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Summary. This article is an extension of [16].

MML Identifier: CLOPBAN2.

The terminology and notation used here are introduced in the following articles:

[18], [8], [20], [5], [7], [6], [3], [1], [17], [13], [19], [14], [2], [4], [15], [10], [11], [9],

and [12].

One can prove the following propositions:

(1) Let X, Y , Z be complex linear spaces, f be a linear operator from X

into Y , and g be a linear operator from Y into Z. Then g · f is a linear

operator from X into Z.

(2) Let X, Y , Z be complex normed spaces, f be a bounded linear operator

from X into Y , and g be a bounded linear operator from Y into Z. Then

(i) g · f is a bounded linear operator from X into Z, and

(ii) for every vector x of X holds ‖(g ·f)(x)‖ ¬ (BdLinOpsNorm(Y, Z))(g) ·

(BdLinOpsNorm(X,Y ))(f) · ‖x‖ and (BdLinOpsNorm(X, Z))(g · f) ¬

(BdLinOpsNorm(Y, Z))(g) · (BdLinOpsNorm(X, Y ))(f).

Let X be a complex normed space and let f , g be bounded linear operators

from X into X. Then g · f is a bounded linear operator from X into X.

Let X be a complex normed space and let f , g be elements of

BdLinOps(X, X). The functor f + g yields an element of BdLinOps(X, X) and

is defined by:

(Def. 1) f + g = (Add (BdLinOps(X,X),CVSpLinOps(X, X)))(f, g).

Let X be a complex normed space and let f , g be elements of

BdLinOps(X, X). The functor g · f yields an element of BdLinOps(X, X) and

is defined as follows:
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(Def. 2) g · f = modetrans(g, X,X) ·modetrans(f, X, X).

Let X be a complex normed space, let f be an element of BdLinOps(X,X),

and let z be a complex number. The functor z · f yields an element of

BdLinOps(X, X) and is defined by:

(Def. 3) z · f = (Mult (BdLinOps(X, X),CVSpLinOps(X,X)))(z, f).

Let X be a complex normed space. The functor FuncMult(X) yields a binary

operation on BdLinOps(X, X) and is defined as follows:

(Def. 4) For all elements f , g of BdLinOps(X, X) holds (FuncMult(X))(f, g) =

f · g.

The following proposition is true

(3) For every complex normed space X holds idthe carrier of X is a bounded

linear operator from X into X.

Let X be a complex normed space. The functor FuncUnit(X) yielding an

element of BdLinOps(X, X) is defined by:

(Def. 5) FuncUnit(X) = idthe carrier of X .

The following propositions are true:

(4) Let X be a complex normed space and f , g, h be bounded linear opera-

tors from X into X. Then h = f · g if and only if for every vector x of X

holds h(x) = f(g(x)).

(5) For every complex normed space X and for all bounded linear operators

f , g, h from X into X holds f · (g · h) = (f · g) · h.

(6) Let X be a complex normed space and f be a bounded linear operator

from X into X. Then f · idthe carrier of X = f and idthe carrier of X · f = f.

(7) For every complex normed space X and for all elements f , g, h of

BdLinOps(X,X) holds f · (g · h) = (f · g) · h.

(8) For every complex normed space X and for every element f of

BdLinOps(X,X) holds f · FuncUnit(X) = f and FuncUnit(X) · f = f.

(9) For every complex normed space X and for all elements f , g, h of

BdLinOps(X,X) holds f · (g + h) = f · g + f · h.

(10) For every complex normed space X and for all elements f , g, h of

BdLinOps(X,X) holds (g + h) · f = g · f + h · f.

(11) Let X be a complex normed space, f , g be elements of BdLinOps(X,X),

and a, b be complex numbers. Then (a · b) · (f · g) = a · f · (b · g).

(12) Let X be a complex normed space, f , g be elements of BdLinOps(X,X),

and a be a complex number. Then a · (f · g) = (a · f) · g.

Let X be a complex normed space.

The functor RingOfBoundedLinearOperators(X) yields a double loop struc-

ture and is defined by:

(Def. 6) RingOfBoundedLinearOperators(X) = 〈BdLinOps(X,X),
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Add (BdLinOps(X, X),CVSpLinOps(X, X)),FuncMult(X),FuncUnit(X),

Zero (BdLinOps(X,X),CVSpLinOps(X, X))〉.

Let X be a complex normed space.

Note that RingOfBoundedLinearOperators(X) is non empty and strict.

Next we state two propositions:

(13) Let X be a complex normed space and x, y, z be elements of

RingOfBoundedLinearOperators(X). Then x + y = y + x and (x +

y) + z = x + (y + z) and x + 0RingOfBoundedLinearOperators(X) = x and

there exists an element t of RingOfBoundedLinearOperators(X) such that

x + t = 0RingOfBoundedLinearOperators(X) and (x · y) · z = x · (y · z) and

x · 1RingOfBoundedLinearOperators(X) = x and 1RingOfBoundedLinearOperators(X) ·

x = x and x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x.

(14) For every complex normed space X holds

RingOfBoundedLinearOperators(X) is a ring.

Let X be a complex normed space.

Observe that RingOfBoundedLinearOperators(X) is Abelian, add-associative,

right zeroed, right complementable, associative, left unital, right unital, and di-

stributive.

Let X be a complex normed space. The functor CAlgBdLinOps(X) yields a

complex algebra structure and is defined by:

(Def. 7) CAlgBdLinOps(X) = 〈BdLinOps(X, X),FuncMult(X),Add (BdLinOps

(X, X),CVSpLinOps(X,X)),Mult (BdLinOps(X,X),CVSpLinOps(X, X)),

FuncUnit(X),Zero (BdLinOps(X, X),CVSpLinOps(X, X))〉.

Let X be a complex normed space. Note that CAlgBdLinOps(X) is non

empty and strict.

The following proposition is true

(15) Let X be a complex normed space, x, y, z be elements of

CAlgBdLinOps(X), and a, b be complex numbers. Then x+y = y+x and

(x + y) + z = x + (y + z) and x + 0CAlgBdLinOps(X) = x and there exists

an element t of CAlgBdLinOps(X) such that x+ t = 0CAlgBdLinOps(X) and

(x·y)·z = x·(y ·z) and x·1CAlgBdLinOps(X) = x and 1CAlgBdLinOps(X) ·x = x

and x·(y+z) = x·y+x·z and (y+z)·x = y ·x+z ·x and a·(x·y) = (a·x)·y

and a ·(x+y) = a ·x+a ·y and (a+b) ·x = a ·x+b ·x and (a ·b) ·x = a ·(b ·x)

and (a · b) · (x · y) = a · x · (b · y).

A complex BL algebra is an Abelian add-associative right zeroed right com-

plementable associative complex algebra-like non empty complex algebra struc-

ture.

We now state the proposition

(16) For every complex normed space X holds CAlgBdLinOps(X) is a com-

plex BL algebra.
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Let us note that Complex-l1-Space is complete.

Let us mention that Complex-l1-Space is non trivial.

Let us note that there exists a complex Banach space which is non trivial.

The following two propositions are true:

(17) For every non trivial complex normed space X there exists a vector w

of X such that ‖w‖ = 1.

(18) For every non trivial complex normed space X holds

(BdLinOpsNorm(X, X))(idthe carrier of X) = 1.

We introduce normed complex algebra structures which are extensions of

complex algebra structure and complex normed space structure and are systems

〈 a carrier, a multiplication, an addition, an external multiplication, a unity,

a zero, a norm 〉,

where the carrier is a set, the multiplication and the addition are binary ope-

rations on the carrier, the external multiplication is a function from [: C, the

carrier :] into the carrier, the unity and the zero are elements of the carrier, and

the norm is a function from the carrier into R.

One can check that there exists a normed complex algebra structure which

is non empty.

Let X be a complex normed space. The functor CNAlgBdLinOps(X) yields

a normed complex algebra structure and is defined by:

(Def. 8) CNAlgBdLinOps(X) = 〈BdLinOps(X, X),FuncMult(X),

Add (BdLinOps(X, X),CVSpLinOps(X,X)),Mult (BdLinOps(X,X),

CVSpLinOps(X,X)),FuncUnit(X),Zero (BdLinOps(X, X),

CVSpLinOps(X,X)),BdLinOpsNorm(X, X)〉.

Let X be a complex normed space. Note that CNAlgBdLinOps(X) is non

empty and strict.

The following propositions are true:

(19) Let X be a complex normed space, x, y, z be elements of

CNAlgBdLinOps(X), and a, b be complex numbers. Then x+y = y+x and

(x+y)+z = x+(y+z) and x+0CNAlgBdLinOps(X) = x and there exists an

element t of CNAlgBdLinOps(X) such that x+ t = 0CNAlgBdLinOps(X) and

(x·y)·z = x·(y·z) and x·1CNAlgBdLinOps(X) = x and 1CNAlgBdLinOps(X) ·x =

x and x·(y+z) = x·y+x·z and (y+z)·x = y·x+z ·x and a·(x·y) = (a·x)·y

and (a·b)·(x·y) = a·x·(b·y) and a·(x+y) = a·x+a·y and (a+b)·x = a·x+b·x

and (a · b) · x = a · (b · x) and 1C · x = x.

(20) Let X be a complex normed space. Then CNAlgBdLinOps(X) is com-

plex normed space-like, Abelian, add-associative, right zeroed, right com-

plementable, associative, complex algebra-like, and complex linear space-

like.

Let us observe that there exists a non empty normed complex algebra struc-

ture which is complex normed space-like, Abelian, add-associative, right zeroed,
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right complementable, associative, complex algebra-like, complex linear space-

like, and strict.

A normed complex algebra is a complex normed space-like Abelian add-

associative right zeroed right complementable associative complex algebra-like

complex linear space-like non empty normed complex algebra structure.

Let X be a complex normed space. One can check that CNAlgBdLinOps(X)

is complex normed space-like, Abelian, add-associative, right zeroed, right com-

plementable, associative, complex algebra-like, and complex linear space-like.

Let X be a non empty normed complex algebra structure. We say that X is

Banach Algebra-like1 if and only if:

(Def. 9) For all elements x, y of X holds ‖x · y‖ ¬ ‖x‖ · ‖y‖.

We say that X is Banach Algebra-like2 if and only if:

(Def. 10) ‖1X‖ = 1.

We say that X is Banach Algebra-like3 if and only if:

(Def. 11) For every complex number a and for all elements x, y of X holds a · (x ·

y) = x · (a · y).

Let X be a normed complex algebra. We say that X is Banach Algebra-like

if and only if the condition (Def. 12) is satisfied.

(Def. 12) X is Banach Algebra-like1, Banach Algebra-like2, Banach Algebra-like3,

left unital, left distributive, and complete.

One can verify that every normed complex algebra which is Banach Algebra-

like is also Banach Algebra-like1, Banach Algebra-like2, Banach Algebra-like3,

left distributive, left unital, and complete and every normed complex algebra

which is Banach Algebra-like1, Banach Algebra-like2, Banach Algebra-like3, left

distributive, left unital, and complete is also Banach Algebra-like.

Let X be a non trivial complex Banach space. One can verify that

CNAlgBdLinOps(X) is Banach Algebra-like.

One can check that there exists a normed complex algebra which is Banach

Algebra-like.

A complex Banach algebra is a Banach Algebra-like normed complex algebra.
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