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The notation and terminology used here are introduced in the following papers:

[21], [9], [25], [1], [20], [14], [24], [22], [2], [5], [27], [6], [7], [18], [11], [19], [10],

[17], [26], [8], [15], [23], [12], [4], [3], [16], and [13].

1. Preliminaries

The scheme ExFunc3CondD deals with a non empty set A, three unary

functors F , G, and H yielding sets, and three unary predicates P, Q, R, and

states that:

There exists a function f such that dom f = A and for every

element c of A holds if P[c], then f(c) = F(c) and if Q[c], then

f(c) = G(c) and if R[c], then f(c) = H(c)

provided the parameters meet the following conditions:

• For every element c of A holds if P[c], then not Q[c] and if P[c],

then not R[c] and if Q[c], then not R[c], and

• For every element c of A holds P[c] or Q[c] or R[c].

Let n be a natural number. Observe that every element of En
T
is function-like

and relation-like.

Let n be a natural number. Observe that every element of En
T
is finite

sequence-like.

We now state a number of propositions:

(1) The carrier of [: I, I :] = [: [0, 1], [0, 1] :].

1This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-

00102 and KBN grant 4 T11C 039 24.
2The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-

versity, Japan.
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(2) For every real number x such that x ¬ 1
2 holds 2 · x− 1 ¬ 1− 2 · x.

(3) For every real number x such that x ­ 1
2 holds 2 · x− 1 ­ 1− 2 · x.

(4) For all real numbers x, a, b, c, d such that a 6= b holds d−c
b−a
· (x−a)+ c =

(1− x−a
b−a

) · c + x−a
b−a
· d.

(5) For all real numbers a, b, x such that a ¬ x and x ¬ b holds x−a
b−a
∈ the

carrier of [0, 1]T.

(6) For every point x of I such that x ¬ 1
2 holds 2 · x is a point of I.

(7) For every point x of I such that x ­ 1
2 holds 2 · x− 1 is a point of I.

(8) For all points p, q of I holds p · q is a point of I.

(9) For every point x of I holds 1
2 · x is a point of I.

(10) For every point x of I such that x ­ 1
2 holds x− 1

4 is a point of I.

(12)3 idI is a path from 0I to 1I.

(13) For all points a, b, c, d of I such that a ¬ b and c ¬ d holds [: [a, b], [c, d] :]

is a compact non empty subset of [: I, I :].

2. Affine Maps

One can prove the following four propositions:

(14) Let S, T be subsets of E2
T
. Suppose S = {p; p ranges over points of E2

T
:

p2 ¬ 2 · p1 − 1} and T = {p; p ranges over points of E2
T
: p2 ¬ p1}. Then

(AffineMap(1, 0, 1
2 , 1

2))◦S = T.

(15) Let S, T be subsets of E2
T
. Suppose S = {p; p ranges over points of E2

T
:

p2 ­ 2 · p1 − 1} and T = {p; p ranges over points of E2
T
: p2 ­ p1}. Then

(AffineMap(1, 0, 1
2 , 1

2))◦S = T.

(16) Let S, T be subsets of E2
T
. Suppose S = {p; p ranges over points of E2

T
:

p2 ­ 1− 2 · p1} and T = {p; p ranges over points of E2
T
: p2 ­ −p1}. Then

(AffineMap(1, 0, 1
2 ,−1

2))◦S = T.

(17) Let S, T be subsets of E2
T
. Suppose S = {p; p ranges over points of E2

T
:

p2 ¬ 1− 2 · p1} and T = {p; p ranges over points of E2
T
: p2 ¬ −p1}. Then

(AffineMap(1, 0, 1
2 ,−1

2))◦S = T.

3. Real-Membered Structures

Let T be a 1-sorted structure. We say that T is real-membered if and only

if:

(Def. 1) The carrier of T is real-membered.

We now state the proposition

3The proposition (11) has been removed.
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(18) For every non empty 1-sorted structure T holds T is real-membered iff

every element of T is real.

Let us mention that I is real-membered.

One can verify that there exists a 1-sorted structure which is non empty

and real-membered and there exists a topological space which is non empty and

real-membered.

Let T be a real-membered 1-sorted structure. Note that every element of T

is real.

Let T be a real-membered topological structure. Note that every subspace

of T is real-membered.

Let S, T be real-membered non empty topological spaces and let p be an

element of [:S, T :]. One can check that p1 is real and p2 is real.

Let T be a non empty subspace of [: I, I :] and let x be a point of T . One can

check that x1 is real and x2 is real.

One can check that R
1 is real-membered.

4. Closed Subsets of Euclidean Topological Spaces

The following propositions are true:

(19) {p; p ranges over points of E2
T
: p2 ¬ 2 · p1 − 1} is a closed subset of E2

T
.

(20) {p; p ranges over points of E2
T
: p2 ­ 2 · p1 − 1} is a closed subset of E2

T
.

(21) {p; p ranges over points of E2
T
: p2 ¬ 1− 2 · p1} is a closed subset of E

2
T
.

(22) {p; p ranges over points of E2
T
: p2 ­ 1− 2 · p1} is a closed subset of E

2
T
.

(23) {p; p ranges over points of E2
T
: p2 ­ 1 − 2 · p1 ∧ p2 ­ 2 · p1 − 1} is a

closed subset of E2
T
.

(24) There exists a map f from [: R1, R
1 :] into E2

T
such that for all real num-

bers x, y holds f(〈〈x, y〉〉) = 〈x, y〉.

(25) {p; p ranges over points of [: R1, R
1 :]: p2 ¬ 1− 2 · p1} is a closed subset

of [: R1, R
1 :].

(26) {p; p ranges over points of [: R1, R
1 :]: p2 ¬ 2 · p1 − 1} is a closed subset

of [: R1, R
1 :].

(27) {p; p ranges over points of [: R1, R
1 :]: p2 ­ 1− 2 · p1 ∧ p2 ­ 2 · p1 − 1}

is a closed subset of [: R1, R
1 :].

(28) {p; p ranges over points of [: I, I :]: p2 ¬ 1− 2 · p1} is a closed non empty

subset of [: I, I :].

(29) {p; p ranges over points of [: I, I :]: p2 ­ 1− 2 · p1 ∧ p2 ­ 2 · p1 − 1} is a

closed non empty subset of [: I, I :].

(30) {p; p ranges over points of [: I, I :]: p2 ¬ 2 · p1 − 1} is a closed non empty

subset of [: I, I :].
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(31) Let S, T be non empty topological spaces and p be a point of [:S, T :].

Then p1 is a point of S and p2 is a point of T .

(32) For all subsets A, B of [: I, I :] such that A = [: [0, 1
2 ], [0, 1] :] and B =

[: [12 , 1], [0, 1] :] holds Ω[: I, I :]↾A ∪ Ω[: I, I :]↾B = Ω[: I, I :].

(33) For all subsets A, B of [: I, I :] such that A = [: [0, 1
2 ], [0, 1] :] and B =

[: [12 , 1], [0, 1] :] holds Ω[: I, I :]↾A ∩ Ω[: I, I :]↾B = [: {1
2}, [0, 1] :].

5. Compact Spaces

Let T be a topological structure. Note that ∅T is compact.

Let T be a topological structure. Observe that there exists a subset of T

which is empty and compact.

Next we state three propositions:

(34) For every topological structure T holds ∅ is an empty compact subset of

T .

(35) Let T be a topological structure and a, b be real numbers. If a > b, then

[a, b] is an empty compact subset of T .

(36) For all points a, b, c, d of I holds [: [a, b], [c, d] :] is a compact subset of

[: I, I :].

6. Continuous Maps

Let a, b, c, d be real numbers. The functor L01(a, b, c, d) yielding a map from

[a, b]T into [c, d]T is defined by:

(Def. 2) L01(a, b, c, d) = L01(c[c,d]T , d[c,d]T) · P01(a, b, 0[0,1]T , 1[0,1]T).

The following propositions are true:

(37) For all real numbers a, b, c, d such that a < b and c < d holds

(L01(a, b, c, d))(a) = c and (L01(a, b, c, d))(b) = d.

(38) For all real numbers a, b, c, d such that a < b and c ¬ d holds

L01(a, b, c, d) is a continuous map from [a, b]T into [c, d]T.

(39) Let a, b, c, d be real numbers. Suppose a < b and c ¬ d. Let x be a real

number. If a ¬ x and x ¬ b, then (L01(a, b, c, d))(x) = d−c
b−a
· (x− a) + c.

(40) Let f1, f2 be maps from [: I, I :] into I. Suppose f1 is continuous and f2

is continuous and for every point p of [: I, I :] holds f1(p) · f2(p) is a point

of I. Then there exists a map g from [: I, I :] into I such that

(i) for every point p of [: I, I :] and for all real numbers r1, r2 such that

f1(p) = r1 and f2(p) = r2 holds g(p) = r1 · r2, and

(ii) g is continuous.
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(41) Let f1, f2 be maps from [: I, I :] into I. Suppose f1 is continuous and f2

is continuous and for every point p of [: I, I :] holds f1(p) + f2(p) is a point

of I. Then there exists a map g from [: I, I :] into I such that

(i) for every point p of [: I, I :] and for all real numbers r1, r2 such that

f1(p) = r1 and f2(p) = r2 holds g(p) = r1 + r2, and

(ii) g is continuous.

(42) Let f1, f2 be maps from [: I, I :] into I. Suppose f1 is continuous and f2

is continuous and for every point p of [: I, I :] holds f1(p)− f2(p) is a point

of I. Then there exists a map g from [: I, I :] into I such that

(i) for every point p of [: I, I :] and for all real numbers r1, r2 such that

f1(p) = r1 and f2(p) = r2 holds g(p) = r1 − r2, and

(ii) g is continuous.

7. Paths

We follow the rules: T denotes a non empty topological space and a, b, c, d

denote points of T .

The following three propositions are true:

(43) For every path P from a to b such that P is continuous holds P ·

L01(1[0,1]T , 0[0,1]T) is a continuous map from I into T .

(44) Let X be a non empty topological structure, a, b be points of X,

and P be a path from a to b. If P (0) = a and P (1) = b, then

(P · L01(1[0,1]T , 0[0,1]T))(0) = b and (P · L01(1[0,1]T , 0[0,1]T))(1) = a.

(45) Let P be a path from a to b. Suppose P is continuous and P (0) = a and

P (1) = b. Then −P is continuous and (−P )(0) = b and (−P )(1) = a.

Let T be a topological structure and let a, b be points of T . We say that a,

b are connected if and only if:

(Def. 3) There exists a map f from I into T such that f is continuous and f(0) = a

and f(1) = b.

Let T be a non empty topological space and let a, b be points of T . Let us

notice that the predicate a, b are connected is reflexive and symmetric.

We now state several propositions:

(46) If a, b are connected and b, c are connected, then a, c are connected.

(47) For every arcwise connected topological structure T and for all points a,

b of T holds a, b are connected.

(48) For every path A from a to a holds A, A are homotopic.

(49) If a, b are connected, then for every path A from a to b holds A, A are

homotopic.

(50) If a, b are connected, then for every path A from a to b holds A = −−A.
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(51) Let T be a non empty arcwise connected topological space, a, b be points

of T , and A be a path from a to b. Then A = −−A.

(52) If a, b are connected, then every path from a to b is continuous.

8. Reexamination of a Path Concept

Let T be a non empty arcwise connected topological space, let a, b, c be

points of T , let P be a path from a to b, and let Q be a path from b to c. Then

P + Q can be characterized by the condition:

(Def. 4) For every point t of I holds if t ¬ 1
2 , then (P + Q)(t) = P (2 · t) and if

1
2 ¬ t, then (P + Q)(t) = Q(2 · t− 1).

Let T be a non empty arcwise connected topological space, let a, b be points

of T , and let P be a path from a to b. Then −P can be characterized by the

condition:

(Def. 5) For every point t of I holds (−P )(t) = P (1− t).

9. Reparametrizations

Let T be a non empty topological space, let a, b be points of T , let P be a

path from a to b, and let f be a continuous map from I into I. Let us assume

that f(0) = 0 and f(1) = 1 and a, b are connected. The functor RePar(P, f)

yields a path from a to b and is defined by:

(Def. 6) RePar(P, f) = P · f.

Next we state two propositions:

(53) Let P be a path from a to b and f be a continuous map from I into I.

Suppose f(0) = 0 and f(1) = 1 and a, b are connected. Then RePar(P, f),

P are homotopic.

(54) Let T be a non empty arcwise connected topological space, a, b be points

of T , P be a path from a to b, and f be a continuous map from I into I.

If f(0) = 0 and f(1) = 1, then RePar(P, f), P are homotopic.

The map 1stRP from I into I is defined as follows:

(Def. 7) For every point t of I holds if t ¬ 1
2 , then (1stRP)(t) = 2 · t and if t > 1

2 ,

then (1stRP)(t) = 1.

Let us note that 1stRP is continuous.

One can prove the following proposition

(55) (1stRP)(0) = 0 and (1stRP)(1) = 1.

The map 2ndRP from I into I is defined by:

(Def. 8) For every point t of I holds if t ¬ 1
2 , then (2ndRP)(t) = 0 and if t > 1

2 ,

then (2ndRP)(t) = 2 · t− 1.
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One can verify that 2ndRP is continuous.

One can prove the following proposition

(56) (2ndRP)(0) = 0 and (2ndRP)(1) = 1.

The map 3rdRP from I into I is defined by the condition (Def. 9).

(Def. 9) Let x be a point of I. Then

(i) if x ¬ 1
2 , then (3rdRP)(x) = 1

2 · x,

(ii) if x > 1
2 and x ¬ 3

4 , then (3rdRP)(x) = x− 1
4 , and

(iii) if x > 3
4 , then (3rdRP)(x) = 2 · x− 1.

Let us note that 3rdRP is continuous.

We now state four propositions:

(57) (3rdRP)(0) = 0 and (3rdRP)(1) = 1.

(58) Let P be a path from a to b and Q be a constant path from b to b. If a,

b are connected, then RePar(P, 1stRP) = P + Q.

(59) Let P be a path from a to b and Q be a constant path from a to a. If a,

b are connected, then RePar(P, 2ndRP) = Q + P.

(60) Let P be a path from a to b, Q be a path from b to c, and R be a path

from c to d. Suppose a, b are connected and b, c are connected and c, d

are connected. Then RePar(P + Q + R, 3rdRP) = P + (Q + R).

10. Decomposition of the Unit Square

The subset LowerLeftUnitTriangle of [: I, I :] is defined as follows:

(Def. 10) For every set x holds x ∈ LowerLeftUnitTriangle iff there exist points a,

b of I such that x = 〈〈a, b〉〉 and b ¬ 1− 2 · a.

We introduce IAA as a synonym of LowerLeftUnitTriangle.

The subset UpperUnitTriangle of [: I, I :] is defined by:

(Def. 11) For every set x holds x ∈ UpperUnitTriangle iff there exist points a, b

of I such that x = 〈〈a, b〉〉 and b ­ 1− 2 · a and b ­ 2 · a− 1.

We introduce IBB as a synonym of UpperUnitTriangle.

The subset LowerRightUnitTriangle of [: I, I :] is defined as follows:

(Def. 12) For every set x holds x ∈ LowerRightUnitTriangle iff there exist points

a, b of I such that x = 〈〈a, b〉〉 and b ¬ 2 · a− 1.

We introduce ICC as a synonym of LowerRightUnitTriangle.

The following propositions are true:

(61) IAA = {p; p ranges over points of [: I, I :]: p2 ¬ 1− 2 · p1}.

(62) IBB = {p; p ranges over points of [: I, I :]: p2 ­ 1−2 ·p1 ∧ p2 ­ 2 ·p1−1}.

(63) ICC = {p; p ranges over points of [: I, I :]: p2 ¬ 2 · p1 − 1}.

One can check the following observations:

∗ IAA is closed and non empty,



258 adam grabowski and artur korniłowicz

∗ IBB is closed and non empty, and

∗ ICC is closed and non empty.

Next we state a number of propositions:

(64) IAA∪ IBB∪ ICC = [: [0, 1], [0, 1] :].

(65) IAA∩ IBB = {p; p ranges over points of [: I, I :]: p2 = 1− 2 · p1}.

(66) ICC∩ IBB = {p; p ranges over points of [: I, I :]: p2 = 2 · p1 − 1}.

(67) For every point x of [: I, I :] such that x ∈ IAA holds x1 ¬
1
2 .

(68) For every point x of [: I, I :] such that x ∈ ICC holds x1 ­
1
2 .

(69) For every point x of I holds 〈〈0, x〉〉 ∈ IAA .

(70) For every set s such that 〈〈0, s〉〉 ∈ IBB holds s = 1.

(71) For every set s such that 〈〈s, 1〉〉 ∈ ICC holds s = 1.

(72) 〈〈0, 1〉〉 ∈ IBB .

(73) For every point x of I holds 〈〈x, 1〉〉 ∈ IBB .

(74) 〈〈12 , 0〉〉 ∈ ICC and 〈〈1, 1〉〉 ∈ ICC .

(75) 〈〈12 , 0〉〉 ∈ IBB .

(76) For every point x of I holds 〈〈1, x〉〉 ∈ ICC .

(77) For every point x of I such that x ­ 1
2 holds 〈〈x, 0〉〉 ∈ ICC .

(78) For every point x of I such that x ¬ 1
2 holds 〈〈x, 0〉〉 ∈ IAA .

(79) For every point x of I such that x < 1
2 holds 〈〈x, 0〉〉 /∈ IBB and 〈〈x,

0〉〉 /∈ ICC .

(80) IAA∩ ICC = {〈〈12 , 0〉〉}.

11. Properties of a Homotopy

We use the following convention: X denotes a non empty arcwise connected

topological space and a1, b1, c1, d1 denote points of X.

One can prove the following propositions:

(81) Let P be a path from a to b, Q be a path from b to c, and R be a path

from c to d. Suppose a, b are connected and b, c are connected and c, d

are connected. Then (P + Q) + R, P + (Q + R) are homotopic.

(82) Let P be a path from a1 to b1, Q be a path from b1 to c1, and R be a

path from c1 to d1. Then (P + Q) + R, P + (Q + R) are homotopic.

(83) Let P1, P2 be paths from a to b and Q1, Q2 be paths from b to c. Suppose

a, b are connected and b, c are connected and P1, P2 are homotopic and

Q1, Q2 are homotopic. Then P1 + Q1, P2 + Q2 are homotopic.

(84) Let P1, P2 be paths from a1 to b1 and Q1, Q2 be paths from b1 to c1.

Suppose P1, P2 are homotopic and Q1, Q2 are homotopic. Then P1 + Q1,

P2 + Q2 are homotopic.
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(85) Let P , Q be paths from a to b. Suppose a, b are connected and P , Q are

homotopic. Then −P , −Q are homotopic.

(86) For all paths P , Q from a1 to b1 such that P , Q are homotopic holds

−P , −Q are homotopic.

(87) Let P , Q, R be paths from a to b. Suppose P , Q are homotopic and Q,

R are homotopic. Then P , R are homotopic.

(88) Let P be a path from a to b and Q be a constant path from b to b. If a,

b are connected, then P + Q, P are homotopic.

(89) For every path P from a1 to b1 and for every constant path Q from b1

to b1 holds P + Q, P are homotopic.

(90) Let P be a path from a to b and Q be a constant path from a to a. If a,

b are connected, then Q + P, P are homotopic.

(91) For every path P from a1 to b1 and for every constant path Q from a1

to a1 holds Q + P, P are homotopic.

(92) Let P be a path from a to b and Q be a constant path from a to a. If a,

b are connected, then P +−P , Q are homotopic.

(93) For every path P from a1 to b1 and for every constant path Q from a1

to a1 holds P +−P , Q are homotopic.

(94) Let P be a path from b to a and Q be a constant path from a to a. If b,

a are connected, then −P + P, Q are homotopic.

(95) For every path P from b1 to a1 and for every constant path Q from a1

to a1 holds −P + P, Q are homotopic.

(96) For all constant paths P , Q from a to a holds P , Q are homotopic.

Let T be a non empty topological space, let a, b be points of T , and let P , Q

be paths from a to b. Let us assume that P , Q are homotopic. A map from [: I,

I :] into T is said to be a homotopy between P and Q if it satisfies the conditions

(Def. 13).

(Def. 13)(i) It is continuous, and

(ii) for every point s of I holds it(s, 0) = P (s) and it(s, 1) = Q(s) and for

every point t of I holds it(0, t) = a and it(1, t) = b.
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