FORMALIZED MATHEMATICS

Volume 12, Number 3, 2004
University of Bialystok

Solving Roots of the Special Polynomial
Equation with Real Coefficients

Yuzhong Ding
QingDao University of Science and Technology

Xiquan Liang
QingDao University of Science and Technology

MML Identifier: POLYEQ_4.

The papers [5], [4], [2], [3], and [1] provide the terminology and notation for this
paper.

We follow the rules: z, y, a, b, ¢, p, ¢ are real numbers and m, n are natural
numbers.

We now state a number of propositions:

(1) Ta#0and® <0and ¢ > 0and Ala,bc) >0, then VA0 o ¢

—b—+/A(a,b,c) < 0.

and 5

(2) Ifa?éoandg>0and§>0and Al(a,b,c) > 0, then@ <0

—b—+/A(a,b,c) <0

and o

(3) Ifa;éOand§<O,then_b+7 vQib(a’b’c)>Oaur1d_I)_Z%Aa(ab’c)<001r

“bhyA(abe) ”Qi(a’b’c) <0 and 2=VAlabo) Qi(a’b’c) > 0.

(4) If a > 0 and there exists m such that n =2-m and m > 1 and 2" = a,
then x = {/a or x = — {/a.

(5) If a # 0 and Poly2(a,b,0,2) =0, then x =0 or = = —%.

(6) If a # 0 and Poly2(a,0,0,2) = 0, then z = 0.

(7) If a # 0 and there exists m such that n = 2-m+1 and A(a,b,c) > 0 and

Poly2(a, b, ¢, z™) = 0, then z = 1 “hhy/ Alabe) VQi(a’b’C) or z = ) v alabo) Vﬁl(a’b’c).
(8) Suppose a # 0 and 2 < 0 and ¢ > 0 and there exists m such that

n=2-mand m > 1 and A(a,b,c) > 0 and Poly2(a, b, c,z™) = 0. Then
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@ 2a 2-a
n [ —b—+/A(a,b,c)
r=- 2-a
(9) Ifa # 0 and there exists m such that n = 2-m+1 and Poly2(a, b, 0, 2™) =

0,thenz=0o0r z = ”—g.

(10) If a # 0 and g < 0 and there exists m such that n =2-m and m > 1

and Poly2(a,b,0,2™) =0, then z =0 or z = \”/—2 orr=— \"/—g.

(11) a®+v*=(a+0b)-((a®—a-b) +b?) and a® +b° = (a+b) - ((((a* —a®-
b) +a?-b?) —a-b?) +bh).
(12) Suppose a # 0 and b2 —2-a-b—3-a? > 0 and Poly3(a,b,b,a,z) = 0.
(a—b)+ VD230 h—3a2 4—b— /P —2ab—3a2
2-a 2-a :

Then x = —-1lorz = or x =

Let a, b, ¢, d, e, f, x be real numbers. The functor Polys(a,b,c,d, e, f,x) is
defined by:
(Def. 1) Polys(a,b,c,d,e, f,x) =a-2° +b-2* +c- 2> +d-22+e- -2+ f.
We now state a number of propositions:
(13) Suppose @ # 0 and (b2 +2-a-b+5-a%?) —4-a-c > 0 and
Polys(a,b,c,c,b,a,x) = 0. Let yi, y2 be real numbers. Suppose y;
(a=b)+y/ B2 +2abtba?)—dac o ys = abo /P2 ab s at) e iy

2-a 2-a
/A, —y1,1 /A1, —y2,1 —/A(1,—y1,1
—1lorg=2TVoomul) é yL,1) EEAAS i L ; v2 )or::::—y1 é u )or
Y2—/ A(lv_y271)

Tr = 2

or r =

(14) Suppose z +y=pand -y = q and p?> —4-q > 0. ThenuU:u

and v — p—\/p?—4q p—\/p2—4q pHy/p2—4q
y= 2 2 2 :
(15) Suppose 2" 4+ y" = p and 2" - y" = q and p? — 4 - ¢ > 0 and there exists

m such that n = 2-m + 1. Then z = {/ZXV2 =24 Mandy: YR it

2
n —\/p2—4. n /[ pt++/p2—4.
orz =1/ pig 4 and Y= pig £

(16) Suppose 2" +y" = p and 2"y = gand p>—4-¢ > Oand p > 0and ¢ > 0

i

or x = and y =

;

n 2_4.
and there exists m such that n =2-m and m > 1. Then x = prypiTia

[M

n —\/p2—-4. n -+ —4.- n — 2__4.
andy:\/Worx:—quandy: o 2
n [ p+ 2_4. n/p—a/p2—4- n [ p4 2_4.

or xr = pig f and y = — pi‘g T or 0 = —y/ VA

N
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<
3

TEFFEE

n/ p—a/p2—4- n/p— —4. -+ 2_4.

and y = —\/pig L or x = VP2 and y = A
n —A/ 2_4. n -+ . n — 2_4.

ora::—\/quandy: PEVE " or ¢ = /M7 ap

n/p+y/p2—4q n/p—y/p3—4q n/pty/p2—4q

y=—\—Vg—orx=—-\—5— andy=— 5
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(18)! Suppose 2" + y" = a and " — y™ = b and there exists m such that
n=2-mandm>1anda>0and a+b>0and a —b>0. Then

(i) x:”“;b ndy:”“T_b,or
(ii) x:”“T*'bandy:—"“T_b,or
(iii) x:—”‘%ﬂ’andy:"%b,or
(iv) x—f"“TH’andy:f”“be.

(19) Ifa-2"+b-y" = pand x-y = 0 and there exists m such that n = 2-m+1

and a-b # 0, then x =0 and y = \[orx—&‘/»andy—o

(20) Suppose a-z" +b-y" = pand x -y = 0 and there exists m such that
n=2-mandm>1and § >0and 2> 0and a-b+# 0. Then 2 = 0 and

y:’\L/;ora:—Oandy— forxz’(/;andy—()orx——*{/gand
y=0.

(21) Ifa-2" =pand x-y = g and there exists m such that n =2-m+ 1 and
p'a;ﬁ(),thenx:’\l/%andy:q-r\l/g.

(22) Suppose a-z"™ = p and x - y = ¢ and there exists m such that n =2-m
andm}landg>0anda7é0.Then:c:T\L/gandy:mn%or

JU:—’\l/gandy:—q- "%

(24)? For all real numbers a, = such that a > 0 and a # 1 and a® = 1 holds

z=0.
(25) For all real numbers a, x such that a > 0 and a # 1 and a* = a holds
r =1

(27)3 For all real numbers a, b, = such that a > 0 and a@ # 1 and = > 0 and
log, x = 0 holds z = 1.

(28) For all real numbers a, b, x such that @ > 0 and a # 1 and = > 0 and
log, =1 holds x = a.
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!The proposition (17) has been removed.
2The proposition (23) has been removed.
3The proposition (26) has been removed.
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