then
⋃

X

is a subset of A.

Let A be a finite set and let R be a binary relation on A. One can check

that 〈A, R〉 is finite.

One can prove the following proposition

(7) For all sets X, x, y and for every tolerance T of X such that x ∈ [y]T
holds y ∈ [x]T .

2. Tolerance and Approximation Spaces

Let P be a relational structure. We say that P has equivalence relation if

and only if:

(Def. 2) The internal relation of P is an equivalence relation of the carrier of P .

We say that P has tolerance relation if and only if:

(Def. 3) The internal relation of P is a tolerance of the carrier of P .
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Let us note that every relational structure which has equivalence relation

has also tolerance relation.

Let A be a set. Observe that 〈A, idA〉 has equivalence relation.

One can verify that there exists a relational structure which is discrete,

finite, and non empty and has equivalence relation and there exists a relational

structure which is non diagonal, finite, and non empty and has equivalence

relation.

An approximation space is a non empty relational structure with equivalence

relation. A tolerance space is a non empty relational structure with tolerance

relation.

Let A be a tolerance space. Note that the internal relation of A is total,

reflexive, and symmetric.

Let A be an approximation space. Observe that the internal relation of A is

transitive.

Let A be a tolerance space and let X be a subset of A. The functor LAp(X)

yielding a subset of A is defined as follows:

(Def. 4) LAp(X) = {x; x ranges over elements of A: [x]
the internal relation of A ⊆

X}.

The functor UAp(X) yielding a subset of A is defined as follows:

(Def. 5) UAp(X) = {x; x ranges over elements of A: [x]
the internal relation of A

meets X}.

LetA be a tolerance space and letX be a subset ofA. The functor BndAp(X)

yielding a subset of A is defined as follows:

(Def. 6) BndAp(X) = UAp(X) \ LAp(X).

Let A be a tolerance space and let X be a subset of A. We say that X is

rough if and only if:

(Def. 7) BndAp(X) 6= ∅.

We introduce X is exact as an antonym of X is rough.

In the sequel A is a tolerance space and X, Y are subsets of A.

Next we state a number of propositions:

(8) For every set x such that x ∈ LAp(X) holds [x]
the internal relation of A ⊆ X.

(9) For every element x of A such that [x]
the internal relation of A ⊆ X holds

x ∈ LAp(X).

(10) For every set x such that x ∈ UAp(X) holds [x]
the internal relation of A

meets X.

(11) For every element x of A such that [x]
the internal relation of A meetsX holds

x ∈ UAp(X).

(12) LAp(X) ⊆ X.

(13) X ⊆ UAp(X).

(14) LAp(X) ⊆ UAp(X).
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(15) X is exact iff LAp(X) = X.

(16) X is exact iff UAp(X) = X.

(17) X = LAp(X) iff X = UAp(X).

(18) LAp(∅A) = ∅.

(19) UAp(∅A) = ∅.

(20) LAp(ΩA) = ΩA.

(21) UAp(ΩA) = ΩA.

(22) LAp(X ∩ Y ) = LAp(X) ∩ LAp(Y ).

(23) UAp(X ∪ Y ) = UAp(X) ∪UAp(Y ).

(24) If X ⊆ Y, then LAp(X) ⊆ LAp(Y ).

(25) If X ⊆ Y, then UAp(X) ⊆ UAp(Y ).

(26) LAp(X) ∪ LAp(Y ) ⊆ LAp(X ∪ Y ).

(27) UAp(X ∩ Y ) ⊆ UAp(X) ∩UAp(Y ).

(28) LAp(Xc) = (UAp(X))c.

(29) UAp(Xc) = (LAp(X))c.

(30) UAp(LAp(UAp(X))) = UAp(X).

(31) LAp(UAp(LAp(X))) = LAp(X).

(32) BndAp(X) = BndAp(Xc).

In the sequel A is an approximation space and X is a subset of A.

The following four propositions are true:

(33) LAp(LAp(X)) = LAp(X).

(34) LAp(LAp(X)) = UAp(LAp(X)).

(35) UAp(UAp(X)) = UAp(X).

(36) UAp(UAp(X)) = LAp(UAp(X)).

Let A be an approximation space. Note that there exists a subset of A which

is exact.

Let A be an approximation space and let X be a subset of A. One can check

that LAp(X) is exact and UAp(X) is exact.

The following proposition is true

(37) Let A be an approximation space, X be a subset of A, and x, y be sets.

If x ∈ UAp(X) and 〈〈x, y〉〉 ∈ the internal relation of A, then y ∈ UAp(X).

Let A be a non diagonal approximation space. Observe that there exists a

subset of A which is rough.

Let A be an approximation space and let X be a subset of A. Rough set of

X is defined by:

(Def. 8) It = 〈〈LAp(X), UAp(X)〉〉.
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3. Membership Function

Let A be a finite tolerance space and let x be an element of A. One can

check that card([x]
the internal relation of A) is non empty.

Let A be a finite tolerance space and let X be a subset of A. The functor

MemberFunc(X, A) yielding a function from the carrier of A into R is defined

by:

(Def. 9) For every element x of A holds (MemberFunc(X,A))(x) =
card(X∩[x]

the internal relation of A
)

card([x]
the internal relation of A

) .

In the sequel A denotes a finite tolerance space, X denotes a subset of A,

and x denotes an element of A.

One can prove the following propositions:

(38) 0 ¬ (MemberFunc(X, A))(x) and (MemberFunc(X, A))(x) ¬ 1.

(39) (MemberFunc(X,A))(x) ∈ [0, 1].

In the sequel A is a finite approximation space, X, Y are subsets of A, and

x is an element of A.

We now state four propositions:

(40) (MemberFunc(X,A))(x) = 1 iff x ∈ LAp(X).

(41) (MemberFunc(X,A))(x) = 0 iff x ∈ (UAp(X))c.

(42) 0 < (MemberFunc(X,A))(x) and (MemberFunc(X, A))(x) < 1 iff x ∈

BndAp(X).

(43) For every discrete approximation space A holds every subset of A is

exact.

Let A be a discrete approximation space. Note that every subset of A is

exact.

The following propositions are true:

(44) For every discrete finite approximation space A and for every subset X

of A holds MemberFunc(X, A) = χX,the carrier of A.

(45) Let A be a finite approximation space, X be a subset of A, and x, y be

sets. If 〈〈x, y〉〉 ∈ the internal relation of A, then (MemberFunc(X,A))(x) =

(MemberFunc(X, A))(y).

(46) (MemberFunc(Xc, A))(x) = 1− (MemberFunc(X,A))(x).

(47) If X ⊆ Y, then (MemberFunc(X, A))(x) ¬ (MemberFunc(Y,A))(x).

(48) (MemberFunc(X ∪ Y, A))(x) ­ (MemberFunc(X,A))(x).

(49) (MemberFunc(X ∩ Y, A))(x) ¬ (MemberFunc(X,A))(x).

(50) (MemberFunc(X ∪ Y, A))(x) ­ max((MemberFunc(X,A))(x),

(MemberFunc(Y,A))(x)).

(51) IfX misses Y , then (MemberFunc(X∪Y, A))(x) = (MemberFunc(X, A))

(x) + (MemberFunc(Y, A))(x).
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(52) (MemberFunc(X ∩ Y, A))(x) ¬ min((MemberFunc(X,A))(x),

(MemberFunc(Y,A))(x)).

Let A be a finite tolerance space, let X be a finite sequence of elements of

2the carrier of A, and let x be an element of A. The functor FinSeqM(x,X) yields

a finite sequence of elements of R and is defined as follows:

(Def. 10) domFinSeqM(x,X) = domX and for every natural number n such that

n ∈ domX holds (FinSeqM(x,X))(n) = (MemberFunc(X(n), A))(x).

We now state several propositions:

(53) Let X be a finite sequence of elements of 2the carrier of A, x be an element

of A, and y be an element of 2the carrier of A. Then FinSeqM(x,X a 〈y〉) =

(FinSeqM(x,X)) a 〈(MemberFunc(y, A))(x)〉.

(54) (MemberFunc(∅A, A))(x) = 0.

(55) For every disjoint valued finite sequence X of elements of 2the carrier of A

holds (MemberFunc(
⋃

X, A))(x) =
∑
FinSeqM(x,X).

(56) LAp(X) = {x; x ranges over elements of A: (MemberFunc(X,A))

(x) = 1}.

(57) UAp(X) = {x;x ranges over elements of A: (MemberFunc(X, A))

(x) > 0}.

(58) BndAp(X) = {x; x ranges over elements of A: 0 < (MemberFunc(X,A))

(x) ∧ (MemberFunc(X, A))(x) < 1}.

4. Rough Inclusion

In the sequel A is a tolerance space and X, Y , Z are subsets of A.

Let A be a tolerance space and let X, Y be subsets of A. The predicate

X ⊆∗ Y is defined as follows:

(Def. 11) LAp(X) ⊆ LAp(Y ).

The predicate X ⊆∗ Y is defined as follows:

(Def. 12) UAp(X) ⊆ UAp(Y ).

Let A be a tolerance space and let X, Y be subsets of A. The predicate

X ⊆∗
∗

Y is defined as follows:

(Def. 13) X ⊆∗ Y and X ⊆∗ Y.

One can prove the following three propositions:

(59) If X ⊆∗ Y and Y ⊆∗ Z, then X ⊆∗ Z.

(60) If X ⊆∗ Y and Y ⊆∗ Z, then X ⊆∗ Z.

(61) If X ⊆∗
∗

Y and Y ⊆∗
∗

Z, then X ⊆∗
∗

Z.
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5. Rough Equality of Sets

Let A be a tolerance space and let X, Y be subsets of A. The predicate

X =∗ Y is defined by:

(Def. 14) LAp(X) = LAp(Y ).

Let us notice that the predicate X =∗ Y is reflexive and symmetric. The predi-

cate X =∗ Y is defined as follows:

(Def. 15) UAp(X) = UAp(Y ).

Let us notice that the predicate X =∗ Y is reflexive and symmetric. The predi-

cate X =∗
∗

Y is defined by:

(Def. 16) LAp(X) = LAp(Y ) and UAp(X) = UAp(Y ).

Let us notice that the predicate X =∗
∗

Y is reflexive and symmetric.

Let A be a tolerance space and let X, Y be subsets of A. Let us observe that

X =∗ Y if and only if:

(Def. 17) X ⊆∗ Y and Y ⊆∗ X.

Let us observe that X =∗ Y if and only if:

(Def. 18) X ⊆∗ Y and Y ⊆∗ X.

Let us observe that X =∗
∗

Y if and only if:

(Def. 19) X =∗ Y and X =∗ Y.
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