Continuous Functions on Real and Complex Normed Linear Spaces

Noboru Endou
Gifu National College of Technology

Summary. This article is an extension of [18].

MML Identifier: NCFCONT1.

The notation and terminology used here are introduced in the following papers: [25], [28], [29], [4], [30], [6], [14], [5], [2], [24], [10], [26], [27], [19], [15], [12], [13], [11], [31], [20], [3], [1], [16], [21], [17], [23], [7], [8], [22], [18], and [9].

For simplicity, we use the following convention: n denotes a natural number, r, s denote real numbers, z denotes a complex number, C_1, C_2, C_3 denote complex normed spaces, and R_1 denotes a real normed space.

Let C_4 be a complex linear space and let s_1 be a sequence of C_4. The functor $-s_1$ yields a sequence of C_4 and is defined by:

(Def. 1) For every n holds $(-s_1)(n) = -s_1(n)$.

The following propositions are true:

1. For all sequences s_2, s_3 of C_1 holds $s_2 - s_3 = s_2 + (-s_3)$.
2. For every sequence s_1 of C_1 holds $-s_1 = (-1_C) \cdot s_1$.

Let us consider C_2, C_3 and let f be a partial function from C_2 to C_3. The functor $\|f\|$ yielding a partial function from the carrier of C_2 to R is defined by:

(Def. 2) $\text{dom} \|f\| = \text{dom} f$ and for every point c of C_2 such that $c \in \text{dom} \|f\|$ holds $\|f\|(c) = \|f_c\|$.

Let us consider C_1, R_1 and let f be a partial function from C_1 to R_1. The functor $\|f\|$ yielding a partial function from the carrier of C_1 to R is defined as follows:

(Def. 3) $\text{dom} \|f\| = \text{dom} f$ and for every point c of C_1 such that $c \in \text{dom} \|f\|$ holds $\|f\|(c) = \|f_c\|$.

403
Let us consider R_1, C_1 and let f be a partial function from R_1 to C_1. The functor $\|f\|$ yielding a partial function from the carrier of R_1 to \mathbb{R} is defined by:

(Def. 4) \[\text{dom}\|f\| = \text{dom} f \text{ and for every point } c \text{ of } R_1 \text{ such that } c \in \text{dom}\|f\| \text{ holds } \|f\|(c) = \|f_c\|. \]

Let us consider C_1 and let x_0 be a point of C_1. A subset of C_1 is called a neighbourhood of x_0 if:

(Def. 5) There exists a real number g such that $0 < g$ and \{ $y; y$ ranges over points of C_1: $\|y - x_0\| < g$ \} \subseteq it.

Next we state two propositions:

(3) Let x_0 be a point of C_1 and g be a real number. If $0 < g$, then \{ $y; y$ ranges over points of C_1: $\|y - x_0\| < g$ \} is a neighbourhood of x_0.

(4) For every point x_0 of C_1 and for every neighbourhood N of x_0 holds $x_0 \in N$.

Let us consider C_1 and let X be a subset of C_1. We say that X is compact if and only if the condition (Def. 6) is satisfied.

(Def. 6) Let s_4 be a sequence of C_1. Suppose \text{rng } s_4 \subseteq X$. Then there exists a sequence s_5 of C_1 such that s_5 is a subsequence of s_4 and convergent and $\lim s_5 \in X$.

Let us consider C_1 and let X be a subset of C_1. We say that X is closed if and only if:

(Def. 7) For every sequence s_4 of C_1 such that $\text{rng } s_4 \subseteq X$ and s_4 is convergent holds $\lim s_4 \in X$.

Let us consider C_1 and let X be a subset of C_1. We say that X is open if and only if:

(Def. 8) X^c is closed.

Let us consider C_2, C_3, let f be a partial function from C_2 to C_3, and let s_1 be a sequence of C_2. Let us assume that $\text{rng } s_1 \subseteq \text{dom } f$. The functor $f \cdot s_1$ yields a sequence of C_3 and is defined by:

(Def. 9) $f \cdot s_1 = (f \text{ qua function}) \cdot (s_1)$.

Let us consider C_1, R_1, let f be a partial function from C_1 to R_1, and let s_1 be a sequence of C_1. Let us assume that $\text{rng } s_1 \subseteq \text{dom } f$. The functor $f \cdot s_1$ yielding a sequence of R_1 is defined by:

(Def. 10) $f \cdot s_1 = (f \text{ qua function}) \cdot (s_1)$.

Let us consider C_1, R_1, let f be a partial function from R_1 to C_1, and let s_1 be a sequence of R_1. Let us assume that $\text{rng } s_1 \subseteq \text{dom } f$. The functor $f \cdot s_1$ yields a sequence of C_1 and is defined by:

(Def. 11) $f \cdot s_1 = (f \text{ qua function}) \cdot (s_1)$.
\[f \cdot s_1 \text{ yields a complex sequence and is defined as follows:} \]

(Def. 12) \[f \cdot s_1 = (f \text{ qua function}) \cdot (s_1). \]

Let us consider \(R_1 \), let \(f \) be a partial function from the carrier of \(R_1 \) to \(\mathbb{C} \), and let \(s_1 \) be a sequence of \(R_1 \). Let us assume that \(\text{rng} \, s_1 \subseteq \text{dom} \, f \). The functor \(f \cdot s_1 \) yielding a complex sequence is defined by:

(Def. 13) \[f \cdot s_1 = (f \text{ qua function}) \cdot (s_1). \]

Let us consider \(C_1 \), let \(f \) be a partial function from the carrier of \(C_1 \) to \(\mathbb{R} \), and let \(s_1 \) be a sequence of \(C_1 \). Let us assume that \(\text{rng} \, s_1 \subseteq \text{dom} \, f \). The functor \(f \cdot s_1 \) yielding a sequence of real numbers is defined as follows:

(Def. 14) \[f \cdot s_1 = (f \text{ qua function}) \cdot (s_1). \]

Let us consider \(C_2, C_3 \), let \(f \) be a partial function from \(C_2 \) to \(C_3 \), and let \(x_0 \) be a point of \(C_2 \). We say that \(f \) is continuous in \(x_0 \) if and only if the conditions (Def. 15) are satisfied.

(Def. 15)(i) \[x_0 \in \text{dom} \, f, \] and
(ii) for every sequence \(s_1 \) of \(C_2 \) such that \(\text{rng} \, s_1 \subseteq \text{dom} \, f \) and \(s_1 \) is convergent and \(\lim s_1 = x_0 \) holds \(f \cdot s_1 \) is convergent and \(f_{x_0} = \lim(f \cdot s_1) \).

Let us consider \(C_1, R_1 \), let \(f \) be a partial function from \(C_1 \) to \(R_1 \), and let \(x_0 \) be a point of \(C_1 \). We say that \(f \) is continuous in \(x_0 \) if and only if the conditions (Def. 16) are satisfied.

(Def. 16)(i) \[x_0 \in \text{dom} \, f, \] and
(ii) for every sequence \(s_1 \) of \(C_1 \) such that \(\text{rng} \, s_1 \subseteq \text{dom} \, f \) and \(s_1 \) is convergent and \(\lim s_1 = x_0 \) holds \(f \cdot s_1 \) is convergent and \(f_{x_0} = \lim(f \cdot s_1) \).

Let us consider \(R_1 \), let us consider \(C_1 \), let \(f \) be a partial function from \(R_1 \) to \(C_1 \), and let \(x_0 \) be a point of \(R_1 \). We say that \(f \) is continuous in \(x_0 \) if and only if the conditions (Def. 17) are satisfied.

(Def. 17)(i) \[x_0 \in \text{dom} \, f, \] and
(ii) for every sequence \(s_1 \) of \(R_1 \) such that \(\text{rng} \, s_1 \subseteq \text{dom} \, f \) and \(s_1 \) is convergent and \(\lim s_1 = x_0 \) holds \(f \cdot s_1 \) is convergent and \(f_{x_0} = \lim(f \cdot s_1) \).

Let us consider \(C_1 \), let \(f \) be a partial function from the carrier of \(C_1 \) to \(\mathbb{C} \), and let \(x_0 \) be a point of \(C_1 \). We say that \(f \) is continuous in \(x_0 \) if and only if the conditions (Def. 18) are satisfied.

(Def. 18)(i) \[x_0 \in \text{dom} \, f, \] and
(ii) for every sequence \(s_1 \) of \(C_1 \) such that \(\text{rng} \, s_1 \subseteq \text{dom} \, f \) and \(s_1 \) is convergent and \(\lim s_1 = x_0 \) holds \(f \cdot s_1 \) is convergent and \(f_{x_0} = \lim(f \cdot s_1) \).

Let us consider \(C_1 \), let \(f \) be a partial function from the carrier of \(C_1 \) to \(\mathbb{R} \), and let \(x_0 \) be a point of \(C_1 \). We say that \(f \) is continuous in \(x_0 \) if and only if the conditions (Def. 19) are satisfied.

(Def. 19)(i) \[x_0 \in \text{dom} \, f, \] and
(ii) for every sequence \(s_1 \) of \(C_1 \) such that \(\text{rng} \, s_1 \subseteq \text{dom} \, f \) and \(s_1 \) is convergent and \(\lim s_1 = x_0 \) holds \(f \cdot s_1 \) is convergent and \(f_{x_0} = \lim(f \cdot s_1) \).
Let us consider R_1, let f be a partial function from the carrier of R_1 to \mathbb{C}, and let x_0 be a point of R_1. We say that f is continuous in x_0 if and only if the conditions (Def. 20) are satisfied.

(Def. 20)(i) $x_0 \in \text{dom } f$, and

(ii) for every sequence s_1 of R_1 such that rng $s_1 \subseteq \text{dom } f$ and s_1 is convergent and $\lim s_1 = x_0$ holds $f \cdot s_1$ is convergent and $f x_0 = \lim(f \cdot s_1)$.

The following propositions are true:

(5) For every sequence s_1 of C_2 and for every partial function h from C_2 to C_3 such that rng $s_1 \subseteq \text{dom } h$ holds $s_1(n) \in \text{dom } h$.

(6) For every sequence s_1 of C_1 and for every partial function h from C_1 to R_1 such that rng $s_1 \subseteq \text{dom } h$ holds $s_1(n) \in \text{dom } h$.

(7) For every sequence s_1 of R_1 and for every partial function h from R_1 to C_1 such that rng $s_1 \subseteq \text{dom } h$ holds $s_1(n) \in \text{dom } h$.

(8) For every sequence s_1 of C_1 and for every set x holds $x \in \text{rng } s_1$ iff there exists n such that $x = s_1(n)$.

(9) For all sequences s_1, s_2 of C_1 such that s_2 is a subsequence of s_1 holds rng $s_2 \subseteq \text{rng } s_1$.

(10) Let f be a partial function from C_2 to C_3 and C_5 be a sequence of C_2.

If rng $C_5 \subseteq \text{dom } f$, then for every n holds $(f \cdot C_5)(n) = f_{C_5(n)}$.

(11) Let f be a partial function from C_1 to R_1 and C_5 be a sequence of C_1.

If rng $C_5 \subseteq \text{dom } f$, then for every n holds $(f \cdot C_5)(n) = f_{C_5(n)}$.

(12) Let f be a partial function from R_1 to C_1 and R_2 be a sequence of R_1.

If rng $R_2 \subseteq \text{dom } f$, then for every n holds $(f \cdot R_2)(n) = f_{R_2(n)}$.

(13) Let f be a partial function from the carrier of C_1 to \mathbb{C} and C_5 be a sequence of C_1. If rng $C_5 \subseteq \text{dom } f$, then for every n holds $(f \cdot C_5)(n) = f_{C_5(n)}$.

(14) Let f be a partial function from the carrier of C_1 to \mathbb{R} and C_5 be a sequence of C_1. If rng $C_5 \subseteq \text{dom } f$, then for every n holds $(f \cdot C_5)(n) = f_{C_5(n)}$.

(15) Let f be a partial function from the carrier of R_1 to \mathbb{C} and R_2 be a sequence of R_1. If rng $R_2 \subseteq \text{dom } f$, then for every n holds $(f \cdot R_2)(n) = f_{R_2(n)}$.

(16) Let h be a partial function from C_2 to C_3, C_5 be a sequence of C_2, and N_1 be an increasing sequence of naturals. If rng $C_5 \subseteq \text{dom } h$, then $(h \cdot C_5) \cdot N_1 = h \cdot (C_5 \cdot N_1)$.

(17) Let h be a partial function from C_1 to R_1, C_6 be a sequence of C_1, and N_1 be an increasing sequence of naturals. If rng $C_6 \subseteq \text{dom } h$, then $(h \cdot C_6) \cdot N_1 = h \cdot (C_6 \cdot N_1)$.

(18) Let h be a partial function from R_1 to C_1, R_3 be a sequence of R_1,
and N_1 be an increasing sequence of naturals. If $\text{rng} \, R_3 \subseteq \text{dom} \, h$, then
$(h \cdot R_3) \cdot N_1 = h \cdot (R_3 \cdot N_1)$.

(19) Let h be a partial function from the carrier of C_1 to \mathbb{C}, C_6 be a sequence of C_1, and N_1 be an increasing sequence of naturals. If $\text{rng} \, C_6 \subseteq \text{dom} \, h$, then
$(h \cdot C_6) \cdot N_1 = h \cdot (C_6 \cdot N_1)$.

(20) Let h be a partial function from the carrier of C_1 to \mathbb{R}, C_6 be a sequence of C_1, and N_1 be an increasing sequence of naturals. If $\text{rng} \, C_6 \subseteq \text{dom} \, h$, then
$(h \cdot C_6) \cdot N_1 = h \cdot (C_6 \cdot N_1)$.

(21) Let h be a partial function from the carrier of R_1 to \mathbb{C}, R_3 be a sequence of R_1, and N_1 be an increasing sequence of naturals. If $\text{rng} \, R_3 \subseteq \text{dom} \, h$, then
$(h \cdot R_3) \cdot N_1 = h \cdot (R_3 \cdot N_1)$.

(22) Let h be a partial function from C_2 to C_3 and C_7, C_8 be sequences of C_2. If $\text{rng} \, C_7 \subseteq \text{dom} \, h$ and C_8 is a subsequence of C_7, then $h \cdot C_8$ is a subsequence of $h \cdot C_7$.

(23) Let h be a partial function from C_1 to R_1 and C_7, C_8 be sequences of C_1. If $\text{rng} \, C_7 \subseteq \text{dom} \, h$ and C_8 is a subsequence of C_7, then $h \cdot C_8$ is a subsequence of $h \cdot C_7$.

(24) Let h be a partial function from R_1 to C_1 and R_4, R_5 be sequences of R_1. If $\text{rng} \, R_4 \subseteq \text{dom} \, h$ and R_5 is a subsequence of R_4, then $h \cdot R_5$ is a subsequence of $h \cdot R_4$.

(25) Let s_1 be a complex sequence, n be a natural number, and N_2 be an increasing sequence of naturals. Then $(s_1 \cdot N_2)(n) = s_1(N_2(n))$.

(26) Let h be a partial function from the carrier of C_1 to \mathbb{C} and C_7, C_8 be sequences of C_1. If $\text{rng} \, C_7 \subseteq \text{dom} \, h$ and C_8 is a subsequence of C_7, then $h \cdot C_8$ is a subsequence of $h \cdot C_7$.

(27) Let h be a partial function from the carrier of C_1 to \mathbb{R} and C_7, C_8 be sequences of C_1. If $\text{rng} \, C_7 \subseteq \text{dom} \, h$ and C_8 is a subsequence of C_7, then $h \cdot C_8$ is a subsequence of $h \cdot C_7$.

(28) Let h be a partial function from the carrier of R_1 to \mathbb{C} and R_4, R_5 be sequences of R_1. If $\text{rng} \, R_4 \subseteq \text{dom} \, h$ and R_5 is a subsequence of R_4, then $h \cdot R_5$ is a subsequence of $h \cdot R_4$.

(29) Let f be a partial function from C_2 to C_3 and x_0 be a point of C_2. Then f is continuous in x_0 if and only if the following conditions are satisfied:

(i) $x_0 \in \text{dom} \, f$, and

(ii) for every r such that $0 < r$ there exists s such that $0 < s$ and for every point x_1 of C_2 such that $x_1 \in \text{dom} \, f$ and $\|x_1 - x_0\| < s$ holds $\|f(x_1) - f(x_0)\| < r$.

(30) Let f be a partial function from C_1 to R_1 and x_0 be a point of C_1. Then f is continuous in x_0 if and only if the following conditions are satisfied:

(i) $x_0 \in \text{dom} \, f$, and
(ii) for every \(r \) such that \(0 < r \) there exists \(s \) such that \(0 < s \) and for every point \(x_1 \) of \(C_1 \) such that \(x_1 \in \text{dom } f \) and \(\|x_1 - x_0\| < s \) holds \(\|f_{x_1} - f_{x_0}\| < r \).

(31) Let \(f \) be a partial function from \(R_1 \) to \(C_1 \) and \(x_0 \) be a point of \(R_1 \). Then \(f \) is continuous in \(x_0 \) if and only if the following conditions are satisfied:

(i) \(x_0 \in \text{dom } f \), and

(ii) for every \(r \) such that \(0 < r \) there exists \(s \) such that \(0 < s \) and for every point \(x_1 \) of \(R_1 \) such that \(x_1 \in \text{dom } f \) and \(\|x_1 - x_0\| < s \) holds \(\|f_{x_1} - f_{x_0}\| < r \).

(32) Let \(f \) be a partial function from the carrier of \(C_1 \) to \(\mathbb{R} \) and \(x_0 \) be a point of \(C_1 \). Then \(f \) is continuous in \(x_0 \) if and only if the following conditions are satisfied:

(i) \(x_0 \in \text{dom } f \), and

(ii) for every \(r \) such that \(0 < r \) there exists \(s \) such that \(0 < s \) and for every point \(x_1 \) of \(C_1 \) such that \(x_1 \in \text{dom } f \) and \(\|x_1 - x_0\| < s \) holds \(|f_{x_1} - f_{x_0}| < r \).

(33) Let \(f \) be a partial function from the carrier of \(C_1 \) to \(\mathbb{C} \) and \(x_0 \) be a point of \(C_1 \). Then \(f \) is continuous in \(x_0 \) if and only if the following conditions are satisfied:

(i) \(x_0 \in \text{dom } f \), and

(ii) for every \(r \) such that \(0 < r \) there exists \(s \) such that \(0 < s \) and for every point \(x_1 \) of \(C_1 \) such that \(x_1 \in \text{dom } f \) and \(\|x_1 - x_0\| < s \) holds \(|f_{x_1} - f_{x_0}| < r \).

(34) Let \(f \) be a partial function from the carrier of \(R_1 \) to \(\mathbb{C} \) and \(x_0 \) be a point of \(R_1 \). Then \(f \) is continuous in \(x_0 \) if and only if the following conditions are satisfied:

(i) \(x_0 \in \text{dom } f \), and

(ii) for every \(r \) such that \(0 < r \) there exists \(s \) such that \(0 < s \) and for every point \(x_1 \) of \(R_1 \) such that \(x_1 \in \text{dom } f \) and \(\|x_1 - x_0\| < s \) holds \(|f_{x_1} - f_{x_0}| < r \).

(35) Let \(f \) be a partial function from \(C_2 \) to \(C_3 \) and \(x_0 \) be a point of \(C_2 \). Then \(f \) is continuous in \(x_0 \) if and only if the following conditions are satisfied:

(i) \(x_0 \in \text{dom } f \), and

(ii) for every neighbourhood \(N_3 \) of \(f_{x_0} \) there exists a neighbourhood \(N \) of \(x_0 \) such that for every point \(x_1 \) of \(C_2 \) such that \(x_1 \in \text{dom } f \) and \(x_1 \in N \) holds \(f_{x_1} \in N_3 \).

(36) Let \(f \) be a partial function from \(C_1 \) to \(R_1 \) and \(x_0 \) be a point of \(C_1 \). Then \(f \) is continuous in \(x_0 \) if and only if the following conditions are satisfied:

(i) \(x_0 \in \text{dom } f \), and

(ii) for every neighbourhood \(N_3 \) of \(f_{x_0} \) there exists a neighbourhood \(N \) of \(x_0 \) such that for every point \(x_1 \) of \(C_1 \) such that \(x_1 \in \text{dom } f \) and \(x_1 \in N \) holds \(f_{x_1} \in N_3 \).

(37) Let \(f \) be a partial function from \(R_1 \) to \(C_1 \) and \(x_0 \) be a point of \(R_1 \). Then \(f \) is continuous in \(x_0 \) if and only if the following conditions are satisfied:
Let f be a partial function from C_2 to C_3 and x_0 be a point of C_2. Then f is continuous in x_0 if and only if the following conditions are satisfied:

(i) $x_0 \in \text{dom } f$, and

(ii) for every neighbourhood N_3 of $f(x_0)$ there exists a neighbourhood N of x_0 such that for every point x_1 of R_1 such that $x_1 \in \text{dom } f$ and $x_1 \in N$ holds $f(x_1) \in N_3$.

(38) Let f be a partial function from C_2 to C_3 and x_0 be a point of C_2. Then f is continuous in x_0 if and only if the following conditions are satisfied:

(i) $x_0 \in \text{dom } f$, and

(ii) for every neighbourhood N_3 of $f(x_0)$ there exists a neighbourhood N of x_0 such that $f^0N \subseteq N_3$.

(39) Let f be a partial function from C_1 to R_1 and x_0 be a point of C_1. Then f is continuous in x_0 if and only if the following conditions are satisfied:

(i) $x_0 \in \text{dom } f$, and

(ii) for every neighbourhood N_3 of $f(x_0)$ there exists a neighbourhood N of x_0 such that $f^0N \subseteq N_3$.

(40) Let f be a partial function from R_1 to C_1 and x_0 be a point of R_1. Then f is continuous in x_0 if and only if the following conditions are satisfied:

(i) $x_0 \in \text{dom } f$, and

(ii) for every neighbourhood N_3 of $f(x_0)$ there exists a neighbourhood N of x_0 such that $f^0N \subseteq N_3$.

(41) Let f be a partial function from C_2 to C_3 and x_0 be a point of C_2. Suppose $x_0 \in \text{dom } f$ and there exists a neighbourhood N of x_0 such that $\text{dom } f \cap N = \{x_0\}$. Then f is continuous in x_0.

(42) Let f be a partial function from C_1 to R_1 and x_0 be a point of C_1. Suppose $x_0 \in \text{dom } f$ and there exists a neighbourhood N of x_0 such that $\text{dom } f \cap N = \{x_0\}$. Then f is continuous in x_0.

(43) Let f be a partial function from R_1 to C_1 and x_0 be a point of R_1. Suppose $x_0 \in \text{dom } f$ and there exists a neighbourhood N of x_0 such that $\text{dom } f \cap N = \{x_0\}$. Then f is continuous in x_0.

(44) Let h_1, h_2 be partial functions from C_2 to C_3 and s_1 be a sequence of C_2. If $\text{rng } s_1 \subseteq \text{dom } h_1 \cap \text{dom } h_2$, then $(h_1 + h_2) \cdot s_1 = h_1 \cdot s_1 + h_2 \cdot s_1$ and $(h_1 - h_2) \cdot s_1 = h_1 \cdot s_1 - h_2 \cdot s_1$.

(45) Let h_1, h_2 be partial functions from C_1 to R_1 and s_1 be a sequence of C_1. If $\text{rng } s_1 \subseteq \text{dom } h_1 \cap \text{dom } h_2$, then $(h_1 + h_2) \cdot s_1 = h_1 \cdot s_1 + h_2 \cdot s_1$ and $(h_1 - h_2) \cdot s_1 = h_1 \cdot s_1 - h_2 \cdot s_1$.

(46) Let h_1, h_2 be partial functions from R_1 to C_1 and s_1 be a sequence of R_1. If $\text{rng } s_1 \subseteq \text{dom } h_1 \cap \text{dom } h_2$, then $(h_1 + h_2) \cdot s_1 = h_1 \cdot s_1 + h_2 \cdot s_1$ and $(h_1 - h_2) \cdot s_1 = h_1 \cdot s_1 - h_2 \cdot s_1$.

(47) Let h be a partial function from C_2 to C_3, s_1 be a sequence of C_2, and z be a complex number. If $\text{rng } s_1 \subseteq \text{dom } h$, then $(z \cdot h) \cdot s_1 = z \cdot (h \cdot s_1)$.
(48) Let h be a partial function from C_1 to R_1, s_1 be a sequence of C_1, and r be a real number. If $\text{rng} \ s_1 \subseteq \text{dom} \ h$, then $(r \cdot h) \cdot s_1 = r \cdot (h \cdot s_1)$.

(49) Let h be a partial function from R_1 to C_1, s_1 be a sequence of R_1, and z be a complex number. If $\text{rng} \ s_1 \subseteq \text{dom} \ h$, then $(z \cdot h) \cdot s_1 = z \cdot (h \cdot s_1)$.

(50) Let h be a partial function from C_2 to C_3 and s_1 be a sequence of C_2. If $\text{rng} \ s_1 \subseteq \text{dom} \ h$, then $\|h \cdot s_1\| = \|h\| \cdot s_1$ and $-h \cdot s_1 = (-h) \cdot s_1$.

(51) Let h be a partial function from C_1 to R_1 and s_1 be a sequence of C_1. If $\text{rng} \ s_1 \subseteq \text{dom} \ h$, then $\|h \cdot s_1\| = \|h\| \cdot s_1$ and $-h \cdot s_1 = (-h) \cdot s_1$.

(52) Let h be a partial function from R_1 to C_1 and s_1 be a sequence of R_1. If $\text{rng} \ s_1 \subseteq \text{dom} \ h$, then $\|h \cdot s_1\| = \|h\| \cdot s_1$ and $-h \cdot s_1 = (-h) \cdot s_1$.

(53) Let f_1, f_2 be partial functions from C_2 to C_3 and x_0 be a point of C_2. Suppose f_1 is continuous in x_0 and f_2 is continuous in x_0. Then $f_1 + f_2$ is continuous in x_0 and $f_1 - f_2$ is continuous in x_0.

(54) Let f_1, f_2 be partial functions from C_1 to R_1 and x_0 be a point of C_1. Suppose f_1 is continuous in x_0 and f_2 is continuous in x_0. Then $f_1 + f_2$ is continuous in x_0 and $f_1 - f_2$ is continuous in x_0.

(55) Let f_1, f_2 be partial functions from R_1 to C_1 and x_0 be a point of R_1. Suppose f_1 is continuous in x_0 and f_2 is continuous in x_0. Then $f_1 + f_2$ is continuous in x_0 and $f_1 - f_2$ is continuous in x_0.

(56) Let f be a partial function from C_2 to C_3, x_0 be a point of C_2, and z be a complex number. If f is continuous in x_0, then $z \cdot f$ is continuous in x_0.

(57) Let f be a partial function from C_1 to R_1, x_0 be a point of C_1, and r be a real number. If f is continuous in x_0, then $r \cdot f$ is continuous in x_0.

(58) Let f be a partial function from R_1 to C_1, x_0 be a point of R_1, and z be a complex number. If f is continuous in x_0, then $z \cdot f$ is continuous in x_0.

(59) Let f be a partial function from C_2 to C_3 and x_0 be a point of C_2. If f is continuous in x_0, then $\|f\|$ is continuous in x_0 and $-f$ is continuous in x_0.

(60) Let f be a partial function from C_1 to R_1 and x_0 be a point of C_1. If f is continuous in x_0, then $\|f\|$ is continuous in x_0 and $-f$ is continuous in x_0.

(61) Let f be a partial function from R_1 to C_1 and x_0 be a point of R_1. If f is continuous in x_0, then $\|f\|$ is continuous in x_0 and $-f$ is continuous in x_0.

Let C_2, C_3 be complex normed spaces, let f be a partial function from C_2 to C_3, and let X be a set. We say that f is continuous on X if and only if:

(Def. 21) $X \subseteq \text{dom} \ f$ and for every point x_0 of C_2 such that $x_0 \in X$ holds $f|X$ is continuous in x_0.

Let C_1 be a complex normed space, let R_1 be a real normed space, let f be a
partial function from C_1 to R_1, and let X be a set. We say that f is continuous on X if and only if:

(Def. 22) $X \subseteq \text{dom } f$ and for every point x_0 of C_1 such that $x_0 \in X$ holds $f|X$ is continuous in x_0.

Let R_1 be a real normed space, let C_1 be a complex normed space, let g be a partial function from R_1 to C_1, and let X be a set. We say that g is continuous on X if and only if:

(Def. 23) $X \subseteq \text{dom } g$ and for every point x_0 of R_1 such that $x_0 \in X$ holds $g|X$ is continuous in x_0.

Let C_1 be a complex normed space, let f be a partial function from the carrier of C_1 to C, and let X be a set. We say that f is continuous on X if and only if:

(Def. 24) $X \subseteq \text{dom } f$ and for every point x_0 of C_1 such that $x_0 \in X$ holds $f|X$ is continuous in x_0.

Let R_1 be a real normed space, let f be a partial function from the carrier of R_1 to C, and let X be a set. We say that f is continuous on X if and only if:

(Def. 25) $X \subseteq \text{dom } f$ and for every point x_0 of R_1 such that $x_0 \in X$ holds $f|X$ is continuous in x_0.

In the sequel X, X_1 denote sets.

The following propositions are true:

(62) Let f be a partial function from C_2 to C_3. Then f is continuous on X if and only if the following conditions are satisfied:

(i) $X \subseteq \text{dom } f$, and
(ii) for every sequence s_4 of C_2 such that $\text{rng } s_4 \subseteq X$ and s_4 is convergent and $\lim s_4 \in X$ holds $f \cdot s_4$ is convergent and $f_{\lim s_4} = \lim(f \cdot s_4)$.

(63) Let f be a partial function from C_1 to R_1. Then f is continuous on X if and only if the following conditions are satisfied:

(i) $X \subseteq \text{dom } f$, and
(ii) for every sequence s_4 of C_1 such that $\text{rng } s_4 \subseteq X$ and s_4 is convergent and $\lim s_4 \in X$ holds $f \cdot s_4$ is convergent and $f_{\lim s_4} = \lim(f \cdot s_4)$.

(64) Let f be a partial function from R_1 to C_1. Then f is continuous on X if and only if the following conditions are satisfied:

(i) $X \subseteq \text{dom } f$, and
(ii) for every sequence s_4 of R_1 such that $\text{rng } s_4 \subseteq X$ and s_4 is convergent and $\lim s_4 \in X$ holds $f \cdot s_4$ is convergent and $f_{\lim s_4} = \lim(f \cdot s_4)$.
(65) Let f be a partial function from C_2 to C_3. Then f is continuous on X if and only if the following conditions are satisfied:

(i) $X \subseteq \text{dom } f$, and

(ii) for every point x_0 of C_2 and for every r such that $x_0 \in X$ and $0 < r$
there exists s such that $0 < s$ and for every point x_1 of C_2 such that
$x_1 \in X$ and $\|x_1 - x_0\| < s$ holds $\|f_{x_1} - f_{x_0}\| < r$.

(66) Let f be a partial function from C_1 to R_1. Then f is continuous on X if and only if the following conditions are satisfied:

(i) $X \subseteq \text{dom } f$, and

(ii) for every point x_0 of C_1 and for every r such that $x_0 \in X$ and $0 < r$
there exists s such that $0 < s$ and for every point x_1 of C_1 such that
$x_1 \in X$ and $\|x_1 - x_0\| < s$ holds $\|f_{x_1} - f_{x_0}\| < r$.

(67) Let f be a partial function from R_1 to C_1. Then f is continuous on X if and only if the following conditions are satisfied:

(i) $X \subseteq \text{dom } f$, and

(ii) for every point x_0 of R_1 and for every r such that $x_0 \in X$ and $0 < r$
there exists s such that $0 < s$ and for every point x_1 of R_1 such that
$x_1 \in X$ and $\|x_1 - x_0\| < s$ holds $\|f_{x_1} - f_{x_0}\| < r$.

(68) Let f be a partial function from the carrier of C_1 to C. Then f is continuous on X if and only if the following conditions are satisfied:

(i) $X \subseteq \text{dom } f$, and

(ii) for every point x_0 of C_1 and for every r such that $x_0 \in X$ and $0 < r$
there exists s such that $0 < s$ and for every point x_1 of C_1 such that
$x_1 \in X$ and $\|x_1 - x_0\| < s$ holds $|f_{x_1} - f_{x_0}| < r$.

(69) Let f be a partial function from the carrier of C_1 to R. Then f is continuous on X if and only if the following conditions are satisfied:

(i) $X \subseteq \text{dom } f$, and

(ii) for every point x_0 of C_1 and for every r such that $x_0 \in X$ and $0 < r$
there exists s such that $0 < s$ and for every point x_1 of C_1 such that
$x_1 \in X$ and $\|x_1 - x_0\| < s$ holds $|f_{x_1} - f_{x_0}| < r$.

(70) Let f be a partial function from the carrier of R_1 to C. Then f is continuous on X if and only if the following conditions are satisfied:

(i) $X \subseteq \text{dom } f$, and

(ii) for every point x_0 of R_1 and for every r such that $x_0 \in X$ and $0 < r$
there exists s such that $0 < s$ and for every point x_1 of R_1 such that
$x_1 \in X$ and $\|x_1 - x_0\| < s$ holds $|f_{x_1} - f_{x_0}| < r$.

(71) For every partial function f from C_2 to C_3 holds f is continuous on X
iff $f | X$ is continuous on X.

(72) For every partial function f from C_1 to R_1 holds f is continuous on X
iff $f | X$ is continuous on X.
For every partial function f from R_1 to C_1 holds f is continuous on X iff $f|X$ is continuous on X.

Let f be a partial function from the carrier of C_1 to \mathbb{C}. Then f is continuous on X if and only if $f|X$ is continuous on X.

Let f be a partial function from the carrier of C_1 to \mathbb{R}. Then f is continuous on X if and only if $f|X$ is continuous on X.

Let f be a partial function from the carrier of R_1 to \mathbb{C}. Then f is continuous on X if and only if $f|X$ is continuous on X.

For every partial function f from C_2 to C_3 such that f is continuous on X and $X_1 \subseteq X$ holds f is continuous on X_1.

For every partial function f from C_1 to R_1 such that f is continuous on X and $X_1 \subseteq X$ holds f is continuous on X_1.

For every partial function f from R_1 to C_1 such that f is continuous on X and $X_1 \subseteq X$ holds f is continuous on X_1.

For every partial function f from C_2 to C_3 and for every point x_0 of C_2 such that $x_0 \in \text{dom } f$ holds f is continuous on $\{x_0\}$.

For every partial function f from R_1 to C_1 and for every point x_0 of R_1 such that $x_0 \in \text{dom } f$ holds f is continuous on $\{x_0\}$.

Let f_1, f_2 be partial functions from R_1 to C_3. Suppose f_1 is continuous on X and f_2 is continuous on X. Then $f_1 + f_2$ is continuous on X and $f_1 - f_2$ is continuous on X.

Let f_1, f_2 be partial functions from C_1 to R_1. Suppose f_1 is continuous on X and f_2 is continuous on X. Then $f_1 + f_2$ is continuous on X and $f_1 - f_2$ is continuous on X.

Let f_1, f_2 be partial functions from R_1 to C_1. Suppose f_1 is continuous on X and f_2 is continuous on X. Then $f_1 + f_2$ is continuous on X and $f_1 - f_2$ is continuous on X.

Let f_1, f_2 be partial functions from C_2 to C_3. Suppose f_1 is continuous on X and f_2 is continuous on X_1. Then $f_1 + f_2$ is continuous on $X \cap X_1$ and $f_1 - f_2$ is continuous on $X \cap X_1$.

Let f_1, f_2 be partial functions from C_1 to R_1. Suppose f_1 is continuous on X and f_2 is continuous on X_1. Then $f_1 + f_2$ is continuous on $X \cap X_1$ and $f_1 - f_2$ is continuous on $X \cap X_1$.

Let f_1, f_2 be partial functions from R_1 to C_1. Suppose f_1 is continuous on X and f_2 is continuous on X_1. Then $f_1 + f_2$ is continuous on $X \cap X_1$ and $f_1 - f_2$ is continuous on $X \cap X_1$.

For every partial function f from C_2 to C_3 such that f is continuous on...
\(X\) holds \(zf\) is continuous on \(X\).

(90) For every partial function \(f\) from \(C_1\) to \(R_1\) such that \(f\) is continuous on \(X\) holds \(rf\) is continuous on \(X\).

(91) For every partial function \(f\) from \(R_1\) to \(C_1\) such that \(f\) is continuous on \(X\) holds \(zf\) is continuous on \(X\).

(92) Let \(f\) be a partial function from \(C_2\) to \(C_3\). If \(f\) is continuous on \(X\), then \(||f||\) is continuous on \(X\) and \(-f\) is continuous on \(X\).

(93) Let \(f\) be a partial function from \(C_1\) to \(R_1\). If \(f\) is continuous on \(X\), then \(||f||\) is continuous on \(X\) and \(-f\) is continuous on \(X\).

(94) Let \(f\) be a partial function from \(R_1\) to \(C_1\). If \(f\) is continuous on \(X\), then \(||f||\) is continuous on \(X\) and \(-f\) is continuous on \(X\).

(95) Let \(f\) be a partial function from \(C_2\) to \(C_3\). Suppose \(f\) is total and for all points \(x_1, x_2\) of \(C_2\) holds \(f_{x_1}+x_2 = f_{x_1}+f_{x_2}\) and there exists a point \(x_0\) of \(C_2\) such that \(f\) is continuous in \(x_0\). Then \(f\) is continuous on the carrier of \(C_2\).

(96) Let \(f\) be a partial function from \(C_1\) to \(R_1\). Suppose \(f\) is total and for all points \(x_1, x_2\) of \(C_1\) holds \(f_{x_1}+x_2 = f_{x_1}+f_{x_2}\) and there exists a point \(x_0\) of \(C_1\) such that \(f\) is continuous in \(x_0\). Then \(f\) is continuous on the carrier of \(C_1\).

(97) Let \(f\) be a partial function from \(R_1\) to \(C_1\). Suppose \(f\) is total and for all points \(x_1, x_2\) of \(R_1\) holds \(f_{x_1}+x_2 = f_{x_1}+f_{x_2}\) and there exists a point \(x_0\) of \(R_1\) such that \(f\) is continuous in \(x_0\). Then \(f\) is continuous on the carrier of \(R_1\).

(98) For every partial function \(f\) from \(C_2\) to \(C_3\) such that \(\text{dom} f\) is compact and \(f\) is continuous on \(\text{dom} f\) holds \(\text{rng} f\) is compact.

(99) For every partial function \(f\) from \(C_1\) to \(R_1\) such that \(\text{dom} f\) is compact and \(f\) is continuous on \(\text{dom} f\) holds \(\text{rng} f\) is compact.

(100) For every partial function \(f\) from \(R_1\) to \(C_1\) such that \(\text{dom} f\) is compact and \(f\) is continuous on \(\text{dom} f\) holds \(\text{rng} f\) is compact.

(101) Let \(f\) be a partial function from the carrier of \(C_1\) to \(\mathbb{C}\). If \(\text{dom} f\) is compact and \(f\) is continuous on \(\text{dom} f\), then \(\text{rng} f\) is compact.

(102) Let \(f\) be a partial function from the carrier of \(C_1\) to \(\mathbb{R}\). If \(\text{dom} f\) is compact and \(f\) is continuous on \(\text{dom} f\), then \(\text{rng} f\) is compact.

(103) Let \(f\) be a partial function from the carrier of \(R_1\) to \(\mathbb{C}\). If \(\text{dom} f\) is compact and \(f\) is continuous on \(\text{dom} f\), then \(\text{rng} f\) is compact.

(104) Let \(Y\) be a subset of \(C_2\) and \(f\) be a partial function from \(C_2\) to \(C_3\). If \(Y \subseteq \text{dom} f\) and \(Y\) is compact and \(f\) is continuous on \(Y\), then \(f^0Y\) is compact.

(105) Let \(Y\) be a subset of \(C_1\) and \(f\) be a partial function from \(C_1\) to \(R_1\).
If $Y \subseteq \text{dom } f$ and Y is compact and f is continuous on Y, then $f^o Y$ is compact.

(106) Let Y be a subset of R_1 and f be a partial function from R_1 to C_1. If $Y \subseteq \text{dom } f$ and Y is compact and f is continuous on Y, then $f^o Y$ is compact.

(107) Let f be a partial function from the carrier of C_1 to \mathbb{R}. Suppose $\text{dom } f \neq \emptyset$ and f is compact and f is continuous on $\text{dom } f$. Then there exist points x_1, x_2 of C_1 such that $x_1 \in \text{dom } f$ and $x_2 \in \text{dom } f$ and $\| f \|_{x_1} = \sup \text{rng } f$ and $f_{x_2} = \inf \text{rng } f$.

(108) Let f be a partial function from C_2 to C_3. Suppose $\text{dom } f \neq \emptyset$ and $\text{dom } f$ is compact and f is continuous on $\text{dom } f$. Then there exist points x_1, x_2 of C_2 such that $x_1 \in \text{dom } f$ and $x_2 \in \text{dom } f$ and $\| f \|_{x_1} = \sup \text{rng } f$ and $\| f \|_{x_2} = \inf \text{rng } f$.

(109) Let f be a partial function from C_1 to R_1. Suppose $\text{dom } f \neq \emptyset$ and $\text{dom } f$ is compact and f is continuous on $\text{dom } f$. Then there exist points x_1, x_2 of C_1 such that $x_1 \in \text{dom } f$ and $x_2 \in \text{dom } f$ and $\| f \|_{x_1} = \sup \text{rng } f$ and $\| f \|_{x_2} = \inf \text{rng } f$.

(110) Let f be a partial function from R_1 to C_1. Suppose $\text{dom } f \neq \emptyset$ and $\text{dom } f$ is compact and f is continuous on $\text{dom } f$. Then there exist points x_1, x_2 of R_1 such that $x_1 \in \text{dom } f$ and $x_2 \in \text{dom } f$ and $\| f \|_{x_1} = \sup \text{rng } f$ and $\| f \|_{x_2} = \inf \text{rng } f$.

(111) For every partial function f from C_2 to C_3 holds $\| f \|_{X} = \| f \|_{X}$.

(112) For every partial function f from C_1 to R_1 holds $\| f \|_{X} = \| f \|_{X}$.

(113) For every partial function f from R_1 to C_1 holds $\| f \|_{X} = \| f \|_{X}$.

(114) Let f be a partial function from C_2 to C_3 and Y be a subset of C_2. Suppose $Y \neq \emptyset$ and $Y \subseteq \text{dom } f$ and Y is compact and f is continuous on Y. Then there exist points x_1, x_2 of C_2 such that $x_1 \in Y$ and $x_2 \in Y$ and $\| f \|_{x_1} = \sup (\| f \|_{x}Y)$ and $\| f \|_{x_2} = \inf (\| f \|_{x}Y)$.

(115) Let f be a partial function from C_1 to R_1 and Y be a subset of C_1. Suppose $Y \neq \emptyset$ and $Y \subseteq \text{dom } f$ and Y is compact and f is continuous on Y. Then there exist points x_1, x_2 of C_1 such that $x_1 \in Y$ and $x_2 \in Y$ and $\| f \|_{x_1} = \sup (\| f \|_{x}Y)$ and $\| f \|_{x_2} = \inf (\| f \|_{x}Y)$.

(116) Let f be a partial function from R_1 to C_1 and Y be a subset of R_1. Suppose $Y \neq \emptyset$ and $Y \subseteq \text{dom } f$ and Y is compact and f is continuous on Y. Then there exist points x_1, x_2 of R_1 such that $x_1 \in Y$ and $x_2 \in Y$ and $\| f \|_{x_1} = \sup (\| f \|_{x}Y)$ and $\| f \|_{x_2} = \inf (\| f \|_{x}Y)$.

(117) Let f be a partial function from the carrier of C_1 to \mathbb{R} and Y be a subset of C_1. Suppose $Y \neq \emptyset$ and $Y \subseteq \text{dom } f$ and Y is compact and f is continuous on Y. Then there exist points x_1, x_2 of C_1 such that $x_1 \in Y$ and $x_2 \in Y$ and $f_{x_1} = \sup (f_{x}Y)$ and $f_{x_2} = \inf (f_{x}Y)$.
Let C_2, C_3 be complex normed spaces, let X be a set, and let f be a partial function from C_2 to C_3. We say that f is Lipschitzian on X if and only if:

(Def. 27) \(X \subseteq \text{dom } f \) and there exists r such that $0 < r$ and for all points x_1, x_2 of C_2 such that $x_1 \in X$ and $x_2 \in X$ holds \(\|f_{x_1} - f_{x_2}\| \leq r \cdot \|x_1 - x_2\| \).

Let C_1 be a complex normed space, let R_1 be a real normed space, let X be a set, and let f be a partial function from C_1 to R_1. We say that f is Lipschitzian on X if and only if:

(Def. 28) \(X \subseteq \text{dom } f \) and there exists r such that $0 < r$ and for all points x_1, x_2 of C_2 such that $x_1 \in X$ and $x_2 \in X$ holds \(\|f_{x_1} - f_{x_2}\| \leq r \cdot \|x_1 - x_2\| \).

Let R_1 be a real normed space, let C_1 be a complex normed space, let X be a set, and let f be a partial function from the carrier of C_1 to C. We say that f is Lipschitzian on X if and only if:

(Def. 29) \(X \subseteq \text{dom } f \) and there exists r such that $0 < r$ and for all points x_1, x_2 of R_1 such that $x_1 \in X$ and $x_2 \in X$ holds \(\|f_{x_1} - f_{x_2}\| \leq r \cdot \|x_1 - x_2\| \).

Let C_1 be a complex normed space, let X be a set, and let f be a partial function from the carrier of C_1 to R. We say that f is Lipschitzian on X if and only if:

(Def. 30) \(X \subseteq \text{dom } f \) and there exists r such that $0 < r$ and for all points x_1, x_2 of C_1 such that $x_1 \in X$ and $x_2 \in X$ holds \(|f_{x_1} - f_{x_2}| \leq r \cdot \|x_1 - x_2\| \).

Let C_1 be a complex normed space, let X be a set, and let f be a partial function from the carrier of C_1 to \mathbb{R}. We say that f is Lipschitzian on X if and only if:

(Def. 31) \(X \subseteq \text{dom } f \) and there exists r such that $0 < r$ and for all points x_1, x_2 of C_1 such that $x_1 \in X$ and $x_2 \in X$ holds \(|f_{x_1} - f_{x_2}| \leq r \cdot \|x_1 - x_2\| \).

Let R_1 be a real normed space, let X be a set, and let f be a partial function from the carrier of R_1 to \mathbb{C}. We say that f is Lipschitzian on X if and only if:

(Def. 32) \(X \subseteq \text{dom } f \) and there exists r such that $0 < r$ and for all points x_1, x_2 of R_1 such that $x_1 \in X$ and $x_2 \in X$ holds \(|f_{x_1} - f_{x_2}| \leq r \cdot \|x_1 - x_2\| \).

Next we state a number of propositions:

(118) For every partial function f from C_2 to C_3 such that f is Lipschitzian on X and $X_1 \subseteq X$ holds f is Lipschitzian on X_1.

(119) For every partial function f from C_1 to R_1 such that f is Lipschitzian on X and $X_1 \subseteq X$ holds f is Lipschitzian on X_1.

(120) For every partial function f from R_1 to C_1 such that f is Lipschitzian on X and $X_1 \subseteq X$ holds f is Lipschitzian on X_1.

(121) Let f_1, f_2 be partial functions from C_2 to C_3. Suppose f_1 is Lipschitzian on X and f_2 is Lipschitzian on X_1. Then $f_1 + f_2$ is Lipschitzian on $X \cap X_1$.

(122) Let f_1, f_2 be partial functions from C_1 to R_1. Suppose f_1 is Lipschitzian on X and f_2 is Lipschitzian on X_1. Then $f_1 + f_2$ is Lipschitzian on $X \cap X_1$.
Let f_1, f_2 be partial functions from R_1 to C_1. Suppose f_1 is Lipschitzian on X and f_2 is Lipschitzian on X_1. Then $f_1 + f_2$ is Lipschitzian on $X \cap X_1$.

Let f_1, f_2 be partial functions from C_2 to C_3. Suppose f_1 is Lipschitzian on X and f_2 is Lipschitzian on X_1. Then $f_1 - f_2$ is Lipschitzian on $X \cap X_1$.

Let f_1, f_2 be partial functions from C_1 to R_1. Suppose f_1 is Lipschitzian on X and f_2 is Lipschitzian on X_1. Then $f_1 - f_2$ is Lipschitzian on $X \cap X_1$.

Let f_1, f_2 be partial functions from R_1 to C_1. Suppose f_1 is Lipschitzian on X and f_2 is Lipschitzian on X_1. Then $f_1 - f_2$ is Lipschitzian on $X \cap X_1$.

For every partial function f from C_2 to C_3 such that f is Lipschitzian on X holds $z f$ is Lipschitzian on X.

For every partial function f from C_1 to R_1 such that f is Lipschitzian on X holds $z f$ is Lipschitzian on X.

For every partial function f from C_1 to C_3 such that f is Lipschitzian on X. Then $-f$ is Lipschitzian on X and $\|f\|$ is Lipschitzian on X.

Let f be a partial function from C_1 to R_1. Suppose f is Lipschitzian on X. Then $-f$ is Lipschitzian on X and $\|f\|$ is Lipschitzian on X.

Let f be a partial function from C_1 to R_1. Suppose f is Lipschitzian on X. Then $-f$ is Lipschitzian on X and $\|f\|$ is Lipschitzian on X.

Let f be a partial function from R_1 to C_1. Suppose f is Lipschitzian on X. Then $-f$ is Lipschitzian on X and $\|f\|$ is Lipschitzian on X.

Let X be a set and f be a partial function from C_2 to C_3. If $X \subseteq \text{dom } f$ and f is a constant on X, then f is Lipschitzian on X.

Let X be a set and f be a partial function from C_1 to R_1. If $X \subseteq \text{dom } f$ and f is a constant on X, then f is Lipschitzian on X.

Let X be a set and f be a partial function from R_1 to C_1. If $X \subseteq \text{dom } f$ and f is a constant on X, then f is Lipschitzian on X.

For every subset Y of C_1 holds id_Y is Lipschitzian on Y.

For every partial function f from C_2 to C_3 such that f is Lipschitzian on X holds f is continuous on X.

For every partial function f from C_1 to R_1 such that f is Lipschitzian on X holds f is continuous on X.

For every partial function f from R_1 to C_1 such that f is Lipschitzian on X holds f is continuous on X.

Let f be a partial function from the carrier of C_1 to \mathbb{C}. If f is Lipschitzian on X, then f is continuous on X.

Let f be a partial function from the carrier of C_1 to \mathbb{R}. If f is Lipschitzian on X, then f is continuous on X.

Let f be a partial function from the carrier of R_1 to \mathbb{C}. If f is Lipschitzian on X, then f is continuous on X.

For every partial function f from C_2 to C_3 such that there exists a point r of C_3 such that $\text{rng } f = \{ r \}$ holds f is continuous on $\text{dom } f$.

For every partial function f from C_1 to R_1 such that there exists a point r of R_1 such that $\text{rng } f = \{ r \}$ holds f is continuous on $\text{dom } f$.

For every partial function f from R_1 to C_1 such that there exists a point r of C_1 such that $\text{rng } f = \{ r \}$ holds f is continuous on $\text{dom } f$.

For every partial function f from C_2 to C_3 such that $X \subseteq \text{dom } f$ and f is a constant on X holds f is continuous on X.

For every partial function f from C_1 to R_1 such that $X \subseteq \text{dom } f$ and f is a constant on X holds f is continuous on X.

Let f be a partial function from C_1 to C_1. Suppose that for every point x_0 of C_1 such that $x_0 \in \text{dom } f$ holds $f_{x_0} = x_0$. Then f is continuous on $\text{dom } f$.

For every partial function f from C_1 to C_1 such that $f = \text{id}_{\text{dom } f}$ holds f is continuous on $\text{dom } f$.

Let f be a partial function from C_1 to C_1 and Y be a subset of C_1. If $Y \subseteq \text{dom } f$ and $f|Y = \text{id}_Y$, then f is continuous on Y.

Let f be a partial function from C_1 to C_1, z be a complex number, and p be a point of C_1. Suppose $X \subseteq \text{dom } f$ and for every point x_0 of C_1 such that $x_0 \in X$ holds $f_{x_0} = z \cdot x_0 + p$. Then f is continuous on X.

Let f be a partial function from the carrier of C_1 to \mathbb{R}. Suppose that for every point x_0 of C_1 such that $x_0 \in \text{dom } f$ holds $f_{x_0} = \| x_0 \|$. Then f is continuous on $\text{dom } f$.

Let f be a partial function from the carrier of C_1 to \mathbb{R}. Suppose $X \subseteq \text{dom } f$ and for every point x_0 of C_1 such that $x_0 \in X$ holds $f_{x_0} = \| x_0 \|$. Then f is continuous on X.

REFERENCES

Received August 20, 2004