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Summary. In this paper we define a discrete subset family of a topological
space and basis sigma locally finite and sigma discrete. First, we prove an au-

xiliary fact for discrete family and sigma locally finite and sigma discrete basis.

We also show the necessary condition for the Nagata Smirnov theorem: every

metrizable space is T3 and has a sigma locally finite basis. Also, we define a suf-

ficient condition for a T3 topological space to be T4. We introduce the concept of

pseudo metric.

MML Identifier: NAGATA 1.

The terminology and notation used in this paper have been introduced in the

following articles: [9], [27], [28], [32], [20], [5], [12], [8], [21], [15], [2], [17], [14],

[18], [19], [6], [10], [11], [24], [23], [4], [33], [1], [3], [25], [16], [26], [7], [13], [29],

[31], [34], [30], and [22].

In this paper T , T1 denote non empty topological spaces and P1 denotes a

non empty metric structure.

Let T be a topological space and let F be a family of subsets of T . We say

that F is discrete if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let p be a point of T . Then there exists an open subset O of T such that

p ∈ O and for all subsets A, B of T such that A ∈ F and B ∈ F holds if

O meets A and O meets B, then A = B.

Let T be a non empty topological space. Note that there exists a family of

subsets of T which is discrete.

Let us consider T . One can check that there exists a family of subsets of T

which is empty and discrete.
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For simplicity, we adopt the following convention: F , G, H denote families

of subsets of T , A, B denote subsets of T , O, U denote open subsets of T , p

denotes a point of T , and x, X denote sets.

The following propositions are true:

(1) For every F such that there exists A such that F = {A} holds F is

discrete.

(2) For all F , G such that F ⊆ G and G is discrete holds F is discrete.

(3) For all F , G such that F is discrete holds F ∩G is discrete.

(4) For all F , G such that F is discrete holds F \G is discrete.

(5) For all F , G, H such that F is discrete and G is discrete and F ⋓G = H

holds H is discrete.

(6) For all F , A, B such that F is discrete and A ∈ F and B ∈ F holds

A = B or A misses B.

(7) If F is discrete, then for every p there exists O such that p ∈ O and

{O} ⋓ F \ {∅} is trivial.

(8) F is discrete if and only if the following conditions are satisfied:

(i) for every p there exists O such that p ∈ O and {O}⋓ F \ {∅} is trivial,

and

(ii) for all A, B such that A ∈ F and B ∈ F holds A = B or A misses B.

Let us consider T and let F be a discrete family of subsets of T . Observe

that clf F is discrete.

Next we state three propositions:

(9) For every F such that F is discrete and for all A, B such that A ∈ F

and B ∈ F holds A ∩B = A ∩B.

(10) For every F such that F is discrete holds
⋃

F =
⋃
clf F.

(11) For every F such that F is discrete holds F is locally finite.

Let T be a topological space. A family sequence of T is a function from N

into 22the carrier of T

.

In the sequel U1 denotes a family sequence of T , r denotes a real number, n

denotes a natural number, and f denotes a function.

Let us consider T , U1, n. Then U1(n) is a family of subsets of T .

Let us consider T , U1. Then
⋃

U1 is a family of subsets of T .

Let T be a non empty topological space and let U1 be a family sequence of

T . We say that U1 is sigma-discrete if and only if:

(Def. 2) For every natural number n holds U1(n) is discrete.

Let T be a non empty topological space. Note that there exists a family

sequence of T which is sigma-discrete.

Let T be a non empty topological space and let U1 be a family sequence of

T . We say that U1 is sigma-locally-finite if and only if:
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(Def. 3) For every natural number n holds U1(n) is locally finite.

Let us consider T and let F be a family of subsets of T . We say that F is

sigma-discrete if and only if:

(Def. 4) There exists a sigma-discrete family sequence f of T such that F =
⋃

f.

Let X be a set. We introduce X is uncountable as an antonym of X is

countable.

One can verify that every set which is uncountable is also non empty.

Let T be a non empty topological space. One can check that there exists a

family sequence of T which is sigma-locally-finite.

Next we state two propositions:

(12) For every U1 such that U1 is sigma-discrete holds U1 is sigma-locally-

finite.

(13) Let A be an uncountable set. Then there exists a family F of subsets of

{[:A, A :]}top such that F is locally finite and F is not sigma-discrete.

Let T be a non empty topological space and let U1 be a family sequence of

T . We say that U1 is Basis-sigma-discrete if and only if:

(Def. 5) U1 is sigma-discrete and
⋃

U1 is a basis of T .

Let T be a non empty topological space and let U1 be a family sequence of

T . We say that U1 is Basis-sigma-locally finite if and only if:

(Def. 6) U1 is sigma-locally-finite and
⋃

U1 is a basis of T .

The following propositions are true:

(14) Let r be a real number. Suppose P1 is a non empty metric space. Let x

be an element of P1. Then Ω(P1) \ Ball(x, r) ∈ the open set family of P1.

(15) For every T such that T is metrizable holds T is a T3 space and a T1

space.

(16) For every T such that T is metrizable holds there exists a family sequence

of T which is Basis-sigma-locally finite.

(17) For every function U from N into 2the carrier of T such that for every n

holds U(n) is open holds
⋃

U is open.

(18) Suppose that for all A, U such that A is closed and U is open and A ⊆ U

there exists a function W from N into 2the carrier of T such that A ⊆
⋃

W

and
⋃

W ⊆ U and for every n holds W (n) ⊆ U and W (n) is open. Then

T is a T4 space.

(19) Let given T . Suppose T is a T3 space. Let B1 be a family sequence of T .

Suppose
⋃

B1 is a basis of T . Let U be a subset of T and p be a point of

T . Suppose U is open and p ∈ U. Then there exists a subset O of T such

that p ∈ O and O ⊆ U and O ∈
⋃

B1.

(20) For every T such that T is a T3 space and a T1 space and there exists

a family sequence of T which is Basis-sigma-locally finite holds T is a T4
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space.

Let us consider T and let F , G be real maps of T . The functor F +G yielding

a real map of T is defined as follows:

(Def. 7) For every element t of T holds (F + G)(t) = F (t) + G(t).

Next we state four propositions:

(21) Let f be a real map of T . Suppose f is continuous. Let F be a real map

of [:T, T :]. Suppose that for all elements x, y of the carrier of T holds

F (〈〈x, y〉〉) = |f(x)− f(y)|. Then F is continuous.

(22) For all real maps F , G of T such that F is continuous and G is continuous

holds F + G is continuous.

(23) Let A1 be a binary operation on R
the carrier of T . Suppose that for all real

maps f1, f2 of T holds A1(f1, f2) = f1 + f2. Then A1 is commutative and

associative and has a unity.

(24) Let A1 be a binary operation on R
the carrier of T . Suppose that for all

real maps f1, f2 of T holds A1(f1, f2) = f1 + f2. Let m′1 be an element of

R
the carrier of T . If m′1 is a unity w.r.t. A1, then m′1 is continuous.

Let T , T1 be non empty topological spaces, let S1 be a function from the

carrier of T into 2the carrier of T , and let F1 be a function from the carrier of T

into (the carrier of T1)
the carrier of T . The functor F1 ≈ S1 yields a map from T

into T1 and is defined by:

(Def. 8) For every point p of T holds (F1 ≈ S1)(p) = F1(p)(p).

The following propositions are true:

(25) Let A1 be a binary operation on R
the carrier of T . Suppose that for all real

maps f1, f2 of T holds A1(f1, f2) = f1 + f2. Let F be a finite sequence

of elements of R
the carrier of T . Suppose that for every n such that 0 6= n

and n ¬ lenF holds F (n) is a continuous real map of T . Then A1 ⊙ F is

a continuous real map of T .

(26) Let F be a function from the carrier of T into (the carrier of

T1)
the carrier of T . Suppose that for every point p of T holds F (p) is a con-

tinuous map from T into T1. Let S be a function from the carrier of T

into 2the carrier of T . Suppose that for every point p of T holds p ∈ S(p)

and S(p) is open and for all points p, q of T such that p ∈ S(q) holds

F (p)(p) = F (q)(p). Then F ≈ S is continuous.

In the sequel m denotes a function from [: the carrier of T , the carrier of T :]

into R.

Let us consider X, r and let f be a function from X into R. The functor

min(r, f) yielding a function from X into R is defined as follows:

(Def. 9) For every x such that x ∈ X holds (min(r, f))(x) = min(r, f(x)).

One can prove the following proposition
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(27) For every real number r and for every real map f of T such that f is

continuous holds min(r, f) is continuous.

Let X be a set and let f be a function from [:X, X :] into R. We say that f

is a pseudometric of if and only if:

(Def. 10) f is Reflexive, symmetric, and triangle.

One can prove the following propositions:

(28) Let f be a function from [:X, X :] into R. Then f is a pseudometric of

if and only if for all elements a, b, c of X holds f(a, a) = 0 and f(a,

c) ¬ f(a, b) + f(c, b).

(29) For every function f from [:X, X :] into R such that f is a pseudometric

of and for all elements x, y of X holds f(x, y) ­ 0.

(30) For all r, m such that r > 0 and m is a pseudometric of holds min(r,m)

is a pseudometric of.

(31) For all r, m such that r > 0 and m is a metric of the carrier of T holds

min(r,m) is a metric of the carrier of T .
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