On the Fundamental Groups of Products of Topological Spaces

Artur Korniłowicz¹ University of Białystok

Summary. In the paper we show that fundamental group of the product of two topological spaces is isomorphic to the product of fundamental groups of the spaces.

MML Identifier: TOPALG_4.

The articles [15], [7], [14], [19], [5], [20], [6], [3], [4], [1], [2], [12], [17], [18], [10], [13], [16], [8], [9], and [11] provide the terminology and notation for this paper.

1. On the Product of Groups

The following proposition is true

 Let G, H be non empty groupoids and x be an element of ∏⟨G, H⟩. Then there exists an element g of G and there exists an element h of H such that x = ⟨g, h⟩.

Let G_1 , G_2 , H_1 , H_2 be non empty groupoids, let f be a map from G_1 into H_1 , and let g be a map from G_2 into H_2 . The functor $\operatorname{Gr2Iso}(f,g)$ yields a map from $\prod \langle G_1, G_2 \rangle$ into $\prod \langle H_1, H_2 \rangle$ and is defined by the condition (Def. 1).

(Def. 1) Let x be an element of $\prod \langle G_1, G_2 \rangle$. Then there exists an element x_1 of G_1 and there exists an element x_2 of G_2 such that $x = \langle x_1, x_2 \rangle$ and $(\operatorname{Gr2Iso}(f,g))(x) = \langle f(x_1), g(x_2) \rangle$.

The following proposition is true

C 2004 University of Białystok ISSN 1426-2630

¹The paper was written during author's post-doctoral fellowship granted by Shinshu University, Japan. This work has been partially supported by KBN grant 4 T11C 039 24.

(2) Let G_1 , G_2 , H_1 , H_2 be non empty groupoids, f be a map from G_1 into H_1 , g be a map from G_2 into H_2 , x_1 be an element of G_1 , and x_2 be an element of G_2 . Then $(\text{Gr2Iso}(f, g))(\langle x_1, x_2 \rangle) = \langle f(x_1), g(x_2) \rangle$.

Let G_1, G_2, H_1, H_2 be groups, let f be a homomorphism from G_1 to H_1 , and let g be a homomorphism from G_2 to H_2 . Then $\operatorname{Gr2Iso}(f, g)$ is a homomorphism from $\prod \langle G_1, G_2 \rangle$ to $\prod \langle H_1, H_2 \rangle$.

One can prove the following four propositions:

- (3) Let G_1 , G_2 , H_1 , H_2 be non empty groupoids, f be a map from G_1 into H_1 , and g be a map from G_2 into H_2 . If f is one-to-one and g is one-to-one, then $\operatorname{Gr2Iso}(f,g)$ is one-to-one.
- (4) Let G_1, G_2, H_1, H_2 be non empty groupoids, f be a map from G_1 into H_1 , and g be a map from G_2 into H_2 . If f is onto and g is onto, then $\operatorname{Gr2Iso}(f,g)$ is onto.
- (5) Let G_1 , G_2 , H_1 , H_2 be groups, f be a homomorphism from G_1 to H_1 , and g be a homomorphism from G_2 to H_2 . If f is an isomorphism and g is an isomorphism, then $\operatorname{Gr2Iso}(f,g)$ is an isomorphism.
- (6) Let G_1, G_2, H_1, H_2 be groups. Suppose G_1 and H_1 are isomorphic and G_2 and H_2 are isomorphic. Then $\prod \langle G_1, G_2 \rangle$ and $\prod \langle H_1, H_2 \rangle$ are isomorphic.

2. On the Fundamental Groups of Products of Topological Spaces

For simplicity, we adopt the following rules: S, T, Y denote non empty topological spaces, s, s_1, s_2, s_3 denote points of S, t, t_1, t_2, t_3 denote points of T, l_1, l_2 denote paths from $\langle s_1, t_1 \rangle$ to $\langle s_2, t_2 \rangle$, and H denotes a homotopy between l_1 and l_2 .

We now state two propositions:

(7) For all functions f, g such that dom f = dom g holds $\text{pr1}(\langle f, g \rangle) = f$.

(8) For all functions f, g such that dom f = dom g holds $\text{pr2}(\langle f, g \rangle) = g$.

Let us consider S, T, Y, let f be a map from Y into S, and let g be a map from Y into T. Then $\langle f, g \rangle$ is a map from Y into [S, T].

Let us consider S, T, Y and let f be a map from Y into [S, T]. Then pr1(f) is a map from Y into S. Then pr2(f) is a map from Y into T.

The following propositions are true:

- (9) For every continuous map f from Y into [S, T] holds pr1(f) is continuous.
- (10) For every continuous map f from Y into [S, T] holds pr2(f) is continuous.
- (11) If $\langle s_1, t_1 \rangle$, $\langle s_2, t_2 \rangle$ are connected, then s_1, s_2 are connected.
- (12) If $\langle s_1, t_1 \rangle$, $\langle s_2, t_2 \rangle$ are connected, then t_1, t_2 are connected.

- (13) If $\langle s_1, t_1 \rangle$, $\langle s_2, t_2 \rangle$ are connected, then for every path L from $\langle s_1, t_1 \rangle$ to $\langle s_2, t_2 \rangle$ holds pr1(L) is a path from s_1 to s_2 .
- (14) If $\langle s_1, t_1 \rangle$, $\langle s_2, t_2 \rangle$ are connected, then for every path L from $\langle s_1, t_1 \rangle$ to $\langle s_2, t_2 \rangle$ holds $\operatorname{pr2}(L)$ is a path from t_1 to t_2 .
- (15) If s_1 , s_2 are connected and t_1 , t_2 are connected, then $\langle s_1, t_1 \rangle$, $\langle s_2, t_2 \rangle$ are connected.
- (16) Suppose s_1 , s_2 are connected and t_1 , t_2 are connected. Let L_1 be a path from s_1 to s_2 and L_2 be a path from t_1 to t_2 . Then $\langle L_1, L_2 \rangle$ is a path from $\langle s_1, t_1 \rangle$ to $\langle s_2, t_2 \rangle$.

Let S, T be non empty arcwise connected topological spaces, let s_1 , s_2 be points of S, let t_1 , t_2 be points of T, let L_1 be a path from s_1 to s_2 , and let L_2 be a path from t_1 to t_2 . Then $\langle L_1, L_2 \rangle$ is a path from $\langle s_1, t_1 \rangle$ to $\langle s_2, t_2 \rangle$.

Let S, T be non empty topological spaces, let s be a point of S, let t be a point of T, let L_1 be a loop of s, and let L_2 be a loop of t. Then $\langle L_1, L_2 \rangle$ is a loop of $\langle s, t \rangle$.

Let S, T be non empty arcwise connected topological spaces. One can verify that [S, T] is arcwise connected.

Let S, T be non empty arcwise connected topological spaces, let s_1 , s_2 be points of S, let t_1 , t_2 be points of T, and let L be a path from $\langle s_1, t_1 \rangle$ to $\langle s_2, t_2 \rangle$. Then pr1(L) is a path from s_1 to s_2 . Then pr2(L) is a path from t_1 to t_2 .

Let S, T be non empty topological spaces, let s be a point of S, let t be a point of T, and let L be a loop of $\langle s, t \rangle$. Then pr1(L) is a loop of s. Then pr2(L) is a loop of t.

Next we state a number of propositions:

- (17) Let p, q be paths from s_1 to s_2 . Suppose $p = pr1(l_1)$ and $q = pr1(l_2)$ and l_1 , l_2 are homotopic. Then pr1(H) is a homotopy between p and q.
- (18) Let p, q be paths from t_1 to t_2 . Suppose $p = pr2(l_1)$ and $q = pr2(l_2)$ and l_1 , l_2 are homotopic. Then pr2(H) is a homotopy between p and q.
- (19) For all paths p, q from s_1 to s_2 such that $p = pr1(l_1)$ and $q = pr1(l_2)$ and l_1 , l_2 are homotopic holds p, q are homotopic.
- (20) For all paths p, q from t_1 to t_2 such that $p = pr2(l_1)$ and $q = pr2(l_2)$ and l_1 , l_2 are homotopic holds p, q are homotopic.
- (21) Let p, q be paths from s_1 to s_2 , x, y be paths from t_1 to t_2 , f be a homotopy between p and q, and g be a homotopy between x and y. Suppose $p = pr1(l_1)$ and $q = pr1(l_2)$ and $x = pr2(l_1)$ and $y = pr2(l_2)$ and p, q are homotopic and x, y are homotopic. Then $\langle f, g \rangle$ is a homotopy between l_1 and l_2 .
- (22) Let p, q be paths from s_1 to s_2 and x, y be paths from t_1 to t_2 . Suppose $p = pr1(l_1)$ and $q = pr1(l_2)$ and $x = pr2(l_1)$ and $y = pr2(l_2)$ and p, q are homotopic and x, y are homotopic. Then l_1, l_2 are homotopic.

ARTUR KORNIŁOWICZ

- (23) Let l_1 be a path from $\langle s_1, t_1 \rangle$ to $\langle s_2, t_2 \rangle$, l_2 be a path from $\langle s_2, t_2 \rangle$ to $\langle s_3, t_3 \rangle$, p_1 be a path from s_1 to s_2 , and p_2 be a path from s_2 to s_3 . Suppose $\langle s_1, t_1 \rangle$, $\langle s_2, t_2 \rangle$ are connected and $\langle s_2, t_2 \rangle$, $\langle s_3, t_3 \rangle$ are connected and $p_1 = \text{pr1}(l_1)$ and $p_2 = \text{pr1}(l_2)$. Then $\text{pr1}(l_1 + l_2) = p_1 + p_2$.
- (24) Let S, T be non empty arcwise connected topological spaces, s_1, s_2, s_3 be points of S, t_1, t_2, t_3 be points of T, l_1 be a path from $\langle s_1, t_1 \rangle$ to $\langle s_2, t_2 \rangle$, and l_2 be a path from $\langle s_2, t_2 \rangle$ to $\langle s_3, t_3 \rangle$. Then $\operatorname{prl}(l_1 + l_2) = \operatorname{prl}(l_1) + \operatorname{prl}(l_2)$.
- (25) Let l_1 be a path from $\langle s_1, t_1 \rangle$ to $\langle s_2, t_2 \rangle$, l_2 be a path from $\langle s_2, t_2 \rangle$ to $\langle s_3, t_3 \rangle$, p_1 be a path from t_1 to t_2 , and p_2 be a path from t_2 to t_3 . Suppose $\langle s_1, t_1 \rangle$, $\langle s_2, t_2 \rangle$ are connected and $\langle s_2, t_2 \rangle$, $\langle s_3, t_3 \rangle$ are connected and $p_1 = \text{pr2}(l_1)$ and $p_2 = \text{pr2}(l_2)$. Then $\text{pr2}(l_1 + l_2) = p_1 + p_2$.
- (26) Let S, T be non empty arcwise connected topological spaces, s_1, s_2, s_3 be points of S, t_1, t_2, t_3 be points of T, l_1 be a path from $\langle s_1, t_1 \rangle$ to $\langle s_2, t_2 \rangle$, and l_2 be a path from $\langle s_2, t_2 \rangle$ to $\langle s_3, t_3 \rangle$. Then $\operatorname{pr2}(l_1 + l_2) = \operatorname{pr2}(l_1) + \operatorname{pr2}(l_2)$.

Let S, T be non empty topological spaces, let s be a point of S, and let t be a point of T. The functor FGPrIso(s, t) yielding a map from $\pi_1([S, T], \langle s, t \rangle)$ into $\prod \langle \pi_1(S, s), \pi_1(T, t) \rangle$ is defined as follows:

(Def. 2) For every point x of $\pi_1([S, T], \langle s, t \rangle)$ there exists a loop l of $\langle s, t \rangle$ such that $x = [l]_{\text{EqRel}([S,T], \langle s, t \rangle)}$ and $(\text{FGPrIso}(s,t))(x) = \langle [\text{pr1}(l)]_{\text{EqRel}(S,s)}, [\text{pr2}(l)]_{\text{EqRel}(T,t)} \rangle$.

The following propositions are true:

- (27) For every point x of $\pi_1([S, T], \langle s, t \rangle)$ and for every loop l of $\langle s, t \rangle$ such that $x = [l]_{\text{EqRel}([S,T], \langle s, t \rangle)}$ holds $(\text{FGPrIso}(s,t))(x) = \langle [\text{pr1}(l)]_{\text{EqRel}(S,s)}, [\text{pr2}(l)]_{\text{EqRel}(T,t)} \rangle$.
- (28) For every loop l of $\langle s, t \rangle$ holds $(\text{FGPrIso}(s, t))([l]_{\text{EqRel}([S,T], \langle s, t \rangle)}) = \langle [\text{pr1}(l)]_{\text{EqRel}(S,s)}, [\text{pr2}(l)]_{\text{EqRel}(T,t)} \rangle.$

Let S, T be non empty topological spaces, let s be a point of S, and let t be a point of T. Observe that FGPrIso(s, t) is one-to-one and onto.

Let S, T be non empty topological spaces, let s be a point of S, and let t be a point of T. Then FGPrIso(s, t) is a homomorphism from $\pi_1([S, T], \langle s, t \rangle)$ to $\prod \langle \pi_1(S, s), \pi_1(T, t) \rangle$.

The following propositions are true:

- (29) FGPrIso(s, t) is an isomorphism.
- (30) $\pi_1([S, T], \langle s, t \rangle)$ and $\prod \langle \pi_1(S, s), \pi_1(T, t) \rangle$ are isomorphic.
- (31) Let f be a homomorphism from $\pi_1(S, s_1)$ to $\pi_1(S, s_2)$ and g be a homomorphism from $\pi_1(T, t_1)$ to $\pi_1(T, t_2)$. Suppose f is an isomorphism and g is an isomorphism. Then $\operatorname{Gr2Iso}(f, g) \cdot \operatorname{FGPrIso}(s_1, t_1)$ is an isomorphism.

424

(32) Let S, T be non empty arcwise connected topological spaces, s_1, s_2 be points of S, and t_1, t_2 be points of T. Then $\pi_1([S, T], \langle s_1, t_1 \rangle)$ and $\prod \langle \pi_1(S, s_2), \pi_1(T, t_2) \rangle$ are isomorphic.

References

- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [2] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91–101, 1993.
- [3] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
- [4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
 [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
- 1990. [7] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47–53,
- 1990.
 [8] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4):449-454, 1997.
- [9] Adam Grabowski and Artur Korniłowicz. Algebraic properties of homotopies. Formalized Mathematics, 12(3):251–260, 2004.
- [10] Artur Korniłowicz. The product of the families of the groups. Formalized Mathematics, 7(1):127–134, 1998.
- [11] Artur Korniłowicz, Yasunari Shidama, and Adam Grabowski. The fundamental group. Formalized Mathematics, 12(3):261–268, 2004.
- [12] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [14] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [16] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535–545, 1991.
- [17] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
- [18] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573–578, 1991.
- [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received August 20, 2004