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The papers [5], [4], [2], [3], and [1] provide the terminology and notation for this

paper.

We follow the rules: x, y, a, b, c, p, q are real numbers and m, n are natural

numbers.

We now state a number of propositions:

(1) If a 6= 0 and b
a

< 0 and c
a

> 0 and ∆(a, b, c) ­ 0, then
−b+
√

∆(a,b,c)

2·a > 0

and
−b−
√

∆(a,b,c)

2·a > 0.

(2) If a 6= 0 and b
a

> 0 and c
a

> 0 and ∆(a, b, c) ­ 0, then
−b+
√

∆(a,b,c)

2·a < 0

and
−b−
√

∆(a,b,c)

2·a < 0.

(3) If a 6= 0 and c
a

< 0, then
−b+
√

∆(a,b,c)

2·a > 0 and
−b−
√

∆(a,b,c)

2·a < 0 or
−b+
√

∆(a,b,c)

2·a < 0 and
−b−
√

∆(a,b,c)

2·a > 0.

(4) If a > 0 and there exists m such that n = 2 ·m and m ­ 1 and xn = a,

then x = n

√
a or x = − n

√
a.

(5) If a 6= 0 and Poly2(a, b, 0, x) = 0, then x = 0 or x = − b
a
.

(6) If a 6= 0 and Poly2(a, 0, 0, x) = 0, then x = 0.

(7) If a 6= 0 and there exists m such that n = 2 ·m+1 and ∆(a, b, c) ­ 0 and

Poly2(a, b, c, xn) = 0, then x =
n

√

−b+
√

∆(a,b,c)

2·a or x =
n

√

−b−
√

∆(a,b,c)

2·a .

(8) Suppose a 6= 0 and b
a

< 0 and c
a

> 0 and there exists m such that

n = 2 ·m and m ­ 1 and ∆(a, b, c) ­ 0 and Poly2(a, b, c, xn) = 0. Then
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x =
n

√

−b+
√

∆(a,b,c)

2·a or x = − n

√

−b+
√

∆(a,b,c)

2·a or x =
n

√

−b−
√

∆(a,b,c)

2·a or

x = − n

√

−b−
√

∆(a,b,c)

2·a .

(9) If a 6= 0 and there existsm such that n = 2·m+1 and Poly2(a, b, 0, xn) =

0, then x = 0 or x = n

√

− b
a
.

(10) If a 6= 0 and b
a

< 0 and there exists m such that n = 2 ·m and m ­ 1

and Poly2(a, b, 0, xn) = 0, then x = 0 or x = n

√

− b
a
or x = − n

√

− b
a
.

(11) a3 + b3 = (a + b) · ((a2 − a · b) + b2) and a5 + b5 = (a + b) · ((((a4 − a3 ·
b) + a2 · b2)− a · b3) + b4).

(12) Suppose a 6= 0 and b2 − 2 · a · b − 3 · a2 ­ 0 and Poly3(a, b, b, a, x) = 0.

Then x = −1 or x = (a−b)+
√

b2−2·a·b−3·a2

2·a or x = a−b−
√

b2−2·a·b−3·a2

2·a .

Let a, b, c, d, e, f , x be real numbers. The functor Poly5(a, b, c, d, e, f, x) is

defined by:

(Def. 1) Poly5(a, b, c, d, e, f, x) = a · x5 + b · x4 + c · x3 + d · x2 + e · x + f.

We now state a number of propositions:

(13) Suppose a 6= 0 and (b2 + 2 · a · b + 5 · a2) − 4 · a · c > 0 and

Poly5(a, b, c, c, b, a, x) = 0. Let y1, y2 be real numbers. Suppose y1 =
(a−b)+

√
(b2+2·a·b+5·a2)−4·a·c

2·a and y2 =
a−b−
√

(b2+2·a·b+5·a2)−4·a·c

2·a . Then x =

−1 or x =
y1+
√

∆(1,−y1,1)

2 or x =
y2+
√

∆(1,−y2,1)

2 or x =
y1−

√
∆(1,−y1,1)

2 or

x =
y2−

√
∆(1,−y2,1)

2 .

(14) Suppose x + y = p and x · y = q and p2 − 4 · q ­ 0. Then x =
p+
√

p2−4·q
2

and y =
p−
√

p2−4·q
2 or x =

p−
√

p2−4·q
2 and y =

p+
√

p2−4·q
2 .

(15) Suppose xn + yn = p and xn · yn = q and p2 − 4 · q ­ 0 and there exists

m such that n = 2 ·m + 1. Then x =
n

√

p+
√

p2−4·q
2 and y =

n

√

p−
√

p2−4·q
2

or x =
n

√

p−
√

p2−4·q
2 and y =

n

√

p+
√

p2−4·q
2 .

(16) Suppose xn+yn = p and xn ·yn = q and p2−4·q ­ 0 and p > 0 and q > 0

and there exists m such that n = 2 ·m and m ­ 1. Then x =
n

√

p+
√

p2−4·q
2

and y =
n

√

p−
√

p2−4·q
2 or x = − n

√

p+
√

p2−4·q
2 and y =

n

√

p−
√

p2−4·q
2

or x =
n

√

p+
√

p2−4·q
2 and y = − n

√

p−
√

p2−4·q
2 or x = − n

√

p+
√

p2−4·q
2

and y = − n

√

p−
√

p2−4·q
2 or x =

n

√

p−
√

p2−4·q
2 and y =

n

√

p+
√

p2−4·q
2

or x = − n

√

p−
√

p2−4·q
2 and y =

n

√

p+
√

p2−4·q
2 or x =

n

√

p−
√

p2−4·q
2 and

y = − n

√

p+
√

p2−4·q
2 or x = − n

√

p−
√

p2−4·q
2 and y = − n

√

p+
√

p2−4·q
2 .
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(18)1 Suppose xn + yn = a and xn − yn = b and there exists m such that

n = 2 ·m and m ­ 1 and a > 0 and a + b > 0 and a− b > 0. Then

(i) x = n

√

a+b
2 and y = n

√

a−b
2 , or

(ii) x = n

√

a+b
2 and y = − n

√

a−b
2 , or

(iii) x = − n

√

a+b
2 and y = n

√

a−b
2 , or

(iv) x = − n

√

a+b
2 and y = − n

√

a−b
2 .

(19) If a ·xn+b ·yn = p and x ·y = 0 and there exists m such that n = 2 ·m+1

and a · b 6= 0, then x = 0 and y = n

√

p
b
or x = n

√

p
a
and y = 0.

(20) Suppose a · xn + b · yn = p and x · y = 0 and there exists m such that

n = 2 ·m and m ­ 1 and p
b

> 0 and p
a

> 0 and a · b 6= 0. Then x = 0 and

y = n

√

p
b
or x = 0 and y = − n

√

p
b
or x = n

√

p
a
and y = 0 or x = − n

√

p
a
and

y = 0.

(21) If a ·xn = p and x · y = q and there exists m such that n = 2 ·m + 1 and

p · a 6= 0, then x = n

√

p
a
and y = q · n

√

a
p
.

(22) Suppose a · xn = p and x · y = q and there exists m such that n = 2 ·m
and m ­ 1 and p

a
> 0 and a 6= 0. Then x = n

√

p
a
and y = q · n

√

a
p
or

x = − n

√

p
a
and y = −q · n

√

a
p
.

(24)2 For all real numbers a, x such that a > 0 and a 6= 1 and ax = 1 holds

x = 0.

(25) For all real numbers a, x such that a > 0 and a 6= 1 and ax = a holds

x = 1.

(27)3 For all real numbers a, b, x such that a > 0 and a 6= 1 and x > 0 and

loga x = 0 holds x = 1.

(28) For all real numbers a, b, x such that a > 0 and a 6= 1 and x > 0 and

loga x = 1 holds x = a.
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1The proposition (17) has been removed.
2The proposition (23) has been removed.
3The proposition (26) has been removed.



250 yuzhong ding and xiquan liang

Received March 18, 2004


