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The terminology and notation used in this paper have been introduced in the

following articles: [16], [3], [19], [5], [4], [1], [15], [6], [17], [18], [9], [8], [2], [20],

[12], [14], [10], [13], [7], and [11].

For simplicity, we adopt the following rules: S, T denote non trivial real

normed spaces, x0 denotes a point of S, f denotes a partial function from S to

T , h denotes a convergent to 0 sequence of S, and c denotes a constant sequence

of S.

Let X, Y , Z be real normed spaces, let f be an element of BdLinOps(X, Y ),

and let g be an element of BdLinOps(Y, Z). The functor g ·f yielding an element

of BdLinOps(X, Z) is defined by:

(Def. 1) g · f = modetrans(g, Y, Z) ·modetrans(f, X, Y ).

Let X, Y , Z be real normed spaces, let f be a point of

RNormSpaceOfBoundedLinearOperators(X, Y ), and let g be a point of

RNormSpaceOfBoundedLinearOperators(Y,Z). The functor g · f yields a po-

int of RNormSpaceOfBoundedLinearOperators(X, Z) and is defined by:

(Def. 2) g · f = modetrans(g, Y, Z) ·modetrans(f, X, Y ).

Next we state three propositions:

(1) Let x0 be a point of S. Suppose f is differentiable in x0. Then there

exists a neighbourhood N of x0 such that

(i) N ⊆ dom f, and
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(ii) for every point z of S and for every convergent to 0 sequence h of real

numbers and for every c such that rng c = {x0} and rng(h · z + c) ⊆ N

holds h−1 (f · (h · z + c)− f · c) is convergent and f ′(x0)(z) = lim(h−1 (f ·

(h · z + c)− f · c)).

(2) Let x0 be a point of S. Suppose f is differentiable in x0. Let z be a point

of S, h be a convergent to 0 sequence of real numbers, and given c. Suppose

rng c = {x0} and rng(h · z + c) ⊆ dom f. Then h−1 (f · (h · z + c)− f · c) is

convergent and f ′(x0)(z) = lim(h−1 (f · (h · z + c)− f · c)).

(3) Let x0 be a point of S and N be a neighbourhood of x0. Suppose N ⊆

dom f. Let z be a point of S and d1 be a point of T . Then the following

statements are equivalent

(i) for every convergent to 0 sequence h of real numbers and for every c

such that rng c = {x0} and rng(h ·z+c) ⊆ N holds h−1 (f ·(h ·z+c)−f ·c)

is convergent and d1 = lim(h−1 (f · (h · z + c)− f · c)),

(ii) for every real number e such that e > 0 there exists a real number d

such that d > 0 and for every real number h such that |h| < d and h 6= 0

and h · z + x0 ∈ N holds ‖h−1 · (fh·z+x0
− fx0

)− d1‖ < e.

Let us consider S, T , let us consider f , let x0 be a point of S, and let z be

a point of S. We say that f is Gateaux differentiable in x0, z if and only if the

condition (Def. 3) is satisfied.

(Def. 3) There exists a neighbourhood N of x0 such that

(i) N ⊆ dom f, and

(ii) there exists a point d1 of T such that for every real number e such

that e > 0 there exists a real number d such that d > 0 and for every

real number h such that |h| < d and h 6= 0 and h · z + x0 ∈ N holds

‖h−1 · (fh·z+x0
− fx0

)− d1‖ < e.

One can prove the following proposition

(4) For every real normed spaceX and for all points x, y ofX holds ‖x−y‖ >

0 iff x 6= y and for every real normed space X and for all points x, y of

X holds ‖x− y‖ = ‖y− x‖ and for every real normed space X and for all

points x, y of X holds ‖x − y‖ = 0 iff x = y and for every real normed

space X and for all points x, y of X holds ‖x − y‖ 6= 0 iff x 6= y and for

every real normed space X and for all points x, y, z of X and for every

real number e such that e > 0 holds if ‖x− z‖ < e

2
and ‖z − y‖ < e

2
, then

‖x− y‖ < e and for every real normed space X and for all points x, y, z

of X and for every real number e such that e > 0 holds if ‖x − z‖ < e

2

and ‖y− z‖ < e

2
, then ‖x− y‖ < e and for every real normed space X and

for every point x of X such that for every real number e such that e > 0

holds ‖x‖ < e holds x = 0X and for every real normed space X and for all

points x, y of X such that for every real number e such that e > 0 holds

‖x− y‖ < e holds x = y.
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Let us consider S, T , let us consider f , let x0 be a point of S, and let z be a

point of S. Let us assume that f is Gateaux differentiable in x0, z. The functor

GateauxDiffz(f, x0) yields a point of T and is defined by the condition (Def. 4).

(Def. 4) There exists a neighbourhood N of x0 such that

(i) N ⊆ dom f, and

(ii) for every real number e such that e > 0 there exists a real number d

such that d > 0 and for every real number h such that |h| < d and h 6= 0

and h · z +x0 ∈ N holds ‖h−1 · (fh·z+x0
− fx0

)−GateauxDiffz(f, x0)‖ < e.

We now state two propositions:

(5) Let x0 be a point of S and z be a point of S. Then f is Gateaux differen-

tiable in x0, z if and only if there exists a neighbourhood N of x0 such that

N ⊆ dom f and there exists a point d1 of T such that for every convergent

to 0 sequence h of real numbers and for every c such that rng c = {x0}

and rng(h · z + c) ⊆ N holds h−1 (f · (h · z + c)− f · c) is convergent and

d1 = lim(h−1 (f · (h · z + c)− f · c)).

(6) Let x0 be a point of S. Suppose f is differentiable in x0. Let z be a point

of S. Then

(i) f is Gateaux differentiable in x0, z,

(ii) GateauxDiffz(f, x0) = f ′(x0)(z), and

(iii) there exists a neighbourhood N of x0 such that N ⊆ dom f and for

every convergent to 0 sequence h of real numbers and for every c such that

rng c = {x0} and rng(h · z + c) ⊆ N holds h−1 (f · (h · z + c) − f · c) is

convergent and GateauxDiffz(f, x0) = lim(h−1 (f · (h · z + c)− f · c)).

In the sequel U is a non trivial real normed space.

Next we state several propositions:

(7) Let R be a rest of S, T . Suppose R0S
= 0T . Let e be a real number.

Suppose e > 0. Then there exists a real number d such that d > 0 and for

every point h of S such that ‖h‖ < d holds ‖Rh‖ ¬ e · ‖h‖.

(8) Let R be a rest of T , U . Suppose R0T
= 0U . Let L be a bounded linear

operator from S into T . Then R · L is a rest of S, U .

(9) For every rest R of S, T and for every bounded linear operator L from

T into U holds L ·R is a rest of S, U .

(10) Let R1 be a rest of S, T . Suppose (R1)0S
= 0T . Let R2 be a rest of T ,

U . If (R2)0T
= 0U , then R2 ·R1 is a rest of S, U .

(11) Let R1 be a rest of S, T . Suppose (R1)0S
= 0T . Let R2 be a rest of T ,

U . Suppose (R2)0T
= 0U . Let L be a bounded linear operator from S into

T . Then R2 · (L + R1) is a rest of S, U .

(12) Let R1 be a rest of S, T . Suppose (R1)0S
= 0T . Let R2 be a rest of

T , U . Suppose (R2)0T
= 0U . Let L1 be a bounded linear operator from

S into T and L2 be a bounded linear operator from T into U . Then
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L2 ·R1 + R2 · (L1 + R1) is a rest of S, U .

(13) Let f1 be a partial function from S to T . Suppose f1 is differentiable in

x0. Let f2 be a partial function from T to U . Suppose f2 is differentiable

in (f1)x0
. Then f2 ·f1 is differentiable in x0 and (f2 ·f1)

′(x0) = f2
′((f1)x0

) ·

f1
′(x0).
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