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Summary. The triviality of the fundamental group of subspaces of En

T and

R
1 have been shown.
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The notation and terminology used in this paper have been introduced in the

following articles: [20], [6], [23], [1], [17], [24], [4], [5], [3], [2], [19], [11], [16], [22],

[21], [18], [14], [8], [7], [15], [13], [9], [10], and [12].

1. Convex subspaces of En
T

In this paper n denotes a natural number and a, b denote real numbers.

Let us consider n. One can verify that there exists a subset of En
T which is

non empty and convex.

Let n be a natural number and let T be a subspace of En
T. We say that T is

convex if and only if:

(Def. 1) ΩT is a convex subset of E
n
T.

Let n be a natural number. Note that every non empty subspace of En
T which

is convex is also arcwise connected.

Let n be a natural number. One can verify that there exists a subspace of

En
T which is strict, non empty, and convex.

The following proposition is true
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(1) Let X be a non empty topological space, Y be a non empty subspace of

X, x1, x2 be points of X, y1, y2 be points of Y , and f be a path from y1

to y2. Suppose x1 = y1 and x2 = y2 and y1, y2 are connected. Then f is a

path from x1 to x2.

Let n be a natural number, let T be a non empty convex subspace of

En
T, let a, b be points of T , and let P , Q be paths from a to b. The functor

ConvexHomotopy(P, Q) yielding a map from [: I, I :] into T is defined as follows:

(Def. 2) For all elements s, t of I and for all points a1, b1 of E
n
T such that a1 = P (s)

and b1 = Q(s) holds (ConvexHomotopy(P,Q))(s, t) = (1− t) · a1 + t · b1.

Next we state the proposition

(2) Let T be a non empty convex subspace of En
T, a, b be points of T , and

P , Q be paths from a to b. Then P , Q are homotopic.

Let n be a natural number, let T be a non empty convex subspace of En
T, let a,

b be points of T , and let P ,Q be paths from a to b. Then ConvexHomotopy(P, Q)

is a homotopy between P and Q.

Let n be a natural number, let T be a non empty convex subspace of En
T, let

a, b be points of T , and let P , Q be paths from a to b. Note that every homotopy

between P and Q is continuous.

We now state the proposition

(3) Let T be a non empty convex subspace of En
T, a be a point of T , and C

be a loop of a. Then the carrier of π1(T, a) = {[C]EqRel(T,a)}.

Let n be a natural number, let T be a non empty convex subspace of En
T,

and let a be a point of T . Observe that π1(T, a) is trivial.

2. Convex subspaces of R
1

We now state the proposition

(4) Proj(|[a]|, 1) = a.

One can verify that every subspace of R1 is real-membered.

Next we state three propositions:

(5) If a ¬ b, then [a, b] = {(1 − l) · a + l · b; l ranges over real numbers:

0 ¬ l ∧ l ¬ 1}.

(6) Let F be a map from [: R1, I :] into R
1. Suppose that for every point x

of R
1 and for every point i of I holds F (x, i) = (1 − i) · x. Then F is

continuous.

(7) Let F be a map from [: R1, I :] into R
1. Suppose that for every point x of

R
1 and for every point i of I holds F (x, i) = i · x. Then F is continuous.

Let P be a subset of R1. We say that P is convex if and only if:

(Def. 3) For all points a, b of R1 such that a ∈ P and b ∈ P holds [a, b] ⊆ P.
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One can check that there exists a subset of R
1 which is non empty and

convex and every subset of R1 which is empty is also convex.

We now state four propositions:

(8) [a, b] is a convex subset of R1.

(9) ]a, b[ is a convex subset of R1.

(10) [a, b[ is a convex subset of R1.

(11) ]a, b] is a convex subset of R1.

Let T be a subspace of R1. We say that T is convex if and only if:

(Def. 4) ΩT is a convex subset of R
1.

Let us note that there exists a subspace of R
1 which is strict, non empty,

and convex.

R
1 is a strict convex subspace of R1.

The following proposition is true

(12) For every non empty convex subspace T of R1 and for all points a, b of

T holds [a, b] ⊆ the carrier of T .

Let us note that every non empty subspace of R
1 which is convex is also

arcwise connected.

One can prove the following propositions:

(13) If a ¬ b, then [a, b]T is convex.

(14) I is convex.

(15) If a ¬ b, then [a, b]T is arcwise connected.

Let T be a non empty convex subspace of R1, let a, b be points of T , and let

P , Q be paths from a to b. The functor R1Homotopy(P, Q) yields a map from

[: I, I :] into T and is defined by:

(Def. 5) For all elements s, t of I holds (R1Homotopy(P, Q))(s, t) = (1 − t) ·

P (s) + t ·Q(s).

Next we state the proposition

(16) Let T be a non empty convex subspace of R
1, a, b be points of T , and

P , Q be paths from a to b. Then P , Q are homotopic.

Let T be a non empty convex subspace of R
1, let a, b be points of T , and

let P , Q be paths from a to b. Then R1Homotopy(P, Q) is a homotopy between

P and Q.

Let T be a non empty convex subspace of R
1, let a, b be points of T , and

let P , Q be paths from a to b. Note that every homotopy between P and Q is

continuous.

The following proposition is true

(17) Let T be a non empty convex subspace of R1, a be a point of T , and C

be a loop of a. Then the carrier of π1(T, a) = {[C]EqRel(T,a)}.
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Let T be a non empty convex subspace of R
1 and let a be a point of T .

Observe that π1(T, a) is trivial.

One can prove the following four propositions:

(18) If a ¬ b, then for all points x, y of [a, b]T and for all paths P , Q from x

to y holds P , Q are homotopic.

(19) If a ¬ b, then for every point x of [a, b]T and for every loop C of x holds

the carrier of π1([a, b]T, x) = {[C]EqRel([a, b]T,x)}.

(20) For all points x, y of I and for all paths P , Q from x to y holds P , Q

are homotopic.

(21) For every point x of I and for every loop C of x holds the carrier of

π1(I, x) = {[C]EqRel(I,x)}.

Let x be a point of I. Observe that π1(I, x) is trivial.
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