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The notation and terminology used here are introduced in the following papers:
[21], [9], [25], [1], [20], [14], [24], [22], [2], [5], [27], [6], [7], [18], [11], [19], [10],
[17], [26], [8], [15], [23], [12], [4], [3], [16], and [13].

1. PRELIMINARIES

The scheme ExFunc8CondD deals with a non empty set A, three unary
functors F, G, and ‘H yielding sets, and three unary predicates P, Q, R, and
states that:

There exists a function f such that dom f = A and for every
element ¢ of A holds if P[c], then f(c) = F(c) and if Q]¢]|, then
f(c) = G(c) and if R[¢|, then f(c) = H(c)
provided the parameters meet the following conditions:
e For every element ¢ of A holds if P|c], then not Q[c| and if Plc],
then not R[c] and if Q[c], then not R[c], and
e For every element ¢ of A holds Plc] or Q|c] or R]c].

Let n be a natural number. Observe that every element of £7 is function-like
and relation-like.

Let n be a natural number. Observe that every element of &} is finite
sequence-like.

We now state a number of propositions:

(1) The carrier of [ I, I]=[[0,1], [0,1]].
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(2) For every real number z such that z < § holds 2-z — 1 < 1
(3) For every real number x such that > § holds 2- 2 —1>1—2-z.
or all real numbers z, a, b, ¢, d such that a olds rT—a)t+c=
(4) For all real b b, ¢, d such that a # b holds #=¢ - (z — a)
(1 - 7) C + b a * d.
(5) For all real numbers a, b,  such that a < x and = < b holds =5 € the
carrier of [0, 1].

(6) For every point z of I such that < 3 holds 2 z is a point of L.
or every point x of I such that x > 5 holds 2.2 — 1 is a point of I.
7) F i f I such th 1 holds 2 1i int of I
or all points p, q o olds p - q 1s a point of 1.
8) For all poi f I hold i i il
(9) For every point « of I holds 3 - « is a point of L.
(10) For every point x of I such that = > % holds = — i is a point of I.
(12)? idy is a path from Of to 1j.
or all points a, b, ¢, d of I such that a < b and ¢ < olds [ |a,b|, |c,d|
13) For all b, ¢, d of I such th b and d hold b d

is a compact non empty subset of [ I, I].

2. AFFINE MAPS

One can prove the following four propositions:

(14) Let S, T be subsets of 8%. Suppose S = {p; p ranges over points of E%:
2 < 2-p1 — 1} and T = {p;p ranges over points of £2: pa < p1}. Then

(AffineMap(1,0,1,1))°5 =T.

(15) Let S, T be subsets of 2. Suppose S = {p; p ranges over points of £2:
p2 > 2-p1 — 1} and T = {p;p ranges over points of £2: pa > p1}. Then
(AffineMap(1,0,1,1))°S =T.

(16) Let S, T be subsets of 2. Suppose S = {p;p ranges over points of £2:
p2 > 1—2-p1} and T = {p; p ranges over points of E4: pa > —p1}. Then

(AffineMap(1,0,1,-2))°S =T.
(17) Let S, T be subsets of £%. Suppose S = {p;p ranges over points of £2:
2 <1—2-p1} and T = {p; p ranges over points of £%: pa < —p1}. Then

(AffineMap(1,0,1,-3))°S =T.

3. REAL-MEMBERED STRUCTURES

Let T be a 1-sorted structure. We say that T is real-membered if and only
if:
(Def. 1) The carrier of T is real-membered.

We now state the proposition

3The proposition (11) has been removed.
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(18) For every non empty 1-sorted structure 7" holds 7' is real-membered iff
every element of T is real.

Let us mention that I is real-membered.

One can verify that there exists a 1-sorted structure which is non empty
and real-membered and there exists a topological space which is non empty and
real-membered.

Let T be a real-membered 1-sorted structure. Note that every element of T'
is real.

Let T be a real-membered topological structure. Note that every subspace
of T is real-membered.

Let S, T be real-membered non empty topological spaces and let p be an
element of [ S, T']. One can check that py is real and ps is real.

Let T be a non empty subspace of [ I, ] and let = be a point of 7. One can
check that x7 is real and xo is real.

One can check that R is real-membered.

4. CLOSED SUBSETS OF EUCLIDEAN TOPOLOGICAL SPACES

The following propositions are true:

(19) {p;p ranges over points of 5%: p2 < 2-p1 — 1} is a closed subset of 5%.
(20) {p;p ranges over points of E2: pp > 2-p1 — 1} is a closed subset of £2.
(21) {p;p ranges over points of 5%: p2 < 1—2-p1}is a closed subset of S%.
(22) {p;p ranges over points of EX: pa > 1 —2-p;1} is a closed subset of E2.
(23) {p;p ranges over points of E&:pa > 1—2-p1 A p2 >2-pp —1}isa

closed subset of £2.

(24) There exists a map f from [ R, R! ] into £2 such that for all real num-
bers z, y holds f({z, y)) = (z,y).

(25) {p;p ranges over points of [ RY, R ]: po <1 —2-p1} is a closed subset
of [RY, R1 .

(26) {p;p ranges over points of [ R, R ]: po < 2-p; — 1} is a closed subset
of [RY, R1].

(27) {p;p ranges over points of [RY, R']: po >1—2-p3 A pa>2-p; — 1}
is a closed subset of [ R, R ].

(28) {p;p ranges over points of [ I, I]: po <1 —2-p;} is a closed non empty
subset of [ I, I].

(29) {p;p ranges over points of [I, []: p2 >1—-2-p1 A p2>2-p1—1}isa
closed non empty subset of [ I, I].

(30) {p;p ranges over points of [ I, I]: p2 < 2-p1 — 1} is a closed non empty
subset of [ I, I].
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(31) Let S, T be non empty topological spaces and p be a point of [ .S, T'].
Then p; is a point of S and ps is a point of T'.

(32) For all subsets A, B of [ I, 1] such that A = [[0,3], [0,1]] and B =
E[5,1], [0,1]] holds Q¢ 1914 UQr 138 = Qpr 13-

(33) For all subsets A, B of [ I, 1] such that A = [[0,3], [0,1]] and B =
E[5.1], [0,1]] holds Q¢ 1914 Ny iyys = E{5}, [0,1]].

5. COMPACT SPACES

Let T be a topological structure. Note that 7 is compact.
Let T be a topological structure. Observe that there exists a subset of T
which is empty and compact.
Next we state three propositions:
(34) For every topological structure 7" holds ) is an empty compact subset of
T.
(35) Let T be a topological structure and a, b be real numbers. If @ > b, then
[a,b] is an empty compact subset of T'.
(36) For all points a, b, ¢, d of I holds [ [a,b], [c,d] ] is a compact subset of
FL T

6. CONTINUOUS MAPS

Let a, b, ¢, d be real numbers. The functor Loy (a, b, ¢, d) yielding a map from
[a, b]T into [c, d| is defined by:
(Def. 2)  Loi(a, b, c,d) = Lo1(cie,qjr» djcd)r) - Po1(a; b, 001105 10,151)-
The following propositions are true:
(37) For all real numbers a, b, ¢, d such that a < b and ¢ < d holds
(Lo1(a,b,¢,d))(a) = ¢ and (Lg1(a,b,c,d))(b) = d.
(38) For all real numbers a, b, ¢, d such that a < b and ¢ < d holds
Lo1(a, b, ¢, d) is a continuous map from [a, b]T into [c, d]T.
(39) Let a, b, ¢, d be real numbers. Suppose a < b and ¢ < d. Let = be a real
number. If @ < z and x < b, then (Loi(a, b, ¢, d))(z) = % (z—a)+ec.
(40) Let f1, fo be maps from [I, I] into I. Suppose f; is continuous and fo
is continuous and for every point p of [ I, I] holds fi(p) - f2(p) is a point
of I. Then there exists a map g from [ I, I] into I such that
(i)  for every point p of [ I, I] and for all real numbers 7y, r2 such that
fi(p) = r1 and fa(p) = re holds g(p) = r1 - 2, and
(ii) g is continuous.
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(41) Let f1, fo be maps from [I, I] into I. Suppose f; is continuous and fo
is continuous and for every point p of [ I, I] holds fi(p) + f2(p) is a point
of I. Then there exists a map g from [ I, I] into I such that

(i)  for every point p of [I, I] and for all real numbers 71, r such that
fi(p) =r1 and fa(p) = ro holds g(p) = r1 + 72, and
(ii) g is continuous.

(42) Let f1, fo be maps from [ I, I] into I. Suppose f; is continuous and fo
is continuous and for every point p of [ I, I] holds fi(p) — f2(p) is a point
of I. Then there exists a map ¢ from [ I, I] into I such that

(i)  for every point p of [I, I] and for all real numbers 71, 79 such that
fi(p) = r1 and fa(p) = r2 holds g(p) = r1 —r2, and
(ii) g is continuous.

7. PATHS

We follow the rules: T denotes a non empty topological space and a, b, ¢, d
denote points of T
The following three propositions are true:
(43) For every path P from a to b such that P is continuous holds P -
Lo1(1(0,1)1»0j0,1},) is & continuous map from I into 7.
(44) Let X be a non empty topological structure, a, b be points of X,
and P be a path from a to b. If P(0) = a and P(1) = b, then
(P Lo1(1jo,131» 0p0,11))(0) = b and (P - Lo1 (10,11, 0p0,1)1)) (1) = a.
(45) Let P be a path from a to b. Suppose P is continuous and P(0) = a and
P(1) = b. Then —P is continuous and (—P)(0) = b and (—P)(1) = a.
Let T be a topological structure and let a, b be points of T'. We say that a,
b are connected if and only if:
(Def. 3) There exists amap f from I into 7" such that f is continuous and f(0) = a
and f(1) =b.
Let T be a non empty topological space and let a, b be points of T'. Let us
notice that the predicate a, b are connected is reflexive and symmetric.
We now state several propositions:
(46) 1If a, b are connected and b, ¢ are connected, then a, ¢ are connected.
(47) For every arcwise connected topological structure 7" and for all points a,
b of T holds a, b are connected.
(48) For every path A from a to a holds A, A are homotopic.
(49) 1If a, b are connected, then for every path A from a to b holds A, A are
homotopic.
(50) 1If a, b are connected, then for every path A from a to b holds A = ——A.
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(51) Let T be a non empty arcwise connected topological space, a, b be points
of T, and A be a path from a to b. Then A = ——A.

(52) 1If a, b are connected, then every path from a to b is continuous.

8. REEXAMINATION OF A PATH CONCEPT

Let T be a non empty arcwise connected topological space, let a, b, ¢ be
points of T', let P be a path from a to b, and let (Q be a path from b to ¢. Then
P + @ can be characterized by the condition:

(Def. 4) For every point ¢ of I holds if ¢ < §, then (P + Q)(t) = P(2-t) and if
3 <t then (P+Q)(t)=Q(2-t—1).

Let T be a non empty arcwise connected topological space, let a, b be points
of T, and let P be a path from a to b. Then —P can be characterized by the
condition:

(Def. 5) For every point t of I holds (—P)(t) = P(1 —t).

9. REPARAMETRIZATIONS

Let T be a non empty topological space, let a, b be points of T', let P be a
path from a to b, and let f be a continuous map from I into I. Let us assume
that f(0) = 0 and f(1) = 1 and a, b are connected. The functor RePar(P, f)
yields a path from a to b and is defined by:

(Def. 6) RePar(P, f) =P - f.
Next we state two propositions:

(53) Let P be a path from a to b and f be a continuous map from I into L.
Suppose f(0) =0 and f(1) = 1 and a, b are connected. Then RePar(P, f),
P are homotopic.

(54) Let T be a non empty arcwise connected topological space, a, b be points
of T, P be a path from a to b, and f be a continuous map from I into I.
If f(0) =0 and f(1) =1, then RePar(P, f), P are homotopic.
The map 15*RP from I into I is defined as follows:
(Def. 7) For every point ¢ of I holds if ¢t < %, then (1°RP)(t) = 2-¢ and if t > 3,
then (15'RP)(¢) = 1.
Let us note that 15'RP is continuous.
One can prove the following proposition
(55) (15*RP)(0) = 0 and (15*RP)(1) = 1.
The map 2"RP from I into I is defined by:

(Def. 8) For every point ¢ of I holds if ¢ < 3, then (2"/RP)(t) = 0 and if ¢ > 3,
then (2"4RP)(t) =2-¢ — 1.
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One can verify that 2"9RP is continuous.
One can prove the following proposition
(56) (2"RP)(0) = 0 and (2"¢RP)(1) = 1.
The map 3"'RP from I into I is defined by the condition (Def. 9).
(Def. 9) Let x be a point of I. Then

(i) if # < g, then (3"'RP)(z) = § - x,

(i) ifz >3 and 2 < 2, then (3"/RP)(z) =z — 1, and
(iii) if z > 3, then (3"RP)(z) =2 2 — 1.
Let us note that 3'"9RP is continuous.
We now state four propositions:
(57) (3'9RP)(0) = 0 and (3"9RP)(1) = 1.
(58) Let P be a path from a to b and @ be a constant path from b to b. If a,
b are connected, then RePar(P, 15'RP) = P + Q.

(59) Let P be a path from a to b and @ be a constant path from a to a. If a,
b are connected, then RePar(P,2"RP) = Q + P.

(60) Let P be a path from a to b, @ be a path from b to ¢, and R be a path
from ¢ to d. Suppose a, b are connected and b, ¢ are connected and ¢, d
are connected. Then RePar(P + Q + R,3"'RP) = P + (Q + R).

10. DECOMPOSITION OF THE UNIT SQUARE

The subset LowerLeftUnitTriangle of [ I, I] is defined as follows:

(Def. 10) For every set = holds x € LowerLeftUnitTriangle iff there exist points a,
b of I such that z = (a, b) and b< 1—2-a.

We introduce TAA as a synonym of LowerLeftUnitTriangle.
The subset UpperUnitTriangle of [ I, I is defined by:

(Def. 11) For every set = holds = € UpperUnitTriangle iff there exist points a, b
of I such that z = {a, b) and b>1—-2-aand b>2-a — 1.

We introduce IBB as a synonym of UpperUnitTriangle.
The subset LowerRightUnitTriangle of [ I, 1] is defined as follows:

(Def. 12) For every set = holds x € LowerRightUnitTriangle iff there exist points
a, b of I such that x = (a, b) and b < 2-a — 1.

We introduce ICC as a synonym of LowerRightUnitTriangle.
The following propositions are true:
(61) TAA = {p;p ranges over points of [ I, I]: po <1—2-p1}.
(62) IBB = {p;p ranges over points of [ I, I]: pg > 1—2-p1 A pa > 2-p1 —1}.
(63) ICC = {p;p ranges over points of [ I, I]: po < 2-p; — 1}.
One can check the following observations:

x TAA is closed and non empty,
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x IBB is closed and non empty, and
* ICC is closed and non empty.

Next we state a number of propositions:

64) TAAUIBBUICC = []0,1], [0,1]].

65) TAANIBB = {p;p ranges over points of [I, I]: pa =1—2-p1}.
66) ICCNIBB = {p;p ranges over points of [I, I]: po =2 -p; — 1}.
67) For every point z of [ I, T] such that x € TAA holds z1 <

(@)
o
D[ po|—=

For every point z of [ I, I] such that x € ICC holds z1 >
For every point z of I holds (0, z) € TAA.
For every set s such that (0, s) € IBB holds s = 1.

D
N=)

AN AN N N N N N N N N N N N N N N
[\ )
N N N T N N N N N S N N N

71) For every set s such that (s, 1) € ICC holds s = 1.
(0, 1) € IBB.
73) For every point z of I holds (x, 1) € IBB.
74) (3, 0) € ICC and (1, 1) € ICC.
75) (i, 0) € IBB.
76) For every point z of I holds (1, z) € ICC.
77) For every point z of I such that z >  holds (z, 0) € ICC.
78) For every point z of I such that = < § holds (z, 0) € TAA.
79) For every point z of I such that z < 3 holds (z, 0) ¢ IBB and (z,

0) ¢ ICC.
(80) IAANICC = {(}, 0)}.

11. PROPERTIES OF A HOMOTOPY

We use the following convention: X denotes a non empty arcwise connected
topological space and aq, b1, ¢1, di denote points of X.
One can prove the following propositions:

(81) Let P be a path from a to b, @ be a path from b to ¢, and R be a path
from ¢ to d. Suppose a, b are connected and b, ¢ are connected and ¢, d
are connected. Then (P + Q) + R, P + (Q + R) are homotopic.

(82) Let P be a path from a; to b1, @ be a path from b; to ¢1, and R be a
path from ¢; to dy. Then (P 4+ Q) + R, P+ (Q + R) are homotopic.

(83) Let Py, P, be paths from a to b and @1, Q2 be paths from b to ¢. Suppose
a, b are connected and b, ¢ are connected and P;, P> are homotopic and
@1, Q2 are homotopic. Then P; + @1, P> + Q2 are homotopic.

(84) Let Pi, Py be paths from a; to by and @1, Q2 be paths from b; to c;.
Suppose P, P> are homotopic and @1, Q2 are homotopic. Then P; 4+ Q1,
P, + Q2 are homotopic.
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(85) Let P, @ be paths from a to b. Suppose a, b are connected and P, Q) are
homotopic. Then —P, —@Q are homotopic.

(86) For all paths P, @ from a; to b; such that P, @ are homotopic holds
—P, —Q are homotopic.

(87) Let P, @, R be paths from a to b. Suppose P, @ are homotopic and @,
R are homotopic. Then P, R are homotopic.

(88) Let P be a path from a to b and @ be a constant path from b to b. If a,
b are connected, then P + (), P are homotopic.

(89) For every path P from a; to b; and for every constant path @ from b,
to b1 holds P + @, P are homotopic.

(90) Let P be a path from a to b and @ be a constant path from a to a. If a,
b are connected, then @) + P, P are homotopic.

(91) For every path P from a; to by and for every constant path @ from a;
to a1 holds @Q + P, P are homotopic.

(92) Let P be a path from a to b and @ be a constant path from a to a. If a,
b are connected, then P + —P, () are homotopic.

(93) For every path P from a; to by and for every constant path @ from a;
to a; holds P + —P, Q are homotopic.

(94) Let P be a path from b to a and @ be a constant path from a to a. If b,
a are connected, then —P + P, ) are homotopic.

(95) For every path P from b; to a; and for every constant path @ from a;
to a; holds —P + P, Q are homotopic.

(96) For all constant paths P, @ from a to a holds P, ) are homotopic.

Let T be a non empty topological space, let a, b be points of T', and let P, @
be paths from a to b. Let us assume that P, Q) are homotopic. A map from [T,
[]into T is said to be a homotopy between P and (@ if it satisfies the conditions
(Def. 13).

(Def. 13)(i) It is continuous, and
(ii)  for every point s of I holds it(s, 0) = P(s) and it(s, 1) = Q(s) and for
every point ¢ of I holds it(0, ¢) = a and it(1, t) = b.
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