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Summary. This article is part of a series of Mizar articles which constitute

a formal proof (of a basic version) of Kurt Gödel’s famous completeness theorem

(K. Gödel, “Die Vollständigkeit der Axiome des logischen Funktionenkalküls”,

Monatshefte für Mathematik und Physik 37 (1930), 349–360). The completeness

theorem provides the theoretical basis for a uniform formalization of mathematics

as in the Mizar project. We formalize first-order logic up to the completeness

theorem as in H. D. Ebbinghaus, J. Flum, and W. Thomas, Mathematical Logic,

1984, Springer Verlag New York Inc. The present article contains the proof of

a simplified completeness theorem for a countable relational language without

equality.

MML Identifier: GOEDELCP.

The notation and terminology used in this paper are introduced in the following

articles: [19], [13], [21], [2], [4], [11], [16], [1], [17], [10], [23], [14], [22], [24], [12],

[15], [18], [20], [3], [8], [5], [9], [7], and [6].

1. Henkin’s Theorem

For simplicity, we adopt the following convention: X, Y denote subsets of

CQC-WFF, n denotes a natural number, p, q denote elements of CQC-WFF,

x, y denote bound variables, A denotes a non empty set, J denotes an inter-

pretation of A, v denotes an element of V(A), f1 denotes a finite sequence of

1This research was carried out within the project “Wissensformate” and was finan-

cially supported by the Mathematical Institute of the University of Bonn (http://www.-

wissensformate.uni-bonn.de). Preparation of the Mizar code was part of the first author’s

graduate work under the supervision of the second author. The authors thank Jip Veldman

for his work on the final version of this article.
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elements of CQC-WFF, C1, C2, C3 denote consistent subsets of CQC-WFF, J1

denotes a Henkin interpretation of C1, and a denotes an element of A.

Let us consider X. We say that X is negation faithful if and only if:

(Def. 1) X ⊢ p or X ⊢ ¬p.

Let us consider X. We say that X has examples if and only if:

(Def. 2) For all x, p there exists y such that X ⊢ ¬∃xp ∨ p(x, y).

One can prove the following propositions:

(1) If C1 is negation faithful, then C1 ⊢ p iff C1 0 ¬p.

(2) For every finite sequence f of elements of CQC-WFF such that ⊢ f a

〈¬p ∨ q〉 and ⊢ f a 〈p〉 holds ⊢ f a 〈q〉.

(3) If X has examples, then X ⊢ ∃xp iff there exists y such that X ⊢ p(x,

y).

(4) Suppose if C1 is negation faithful and has examples, then J1, valH |=

p iff C1 ⊢ p. Suppose C1 is negation faithful and has examples. Then

J1, valH |= ¬p if and only if C1 ⊢ ¬p.

(5) If ⊢ f1
a 〈p〉 and ⊢ f1

a 〈q〉, then ⊢ f1
a 〈p ∧ q〉.

(6) X ⊢ p and X ⊢ q iff X ⊢ p ∧ q.

(7) Suppose that

(i) if C1 is negation faithful and has examples, then J1, valH |= p iff C1 ⊢ p,

and

(ii) if C1 is negation faithful and has examples, then J1, valH |= q iff C1 ⊢ q.

Suppose C1 is negation faithful and has examples. Then J1, valH |= p ∧ q

if and only if C1 ⊢ p ∧ q.

(8) Let given p. Suppose the number of quantifiers in p ≤ 0. If C1 is negation

faithful and has examples, then J1, valH |= p iff C1 ⊢ p.

(9) J, v |= ∃xp iff there exists a such that J, v(x↾a) |= p.

(10) J1, valH |= ∃xp iff there exists y such that J1, valH |= p(x, y).

(11) J, v |= ¬∃x¬p iff J, v |= ∀xp.

(12) X ⊢ ¬∃x¬p iff X ⊢ ∀xp.

(13) The number of quantifiers in ∃xp = (the number of quantifiers in p) + 1.

(14) The number of quantifiers in p = the number of quantifiers in p(x, y).

In the sequel a denotes a set.

The following three propositions are true:

(15) Let given p. Suppose the number of quantifiers in p = 1. If C1 is negation

faithful and has examples, then J1, valH |= p iff C1 ⊢ p.

(16) Let given n. Suppose that for every p such that the number of quantifiers

in p ≤ n holds if C1 is negation faithful and has examples, then J1, valH |=

p iff C1 ⊢ p. Let given p. Suppose the number of quantifiers in p ≤ n + 1.

If C1 is negation faithful and has examples, then J1, valH |= p iff C1 ⊢ p.
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(17) For every p such that C1 is negation faithful and has examples holds

J1, valH |= p iff C1 ⊢ p.

2. Satisfiability of Consistent Sets of Formulas with Finitely

Many Free Variables

The following proposition is true

(18) WFF is countable.

The subset ExCl of CQC-WFF is defined by:

(Def. 3) a ∈ ExCl iff there exist x, p such that a = ∃xp.

The following propositions are true:

(19) CQC-WFF is countable.

(20) ExCl is non empty and ExCl is countable.

Let p be an element of WFF. Let us assume that p is existential. The

functor ExBound(p) yielding a bound variable is defined as follows:

(Def. 4) There exists an element q of WFF such that p = ∃ExBound(p)q.

Let p be an element of CQC-WFF. Let us assume that p is existential. The

functor ExScope(p) yielding an element of CQC-WFF is defined by:

(Def. 5) There exists x such that p = ∃x ExScope(p).

Let F be a function from N into CQC-WFF and let a be a natural number.

The bound in F (a) yields a bound variable and is defined as follows:

(Def. 6) If p = F (a), then the bound in F (a) = ExBound(p).

Let F be a function from N into CQC-WFF and let a be a natural number.

The scope of F (a) yields an element of CQC-WFF and is defined by:

(Def. 7) If p = F (a), then the scope of F (a) = ExScope(p).

Let us consider X. The functor snb(X) yields an element of 2BoundVar and

is defined by:

(Def. 8) snb(X) =
⋃
{snb(p) : p ∈ X}.

Next we state a number of propositions:

(21) If p ∈ X, then X ⊢ p.

(22) ExBound(∃xp) = x and ExScope(∃xp) = p.

(23) X ⊢ VERUM .

(24) X ⊢ ¬VERUM iff X is inconsistent.

(25) For all finite sequences f , g of elements of CQC-WFF such that 0 < len f

and ⊢ f a 〈p〉 holds ⊢ (Ant(f)) a g a 〈Suc(f)〉 a 〈p〉.

(26) snb({p}) = snb(p).

(27) snb(X ∪ Y ) = snb(X) ∪ snb(Y ).



52 patrick braselmann and peter koepke

(28) For every element A of 2BoundVar such that A is finite there exists x such

that x /∈ A.

(29) If X ⊆ Y, then snb(X) ⊆ snb(Y ).

(30) For every finite sequence f of elements of CQC-WFF holds snb(rng f) =

snb(f).

(31) If snb(C1) is finite, then there exists C2 such that C1 ⊆ C2 and C2 has

examples.

(32) If X ⊢ p and X ⊆ Y, then Y ⊢ p.

(33) If C1 has examples, then there exists C2 such that C1 ⊆ C2 and C2 is

negation faithful and has examples.

In the sequel J2 denotes a Henkin interpretation of C3, J denotes an inter-

pretation of A, and v denotes an element of V(A).

We now state the proposition

(34) If snb(C1) is finite, then there exist C3, J2 such that J2, valH |= C1.

3. Gödel’s Completeness Theorem

We now state four propositions:

(35) If J, v |= X and Y ⊆ X, then J, v |= Y.

(36) If snb(X) is finite, then snb(X ∪ {p}) is finite.

(37) If X |= p, then J, v 6|= X ∪ {¬p}.

(38) If snb(X) is finite and X |= p, then X ⊢ p.
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[13] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[14] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[15] Agata Darmochwa l and Andrzej Trybulec. Similarity of formulae. Formalized Mathemat-

ics, 2(5):635–642, 1991.
[16] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics,

1(2):303–311, 1990.
[17] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[18] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[20] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.
[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[22] Edmund Woronowicz. Interpretation and satisfiability in the first order logic. Formalized

Mathematics, 1(4):739–743, 1990.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[24] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received September 5, 2004


