The Uniform Continuity of Functions on Normed Linear Spaces

Takaya Nishiyama, Artur Korniłowicz, Yasunari Shidama
Shinshu University, University of Białystok, Shinshu University
Nagano, Białystok, Nagano

Summary. In this article, the basic properties of uniform continuity of functions on normed linear spaces are described.

MML Identifier: NFCONT_2.

The notation and terminology used in this paper are introduced in the following articles: [15], [18], [19], [1], [20], [3], [2], [7], [14], [16], [9], [13], [4], [17], [6], [5], [11], [21], [10], [12], and [8].

1. The Uniform Continuity of Functions on Normed Linear Spaces

For simplicity, we follow the rules: X, X_1 are sets, s, r, p are real numbers, S, T are real normed spaces, f, f_1, f_2 are partial functions from S to T, x_1, x_2 are points of S, and Y is a subset of S.

Let us consider X, S, T and let us consider f. We say that f is uniformly continuous on X if and only if the conditions (Def. 1) are satisfied.

(Def. 1)(i) $X \subseteq \text{dom } f$, and

(ii) for every r such that $0 < r$ there exists s such that $0 < s$ and for all x_1, x_2 such that $x_1 \in X$ and $x_2 \in X$ and $\|x_1 - x_2\| < s$ holds $\|f_{x_1} - f_{x_2}\| < r$.

Let us consider X, S and let f be a partial function from the carrier of S to \mathbb{R}. We say that f is uniformly continuous on X if and only if the conditions (Def. 2) are satisfied.

1The paper was written during author's post-doctoral fellowship granted by Shinshu University, Japan.
(Def. 2)(i) \(X \subseteq \text{dom} \ f \), and
(ii) for every \(r \) such that \(0 < r \) there exists \(s \) such that \(0 < s \) and for all \(x_1, x_2 \) such that \(x_1 \in X \) and \(x_2 \in X \) and \(\|x_1 - x_2\| < s \) holds \(|f_{x_1} - f_{x_2}| < r \).

The following propositions are true:

1. If \(f \) is uniformly continuous on \(X \) and \(X_1 \subseteq X \), then \(f \) is uniformly continuous on \(X_1 \).
2. If \(f_1 \) is uniformly continuous on \(X \) and \(f_2 \) is uniformly continuous on \(X_1 \), then \(f_1 + f_2 \) is uniformly continuous on \(X \cap X_1 \).
3. If \(f_1 \) is uniformly continuous on \(X \) and \(f_2 \) is uniformly continuous on \(X_1 \), then \(f_1 - f_2 \) is uniformly continuous on \(X \cap X_1 \).
4. If \(f \) is uniformly continuous on \(X \), then \(p f \) is uniformly continuous on \(X \).
5. If \(f \) is uniformly continuous on \(X \), then \(-f\) is uniformly continuous on \(X \).
6. If \(f \) is uniformly continuous on \(X \), then \(\|f\| \) is uniformly continuous on \(X \).
7. If \(f \) is uniformly continuous on \(X \), then \(f \) is continuous on \(X \).
8. Let \(f \) be a partial function from the carrier of \(S \) to \(\mathbb{R} \). If \(f \) is uniformly continuous on \(X \), then \(f \) is continuous on \(X \).
9. If \(f \) is Lipschitzian on \(X \), then \(f \) is uniformly continuous on \(X \).
10. For all \(f, Y \) such that \(Y \) is compact and \(f \) is continuous on \(Y \) holds \(f \) is uniformly continuous on \(Y \).
11. If \(Y \subseteq \text{dom} \ f \) and \(Y \) is compact and \(f \) is uniformly continuous on \(Y \), then \(f^o Y \) is compact.
12. Let \(f \) be a partial function from the carrier of \(S \) to \(\mathbb{R} \) and given \(Y \). Suppose \(Y \neq \emptyset \) and \(Y \subseteq \text{dom} \ f \) and \(Y \) is compact and \(f \) is uniformly continuous on \(Y \). Then there exist \(x_1, x_2 \) such that \(x_1 \in Y \) and \(x_2 \in Y \) and \(f_{x_1} = \sup(f^o Y) \) and \(f_{x_2} = \inf(f^o Y) \).
13. If \(X \subseteq \text{dom} \ f \) and \(f \) is a constant on \(X \), then \(f \) is uniformly continuous on \(X \).

2. The Contraction Mapping Principle on Normed Linear Spaces

Let \(M \) be a real Banach space. A function from the carrier of \(M \) into the carrier of \(M \) is said to be a contraction of \(M \) if:

(Def. 3) There exists a real number \(L \) such that \(0 < L \) and \(L < 1 \) and for all points \(x, y \) of \(M \) holds \(\|it(x) - it(y)\| \leq L \cdot \|x - y\| \).

The following two propositions are true:
(14) Let X be a real Banach space and f be a function from X into X. Suppose f is a contraction of X. Then there exists a point x_3 of X such that $f(x_3) = x_3$ and for every point x of X such that $f(x) = x$ holds $x_3 = x$.

(15) Let X be a real Banach space and f be a function from X into X. Given a natural number n_0 such that f^{n_0} is a contraction of X. Then there exists a point x_3 of X such that $f(x_3) = x_3$ and for every point x of X such that $f(x) = x$ holds $x_3 = x$.

References

Received April 6, 2004