The Fundamental Group of Convex Subspaces of \mathcal{E}^n_T

Artur Korniłowicz¹ University of Białystok

Summary. The triviality of the fundamental group of subspaces of \mathcal{E}^n_T and \mathbb{R}^1 have been shown.

MML Identifier: TOPALG_2.

The notation and terminology used in this paper have been introduced in the following articles: [20], [6], [23], [1], [17], [24], [4], [5], [3], [2], [19], [11], [16], [22], [21], [18], [14], [8], [7], [15], [13], [9], [10], and [12].

1. Convex subspaces of $\mathcal{E}^n_{\mathrm{T}}$

In this paper n denotes a natural number and a, b denote real numbers.

Let us consider n. One can verify that there exists a subset of $\mathcal{E}_{\mathrm{T}}^n$ which is non empty and convex.

Let n be a natural number and let T be a subspace of \mathcal{E}_{T}^{n} . We say that T is convex if and only if:

(Def. 1) Ω_T is a convex subset of \mathcal{E}_T^n .

Let n be a natural number. Note that every non empty subspace of $\mathcal{E}_{\mathrm{T}}^n$ which is convex is also arcwise connected.

Let n be a natural number. One can verify that there exists a subspace of \mathcal{E}^n_T which is strict, non empty, and convex.

The following proposition is true

¹The paper was written during author's post-doctoral fellowship granted by Shinshu University, Japan. This work has been partially supported by KBN grant 4 T11C 039 24.

(1) Let X be a non empty topological space, Y be a non empty subspace of X, x_1 , x_2 be points of X, y_1 , y_2 be points of Y, and f be a path from y_1 to y_2 . Suppose $x_1 = y_1$ and $x_2 = y_2$ and y_1 , y_2 are connected. Then f is a path from x_1 to x_2 .

Let n be a natural number, let T be a non empty convex subspace of \mathcal{E}^n_T , let a, b be points of T, and let P, Q be paths from a to b. The functor ConvexHomotopy(P,Q) yielding a map from $[\![\mathbb{I},\mathbb{I}]\!]$ into T is defined as follows:

- (Def. 2) For all elements s, t of \mathbb{I} and for all points a_1, b_1 of \mathcal{E}^n_T such that $a_1 = P(s)$ and $b_1 = Q(s)$ holds (ConvexHomotopy(P, Q)) $(s, t) = (1 t) \cdot a_1 + t \cdot b_1$. Next we state the proposition
 - (2) Let T be a non empty convex subspace of \mathcal{E}_{T}^{n} , a, b be points of T, and P, Q be paths from a to b. Then P, Q are homotopic.

Let n be a natural number, let T be a non empty convex subspace of $\mathcal{E}_{\mathrm{T}}^{n}$, let a, b be points of T, and let P, Q be paths from a to b. Then ConvexHomotopy(P, Q) is a homotopy between P and Q.

Let n be a natural number, let T be a non empty convex subspace of $\mathcal{E}_{\mathrm{T}}^{n}$, let a,b be points of T, and let P, Q be paths from a to b. Note that every homotopy between P and Q is continuous.

We now state the proposition

(3) Let T be a non empty convex subspace of \mathcal{E}_{T}^{n} , a be a point of T, and C be a loop of a. Then the carrier of $\pi_{1}(T, a) = \{[C]_{\text{EqRel}(T, a)}\}.$

Let n be a natural number, let T be a non empty convex subspace of $\mathcal{E}_{\mathrm{T}}^n$, and let a be a point of T. Observe that $\pi_1(T,a)$ is trivial.

2. Convex subspaces of \mathbb{R}^1

We now state the proposition

(4) Proj(|[a]|, 1) = a.

One can verify that every subspace of \mathbb{R}^1 is real-membered.

Next we state three propositions:

- (5) If $a \le b$, then $[a,b] = \{(1-l) \cdot a + l \cdot b; l \text{ ranges over real numbers: } 0 \le l \land l \le 1\}.$
- (6) Let F be a map from $[\mathbb{R}^1, \mathbb{I}]$ into \mathbb{R}^1 . Suppose that for every point x of \mathbb{R}^1 and for every point i of \mathbb{I} holds $F(x, i) = (1 i) \cdot x$. Then F is continuous.
- (7) Let F be a map from $[\mathbb{R}^1, \mathbb{I}]$ into \mathbb{R}^1 . Suppose that for every point x of \mathbb{R}^1 and for every point i of \mathbb{I} holds $F(x, i) = i \cdot x$. Then F is continuous.

Let P be a subset of \mathbb{R}^1 . We say that P is convex if and only if:

(Def. 3) For all points a, b of \mathbb{R}^1 such that $a \in P$ and $b \in P$ holds $[a, b] \subseteq P$.

One can check that there exists a subset of \mathbb{R}^1 which is non empty and convex and every subset of \mathbb{R}^1 which is empty is also convex.

We now state four propositions:

- (8) [a,b] is a convex subset of \mathbb{R}^1 .
- (9)]a,b[is a convex subset of \mathbb{R}^1 .
- (10) [a, b] is a convex subset of \mathbb{R}^1 .
- (11) [a, b] is a convex subset of \mathbb{R}^1 .

Let T be a subspace of \mathbb{R}^1 . We say that T is convex if and only if:

(Def. 4) Ω_T is a convex subset of \mathbb{R}^1 .

Let us note that there exists a subspace of \mathbb{R}^1 which is strict, non empty, and convex.

 \mathbb{R}^1 is a strict convex subspace of \mathbb{R}^1 .

The following proposition is true

(12) For every non empty convex subspace T of \mathbb{R}^1 and for all points a, b of T holds $[a,b] \subseteq$ the carrier of T.

Let us note that every non empty subspace of \mathbb{R}^1 which is convex is also arcwise connected.

One can prove the following propositions:

- (13) If $a \leq b$, then $[a, b]_T$ is convex.
- (14) \mathbb{I} is convex.
- (15) If $a \leq b$, then $[a, b]_T$ is arcwise connected.

Let T be a non empty convex subspace of \mathbb{R}^1 , let a, b be points of T, and let P, Q be paths from a to b. The functor R1Homotopy(P, Q) yields a map from $[\mathbb{I}, \mathbb{I}]$ into T and is defined by:

(Def. 5) For all elements s, t of \mathbb{I} holds (R1Homotopy(P,Q)) $(s,t) = (1-t) \cdot P(s) + t \cdot Q(s)$.

Next we state the proposition

(16) Let T be a non empty convex subspace of \mathbb{R}^1 , a, b be points of T, and P, Q be paths from a to b. Then P, Q are homotopic.

Let T be a non empty convex subspace of \mathbb{R}^1 , let a, b be points of T, and let P, Q be paths from a to b. Then R1Homotopy(P, Q) is a homotopy between P and Q.

Let T be a non empty convex subspace of \mathbb{R}^1 , let a, b be points of T, and let P, Q be paths from a to b. Note that every homotopy between P and Q is continuous.

The following proposition is true

(17) Let T be a non empty convex subspace of \mathbb{R}^1 , a be a point of T, and C be a loop of a. Then the carrier of $\pi_1(T, a) = \{[C]_{\text{EgRel}(T, a)}\}.$

Let T be a non empty convex subspace of \mathbb{R}^1 and let a be a point of T. Observe that $\pi_1(T, a)$ is trivial.

One can prove the following four propositions:

- (18) If $a \leq b$, then for all points x, y of $[a, b]_T$ and for all paths P, Q from x to y holds P, Q are homotopic.
- (19) If $a \leq b$, then for every point x of $[a, b]_T$ and for every loop C of x holds the carrier of $\pi_1([a, b]_T, x) = \{[C]_{\text{EqRel}([a, b]_T, x)}\}.$
- (20) For all points x, y of \mathbb{I} and for all paths P, Q from x to y holds P, Q are homotopic.
- (21) For every point x of \mathbb{I} and for every loop C of x holds the carrier of $\pi_1(\mathbb{I}, x) = \{[C]_{\text{EqRel}(\mathbb{I}, x)}\}.$

Let x be a point of \mathbb{I} . Observe that $\pi_1(\mathbb{I}, x)$ is trivial.

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990
- [6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990
- [7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [8] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
- [9] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4):449–454, 1997.
- [10] Adam Grabowski and Artur Korniłowicz. Algebraic properties of homotopies. Formalized Mathematics, 12(3):251–260, 2004.
- [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [12] Artur Korniłowicz, Yasunari Shidama, and Adam Grabowski. The fundamental group. Formalized Mathematics, 12(3):261–268, 2004.
- [13] Roman Matuszewski and Yatsuka Nakamura. Projections in n-dimensional Euclidean space to each coordinates. Formalized Mathematics, 6(4):505–509, 1997.
- [14] Yatsuka Nakamura. Half open intervals in real numbers. Formalized Mathematics, 10(1):21-22, 2002.
- [15] Yatsuka Nakamura and Jarosław Kotowicz. The Jordan's property for certain subsets of the plane. Formalized Mathematics, 3(2):137–142, 1992.
- [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [17] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.
- [18] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [19] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [21] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535–545, 1991.

- [22] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573–578, 1991.

 [23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

 [24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
- 1(**1**):73–83, 1990.

Received April 20, 2004