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Summary. In this paper we define a discrete subset family of a topological
space and basis sigma locally finite and sigma discrete. First, we prove an au-
xiliary fact for discrete family and sigma locally finite and sigma discrete basis.
We also show the necessary condition for the Nagata Smirnov theorem: every
metrizable space is T35 and has a sigma locally finite basis. Also, we define a suf-
ficient condition for a T3 topological space to be T4. We introduce the concept of
pseudo metric.

MML Identifier: NAGATA_1.

The terminology and notation used in this paper have been introduced in the
following articles: [9], [27], [28], [32], [20], [5], [12], [8], [21], [15], [2], [17], [14],
18], [19], [6], [10], [11], [24], [23], [4], [33], [1], (3], [25], [16], [26], [7], [13], [29],
[31], [34], [30], and [22].

In this paper T', T denote non empty topological spaces and P; denotes a
non empty metric structure.

Let T be a topological space and let F' be a family of subsets of T'. We say
that F' is discrete if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let p be a point of T'. Then there exists an open subset O of T" such that
p € O and for all subsets A, B of T such that A € F and B € F holds if
O meets A and O meets B, then A = B.

Let T be a non empty topological space. Note that there exists a family of
subsets of T which is discrete.

Let us consider T'. One can check that there exists a family of subsets of T'
which is empty and discrete.
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For simplicity, we adopt the following convention: F'; G, H denote families
of subsets of T', A, B denote subsets of T, O, U denote open subsets of T', p
denotes a point of T', and x, X denote sets.
The following propositions are true:
(1) For every F such that there exists A such that FF = {A} holds F is
discrete.

(2) For all F, G such that FF C G and G is discrete holds F' is discrete.
(3) For all F', G such that F' is discrete holds F' N G is discrete.

(4) For all F', G such that F' is discrete holds F'\ G is discrete.

()

For all F', G, H such that F is discrete and G is discrete and FmG = H
holds H is discrete.
(6) For all F, A, B such that F is discrete and A € F and B € F holds
A = B or A misses B.
(7) If F is discrete, then for every p there exists O such that p € O and
{O}m F\ {0} is trivial.
(8) F is discrete if and only if the following conditions are satisfied:
(i)  for every p there exists O such that p € O and {O}m F \ {0} is trivial,
and
(ii) for all A, B such that A € F and B € F holds A = B or A misses B.

Let us consider T" and let F' be a discrete family of subsets of T'. Observe
that clf F' is discrete.
Next we state three propositions:
(9) For every F such that F is discrete and for all A, B such that A € F
and B € F holds ANB=ANB.

(10) For every F such that F is discrete holds |J F' = |Jclf F.
(11) For every F such that F is discrete holds F' is locally finite.

Let T be a topological space. A family sequence of T is a function from N
into 22the carrier of T

In the sequel U7 denotes a family sequence of T, r denotes a real number, n
denotes a natural number, and f denotes a function.

Let us consider 7', Uy, n. Then Uj(n) is a family of subsets of T'.

Let us consider T, U;. Then |JU; is a family of subsets of T'.

Let T be a non empty topological space and let U; be a family sequence of

T. We say that U; is sigma-discrete if and only if:
(Def. 2) For every natural number n holds Uj(n) is discrete.
Let T be a non empty topological space. Note that there exists a family
sequence of 1" which is sigma-discrete.
Let T be a non empty topological space and let U; be a family sequence of
T. We say that U; is sigma-locally-finite if and only if:
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(Def. 3) For every natural number n holds Uj(n) is locally finite.

Let us consider T and let F' be a family of subsets of 7. We say that F' is
sigma-discrete if and only if:
(Def. 4) There exists a sigma-discrete family sequence f of T' such that F' = f.
Let X be a set. We introduce X is uncountable as an antonym of X is
countable.
One can verify that every set which is uncountable is also non empty.
Let T be a non empty topological space. One can check that there exists a
family sequence of T" which is sigma-locally-finite.
Next we state two propositions:
(12) For every U; such that U; is sigma-discrete holds Uj is sigma-locally-
finite.
(13) Let A be an uncountable set. Then there exists a family F' of subsets of
{} A, A}top such that F is locally finite and F is not sigma-discrete.

Let T be a non empty topological space and let U; be a family sequence of
T. We say that U; is Basis-sigma-discrete if and only if:

(Def. 5) Uy is sigma-discrete and |JU; is a basis of T'.

Let T be a non empty topological space and let U; be a family sequence of
T. We say that Uy is Basis-sigma-locally finite if and only if:

(Def. 6) U is sigma-locally-finite and | U; is a basis of T'.
The following propositions are true:

(14) Let r be a real number. Suppose P; is a non empty metric space. Let z
be an element of P;. Then Qp) \ Ball(x,r) € the open set family of P;.

(15) For every T such that T' is metrizable holds 7" is a T3 space and a T}
space.

(16) For every T such that T is metrizable holds there exists a family sequence
of T which is Basis-sigma-locally finite.

into 2the carrier of T

(17) For every function U from N such that for every n

holds U(n) is open holds |JU is open.

(18) Suppose that for all A, U such that A is closed and U is open and A C U
there exists a function W from N into 2the carrier of T gych that A C | JW
and |JW C U and for every n holds W(n) C U and W (n) is open. Then
T is a Ty space.

(19) Let given T'. Suppose T is a T3 space. Let By be a family sequence of T'.
Suppose | J By is a basis of T'. Let U be a subset of T" and p be a point of
T. Suppose U is open and p € U. Then there exists a subset O of T" such
that p € O and O C U and O € |J B;.

(20) For every T such that T"is a T3 space and a Tj space and there exists
a family sequence of T" which is Basis-sigma-locally finite holds 7" is a Ty
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space.

Let us consider T" and let F'; G be real maps of T'. The functor F'+G yielding
a real map of T is defined as follows:

(Def. 7) For every element ¢ of T holds (F + G)(t) = F(t) + G(t).
Next we state four propositions:

(21) Let f be a real map of T. Suppose f is continuous. Let F' be a real map
of [T, T]. Suppose that for all elements =, y of the carrier of T' holds
F({x,y)) = |f(xz) — f(y)|- Then F is continuous.

(22) For all real maps F', G of T such that F' is continuous and G is continuous
holds F' + G is continuous.

(23) Let A; be a binary operation on Rthe carrier of T qy5505e that for all real
maps f1, fo of T holds A1(f1, f2) = f1 + fo. Then A; is commutative and
associative and has a unity.

(24) Let A; be a binary operation on Rthe carrier of 7' Qupnoge that for all

real maps fi, fo of T holds A;(f1, f2) = f1 + f2. Let m/ be an element of
Rthe carrier of T Tf ! g a unity w.r.t. Aj, then m/ is continuous.

Let T, 17 be non empty topological spaces, let S be a function from the
carrier of T into 2the carrier of T 51 let Fy be a function from the carrier of T
into (the carrier of Ty)the carrier of T The functor F} ~ S; yields a map from T
into 77 and is defined by:

(Def. 8) For every point p of T holds (F; =~ S1)(p) = Fi(p)(p).

The following propositions are true:

(25) Let A; be a binary operation on Rthe carrier of T "qy5h05e that for all real
maps f1, fo of T holds A1(f1, fo) = fi1 + fo. Let F be a finite sequence
of elements of Rthe carrier of T' Q656 that for every m such that 0 # n
and n < len F' holds F(n) is a continuous real map of T'. Then A; ® F' is
a continuous real map of 7T'.

(26) Let F be a function from the carrier of T into (the carrier of
Ty )the carrier of T Qupnose that for every point p of T holds F(p) is a con-
tinuous map from 7' into 7. Let S be a function from the carrier of T
into 2the carrier of T "Qupnose that for every point p of T holds p € S(p)

and S(p) is open and for all points p, ¢ of T such that p € S(q) holds
F(p)(p) = F(q)(p). Then F ~ S is continuous.

In the sequel m denotes a function from [ the carrier of 7', the carrier of T'{
into R.
Let us consider X, r and let f be a function from X into R. The functor
min(r, f) yielding a function from X into R is defined as follows:
(Def. 9) For every x such that x € X holds (min(r, f))(z) = min(r, f(x)).

One can prove the following proposition
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(27) For every real number r and for every real map f of T" such that f is
continuous holds min(r, f) is continuous.

Let X be a set and let f be a function from [ X, X ] into R. We say that f
is a pseudometric of if and only if:

(Def. 10) f is Reflexive, symmetric, and triangle.
One can prove the following propositions:
(28) Let f be a function from [ X, X | into R. Then f is a pseudometric of
if and only if for all elements a, b, ¢ of X holds f(a, a) = 0 and f(a,
¢) < fla, b) + f(c, ).
(29) For every function f from [ X, X ] into R such that f is a pseudometric
of and for all elements x, y of X holds f(z, y) > 0.

(30) For all r, m such that » > 0 and m is a pseudometric of holds min(r, m)
is a pseudometric of.

(31) For all r, m such that » > 0 and m is a metric of the carrier of T holds
min(r,m) is a metric of the carrier of 7T'.
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