
FORMALIZED MATHEMATICS

Volume 12, Number 1, 2004

University of Białystok

Witt’s Proof of the Wedderburn Theorem
1

Broderick Arneson

University of Alberta

Edmonton

Matthias Baaz

Technische Universität Wien

Piotr Rudnicki

University of Alberta

Edmonton

Summary.We present a formalization of Witt’s proof of the Wedderburn
theorem following Chapter 5 of Proofs from THE BOOK by Martin Aigner and
Günter M. Ziegler, 2nd ed., Springer 1999.

MML Identifier: WEDDWITT.

The notation and terminology used in this paper have been introduced in the

following articles: [23], [31], [20], [8], [12], [24], [3], [29], [14], [32], [6], [7], [4], [5],

[27], [16], [9], [15], [2], [28], [18], [10], [26], [13], [1], [17], [25], [30], [33], [19], [22],

[21], and [11].

1. Preliminaries

The following propositions are true:

(1) For every natural number a and for every real number q such that 1 < q

and qa = 1 holds a = 0.

(2) For all natural numbers a, k, r and for every real number x such that

1 < x and 0 < k holds xa·k+r = xa · xa·(k−′1)+r.

(3) For all natural numbers q, a, b such that 0 < a and 1 < q and qa −′ 1 |

qb −′ 1 holds a | b.

(4) For all natural numbers n, q such that 0 < q holds qn = qn.
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(5) Let f be a finite sequence of elements of N and i be a natural number. If

for every natural number j such that j ∈ dom f holds i | fj , then i |
∑

f.

(6) Let X be a finite set, Y be a partition of X, and f be a finite sequence

of elements of Y . Suppose f is one-to-one and rng f = Y. Let c be a finite

sequence of elements of N. Suppose len c = len f and for every natural

number i such that i ∈ dom c holds c(i) = f(i) . Then cardX =
∑

c.

2. Class Formula for Groups

Let us observe that there exists a group which is finite.

Let G be a finite group. Observe that Z(G) is finite.

Let G be a group and let a be an element of G. The functor Centralizer(a)

yields a strict subgroup of G and is defined by:

(Def. 1) The carrier of Centralizer(a) = {b; b ranges over elements of G: a · b =

b · a}.

Let G be a finite group and let a be an element of G. Observe that

Centralizer(a) is finite.

Next we state two propositions:

(7) For every group G and for every element a of G and for every set x such

that x ∈ Centralizer(a) holds x ∈ G.

(8) For every group G and for all elements a, x of G holds a · x = x · a iff x

is an element of Centralizer(a).

Let G be a group and let a be an element of G. One can verify that a• is

non empty.

Let G be a group and let a be an element of G. The functor a -con map

yields a function from the carrier of G into a• and is defined by:

(Def. 2) For every element x of G holds (a -con map)(x) = ax.

One can prove the following propositions:

(9) For every finite group G and for every element a of G and for every

element x of a• holds card((a -con map)−1({x})) = ord(Centralizer(a)).

(10) Let G be a group, a be an element of G, and x, y be elements of a•. If

x 6= y, then (a -con map)−1({x}) misses (a -con map)−1({y}).

(11) Let G be a group and a be an element of G. Then {(a -con map)−1({x}) :

x ranges over elements of a•} is a partition of the carrier of G.

(12) For every finite group G and for every element a of G holds

{(a -con map)−1({x}) : x ranges over elements of a•} = card a•.

(13) For every finite group G and for every element a of G holds ord(G) =

card a• · ord(Centralizer(a)).
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Let G be a group. The functor conjugate Classes(G) yielding a partition of

the carrier of G is defined by:

(Def. 3) conjugate Classes(G) = {S;S ranges over subsets ofG:
∨

a : element of G S =

a•}.

The following two propositions are true:

(14) For every group G and for every set x holds x ∈ conjugate Classes(G)

iff there exists an element a of G such that a• = x.

(15) Let G be a finite group and f be a finite sequence of ele-

ments of conjugate Classes(G). Suppose f is one-to-one and rng f =

conjugate Classes(G). Let c be a finite sequence of elements of N. Sup-

pose len c = len f and for every natural number i such that i ∈ dom c

holds c(i) = f(i) . Then ord(G) =
∑

c.

3. Centers and Centralizers of Skew Fields

We now state the proposition

(16) Let F be a finite field, V be a vector space over F , and n, q be na-

tural numbers. Suppose V is finite dimensional and n = dim(V ) and

q = the carrier of F . Then the carrier of V = qn.

Let R be a skew field. The functor Z(R) yielding a strict field is defined by

the conditions (Def. 4).

(Def. 4)(i) The carrier of Z(R) = {x; x ranges over elements of R:
∧

s : element of R x · s = s · x},

(ii) the addition of Z(R) = (the addition of R)↾[: the carrier of Z(R), the

carrier of Z(R) :],

(iii) the multiplication of Z(R) = (the multiplication of R)↾[: the carrier of

Z(R), the carrier of Z(R) :],

(iv) the zero of Z(R) = the zero of R, and

(v) the unity of Z(R) = the unity of R.

The following proposition is true

(17) For every skew field R holds the carrier of Z(R) ⊆ the carrier of R.

Let R be a finite skew field. Note that Z(R) is finite.

We now state several propositions:

(18) Let R be a skew field and y be an element of R. Then y ∈ Z(R) if and

only if for every element s of R holds y · s = s · y.

(19) For every skew field R holds 0R ∈ Z(R).

(20) For every skew field R holds 1R ∈ Z(R).

(21) For every finite skew field R holds 1 < card (the carrier of Z(R)).
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(22) For every finite skew field R holds card (the carrier of Z(R)) = card (the

carrier of R) iff R is commutative.

(23) For every skew field R holds the carrier of Z(R) = (the carrier of

Z(MultGroup(R))) ∪ {0R}.

Let R be a skew field and let s be an element of R. The functor centralizer(s)

yields a strict skew field and is defined by the conditions (Def. 5).

(Def. 5)(i) The carrier of centralizer(s) = {x; x ranges over elements of R: x ·s =

s · x},

(ii) the addition of centralizer(s) = (the addition of R)↾[: the carrier of

centralizer(s), the carrier of centralizer(s) :],

(iii) the multiplication of centralizer(s) = (the multiplication of R)↾[: the

carrier of centralizer(s), the carrier of centralizer(s) :],

(iv) the zero of centralizer(s) = the zero of R, and

(v) the unity of centralizer(s) = the unity of R.

Next we state several propositions:

(24) For every skew field R and for every element s of R holds the carrier of

centralizer(s) ⊆ the carrier of R.

(25) For every skew field R and for all elements s, a of R holds a ∈ the carrier

of centralizer(s) iff a · s = s · a.

(26) For every skew field R and for every element s of R holds the carrier of

Z(R) ⊆ the carrier of centralizer(s).

(27) Let R be a skew field and s, a, b be elements of R. Suppose a ∈ the

carrier of Z(R) and b ∈ the carrier of centralizer(s). Then a · b ∈ the

carrier of centralizer(s).

(28) For every skew field R and for every element s of R holds 0R is an element

of centralizer(s) and 1R is an element of centralizer(s).

Let R be a finite skew field and let s be an element of R. Observe that

centralizer(s) is finite.

Next we state three propositions:

(29) For every finite skew field R and for every element s of R holds 1 <

card (the carrier of centralizer(s)).

(30) Let R be a skew field, s be an element of R, and t be an element of

MultGroup(R). If t = s, then the carrier of centralizer(s) = (the carrier

of Centralizer(t)) ∪ {0R}.

(31) Let R be a finite skew field, s be an element of R, and t be an element

of MultGroup(R). If t = s, then ord(Centralizer(t)) = card (the carrier of

centralizer(s))− 1.
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4. Vector Spaces over Centers of Skew Fields

Let R be a skew field. The functor VectSp over Z(R) yielding a strict vector

space over Z(R) is defined by the conditions (Def. 6).

(Def. 6)(i) The loop structure of VectSp over Z(R) = the loop structure of R,

and

(ii) the left multiplication of VectSp over Z(R) = (the multiplication of

R)↾[: the carrier of Z(R), the carrier of R :].

We now state two propositions:

(32) For every finite skew field R holds card (the carrier of R) = (card (the

carrier of Z(R)))dim(VectSp over Z(R)).

(33) For every finite skew field R holds 0 < dim(VectSp over Z(R)).

Let R be a skew field and let s be an element of R. The functor

VectSp over Z(s) yields a strict vector space over Z(R) and is defined by the

conditions (Def. 7).

(Def. 7)(i) The loop structure of VectSp over Z(s) = the loop structure of

centralizer(s), and

(ii) the left multiplication of VectSp over Z(s) = (the multiplication of

R)↾[: the carrier of Z(R), the carrier of centralizer(s) :].

The following propositions are true:

(34) For every finite skew field R and for every element s of R holds card (the

carrier of centralizer(s)) = (card (the carrier of Z(R)))dim(VectSp over Z(s)).

(35) For every finite skew field R and for every element s of R holds 0 <

dim(VectSp over Z(s)).

(36) Let R be a finite skew field and r be an element of R. Suppose r is an

element of MultGroup(R).

Then (card (the carrier of Z(R)))dim(VectSp over Z(r))− 1 | (card (the carrier

of Z(R)))dim(VectSp over Z(R)) − 1.

(37) For every finite skew field R and for every element s of R such

that s is an element of MultGroup(R) holds dim(VectSp over Z(s)) |

dim(VectSp over Z(R)).

(38) For every finite skew field R holds

card (the carrier of Z(MultGroup(R))) = card (the carrier of Z(R))− 1.

5. Witt’s Proof of Wedderburn’s Theorem

One can prove the following proposition

(39) Every finite skew field is commutative.
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