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The terminology and notation used in this paper are introduced in the following
papers: [17], [19], [1], [4], [16], [8], [14], [2], [3], [5], [18], [13], [7], [9], [6], [15],
[11], [12], and [10].

1. PRELIMINARIES

For simplicity, we follow the rules: n denotes a natural number, a, b, r denote
real numbers, z, y, z denote points of £}, and e denotes a point of £".
The following propositions are true:
1) z—y—z=x—2—y.
(2) Ifx+y==x+z theny=z.
(3) If n is non empty, then x # = + 1.REALn.
(4)

4) For every set x such that z = (1 —7r)-y+r-zholdsx =y iff r =0 or

y=zandx=ziffr=1ory==z.
(5) For every finite sequence f of elements of R holds |f|? = > 2f.

(6) For every non empty metric space M and for all points z1, zo, 23 of M
such that z; # 22 and z; € Ball(z3,7) and z9 € Ball(z3, ) holds r > 0.

!The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-
versity, Japan. This work has been partially supported by KBN grant 4 T11C 039 24.

@ 2004 University of Bialystok
301 ISSN 1426-2630



302 ARTUR KORNILOWICZ AND YASUNARI SHIDAMA
2. SUBSETS OF &

Let n be a natural number, let 2 be a point of £}, and let r be a real number.
The functor Ball(z,r) yields a subset of £} and is defined by:

(Def. 1) Ball(z,r) = {p; p ranges over points of EL: |p — x| < r}.

The functor Ball(z,) yielding a subset of £ is defined by:
(Def. 2) Ball(z,r) = {p; p ranges over points of EL: [p — z| < r}.

The functor Sphere(z, ) yielding a subset of £} is defined as follows:
(Def. 3) Sphere(x,r) = {p; p ranges over points of E¢: [p — z| = r}.

We now state a number of propositions:

J

y € Ball(z,r) iff |y — x| < r.
y € Ball(z,r) iff |y — | <.
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y € Sphere(z,r) iff |y — x| =r.

If y € Ball(Ogn,7), then |y| <r.

If y € Ball(Ogz, 7), then |y| <.

If y € Sphere((Ogz), ), then |y| =r.
If x = e, then Ball(e, ) = Ball(z, r).
If 2 = e, then Ball(e,r) = Ball(z, r).
If x = e, then Sphere(e, r) = Sphere(z, r).
Ball(z, ) C Ball(xz, 7).

Sphere(z,r) C Ball(x, 7).

Ball(z, r) U Sphere(z,r) = Ball(z, r).
Ball(z, ) misses Sphere(z,r).

O e
N = O

— = = ==
N O Ot s W
N’ N e e e e e e S S N N N

AAAAA,_\A/_\,_\A
—

—_
Ne)

Let us consider n, x and let 7 be a non positive real number. One can check
that Ball(z,r) is empty.
Let us consider n, x and let r be a positive real number. Note that Ball(x,r)
is non empty.
One can prove the following propositions:
(20) If Ball(z,r) is non empty, then r > 0.
(21) If Ball(z,r) is empty, then r < 0.
Let us consider n, x and let » be a negative real number. Observe that
Ball(z,r) is empty.
Let us consider n, x and let r be a non negative real number. Observe that
Ball(z,7) is non empty.
The following three propositions are true:
(22) If Ball(z,r) is non empty, then r > 0.
(23) If Ball(z,r) is empty, then r < 0.
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(24) fa+b=1and |a|+|b) =1 and b # 0 and = € Ball(z,r) and y €
Ball(z,7), then a-x + b -y € Ball(z,r).
Let us consider n, z, r. One can check the following observations:
« Ball(x,r) is open and Bounded,
% Ball(z,r) is closed and Bounded, and
*  Sphere(x,r) is closed and Bounded.
Let us consider n, z, r. Observe that Ball(x,r) is convex and Ball(z,7) is
convex.
Let n be a natural number and let f be a map from &7 into £F. We say that
f is homogeneous if and only if:
(Def. 4)  For every real number r and for every point = of £F holds f(r-x) = r-f(x).
We say that f is additive if and only if:
(Def. 5) For all points x, y of £ holds f(x +y) = f(x) + f(y).
Let us consider n. One can verify that (£F) —— Ogn is homogeneous and
additive.
Let us consider n. Observe that there exists a map from &7 into £F which
is homogeneous, additive, and continuous.
Let a, ¢ be real numbers. One can check that AffineMap(a, 0, ¢,0) is homo-
geneous and additive.
One can prove the following proposition
(25) For every homogeneous additive map f from £ into £} and for every
convex subset X of £} holds f°X is convex.
In the sequel p, ¢ are points of £F.
Let n be a natural number and let p, ¢ be points of £F. The functor HL(p, q)
yields a subset of £} and is defined by:
(Def. 6) HL(p,q) = {(1 —1) - p+1- ¢;1 ranges over real numbers: 0 < [}.
One can prove the following proposition
(26) For every set x holds = € HL(p, q) iff there exists a real number [ such
that c =(1—1)-p+1l-qand 0 <.
Let us consider n, p, ¢. One can verify that HL(p, ¢) is non empty.
The following propositions are true:

27) p e HL(p,q).
28) ¢ € HL(p,q).
29) HL(p,p) = {p}.

If x € HL(p, ¢), then HL(p, z) C HL(p, q).
31) If x € HL(p,q) and x # p, then HL(p, q) = HL(p, x).

32) L(p,q) € HL(p,q).
Let us consider n, p, q. Note that HL(p, ¢) is convex.
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One can prove the following propositions:



304 ARTUR KORNILOWICZ AND YASUNARI SHIDAMA

(33) If y € Sphere(z,r) and z € Ball(z, ), then L(y, z) N Sphere(x,r) = {y}.
(34) Ify € Sphere(z,r) and z € Sphere(z, ), then L(y, 2)\{y, z} C Ball(x,r).
(35) If y € Sphere(z,r) and z € Sphere(x,r), then L(y, z) N Sphere(x,r) =
{v, 2}-
(36) If y € Sphere(z,r) and z € Sphere(z, ), then HL(y, z) N Sphere(z,r) =
{y,2}.
(37) Ify # z and y € Ball(z,r), then there exists a point e of £ such that
{e} = HL(y, z) N Sphere(z, ).
(38) If y # z and y € Sphere(x,r) and z € Ball(z,r), then there exists a
point e of £ such that e # y and {y, e} = HL(y, z) N Sphere(z, 7).
Let us consider n, x and let » be a negative real number. Observe that
Sphere(x, r) is empty.
Let n be a non empty natural number, let  be a point of £}, and let r be
a non negative real number. Observe that Sphere(z,r) is non empty.
Next we state two propositions:
(39) If Sphere(z,r) is non empty, then r > 0.
(40) If n is non empty and Sphere(z,r) is empty, then r < 0.

3. SUBSETS OF &2

In the sequel s, t are points of 8%.
The following propositions are true:
(41) (a-s+b-t)y =a-s1+0b-t;.
(42) (a-s+b-t)g=a-s2+b-ta.
(43) t € Circle(a,b,r) iff |t — [a,b]| = 1.
(44) t € ClosedInsideOfCircle(a, b, r) iff |t — [a,b]| < r.
(45) t € InsideOfCircle(a, b, r) iff |t — [a, b]| < 7.
Let a, b be real numbers and let r be a positive real number. Observe that
InsideOfCircle(a, b, r) is non empty.
Let a, b be real numbers and let r be a non negative real number. Observe
that ClosedInsideOfCircle(a, b, ) is non empty.
We now state a number of propositions:

(46) Circle(a,b,r) C ClosedInsideOfCircle(a, b, r).

(47) For every point z of £? such that z = [a,b] holds Ball(z,r) =
ClosedInsideOfCircle(a, b, r).
(48) TFor every point x of £ such that # = [a,b] holds Ball(z,r) =

InsideOfCircle(a, b, ).
(49) For every point z of £2 such that z = [a,b] holds Sphere(z,r) =
Circle(a,b,r).
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Ball([a, b], 7) = InsideOfCircle(a, b, 7).
Ball([a, b],r) = ClosedInsideOfCircle(a, b, ).
Sphere([a, b], ) = Circle(a, b, r).
InsideOfCircle(a, b, r) C ClosedInsideOfCircle(a, b, ).
InsideOfCircle(a, b, r) misses Circle(a,b,r).
InsideOfCircle(a, b, ) U Circle(a, b, ) = ClosedInsideOfCircle(a, b, 7).
If s € Sphere((0gz ), 7), then (51)% + (s2)% = r2.
If s # t and s € ClosedlnsideOfCircle(a,b,7) and t €
ClosedInsideOfCircle(a, b, ), then r > 0.
(58) If s #t and s € InsideOfCircle(a, b, ), then there exists a point e of £2
such that {e} = HL(s, t) N Circle(a, b, r).
(59) If s € Circle(a,b,r) and ¢t € InsideOfCircle(a,b,r), then L(s,t) N
Circle(a, b,r) = {s}.
(60) If s € Circle(a,b,r) and t € Circle(a,b,r), then L(s,t) \ {s,t} C
InsideOfCircle(a, b, r).
(61) 1If s € Circle(a,b,r) and t € Circle(a, b, r), then L(s,t) N Circle(a, b,r) =
{s,t}.
(62) If s € Circle(a,b,r) and t € Circle(a, b, ), then HL(s, t)NCircle(a, b,r) =
{s,t}.
(63) If s # t and s € Circle(a,b,r) and t € ClosedInsideOfCircle(a, b, ),

then there exists a point e of £% such that e # s and {s,e} = HL(s,t) N
Circle(a, b, r).

Let a, b, r be real numbers. Observe that InsideOfCircle(a, b, r) is convex
and ClosedInsideOfCircle(a, b, r) is convex.
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