Construction of Gröbner Bases: Avoiding S-Polynomials – Buchberger's First Criterium¹

Christoph Schwarzweller University of Gdańsk

Summary. We continue the formalization of Groebner bases following the book "Groebner Bases – A Computational Approach to Commutative Algebra" by Becker and Weispfenning. Here we prove Buchberger's first criterium on avoiding S-polynomials: S-polynomials for polynomials with disjoint head terms need not be considered when constructing Groebner bases. In the course of formalizing this theorem we also introduced the splitting of a polynomial in an upper and a lower polynomial containing the greater resp. smaller terms of the original polynomial with respect to a given term order.

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{GROEB_3}.$

The terminology and notation used in this paper have been introduced in the following articles: [24], [28], [29], [31], [1], [3], [12], [2], [8], [30], [9], [10], [17], [25], [16], [26], [11], [7], [5], [15], [13], [19], [27], [6], [4], [14], [23], [20], [22], [21], and [18].

1. Preliminaries

One can prove the following propositions:

- (1) For every set X and for all bags b_1 , b_2 of X holds $\frac{b_1+b_2}{b_2} = b_1$.
- (2) Let n be an ordinal number, T be an admissible term order of n, and b_1 , b_2 , b_3 be bags of n. If $b_1 \leq_T b_2$, then $b_1 + b_3 \leq_T b_2 + b_3$.
- (3) Let n be an ordinal number, T be a term order of n, and b_1 , b_2 , b_3 be bags of n. If $b_1 \leq_T b_2$ and $b_2 <_T b_3$, then $b_1 <_T b_3$.

C 2005 University of Białystok ISSN 1426-2630

¹This work has been partially supported by grant BW 5100-5-0147-4.

CHRISTOPH SCHWARZWELLER

- (4) Let n be an ordinal number, T be an admissible term order of n, and b_1 , b_2 , b_3 be bags of n. If $b_1 <_T b_2$, then $b_1 + b_3 <_T b_2 + b_3$.
- (5) Let n be an ordinal number, T be an admissible term order of n, and b_1 , b_2 , b_3 , b_4 be bags of n. If $b_1 <_T b_2$ and $b_3 \leq_T b_4$, then $b_1 + b_3 <_T b_2 + b_4$.
- (6) Let n be an ordinal number, T be an admissible term order of n, and b_1 , b_2 , b_3 , b_4 be bags of n. If $b_1 \leq_T b_2$ and $b_3 <_T b_4$, then $b_1 + b_3 <_T b_2 + b_4$.

2. More on Polynomials

One can prove the following propositions:

- (7) Let *n* be an ordinal number, *L* be an add-associative right complementable right zeroed unital distributive integral domain-like non trivial double loop structure, and m_1 , m_2 be non-zero monomials of *n*, *L*. Then term $m_1 * m_2 = \text{term } m_1 + \text{term } m_2$.
- (8) Let n be an ordinal number, L be an add-associative right complementable right zeroed unital distributive integral domain-like non trivial double loop structure, p be a polynomial of n, L, m be a non-zero monomial of n, L, and b be a bag of n. Then $b \in \text{Support } p$ if and only if $\text{term } m + b \in \text{Support}(m * p)$.
- (9) Let n be an ordinal number, L be an add-associative right complementable right zeroed unital distributive integral domain-like non trivial double loop structure, p be a polynomial of n, L, and m be a non-zero monomial of n, L. Then $\text{Support}(m * p) = \{\text{term } m + b; b \text{ ranges over} elements of Bags n : b \in \text{Support } p\}.$
- (10) Let n be an ordinal number, L be an add-associative right complementable left zeroed right zeroed unital distributive integral domain-like non trivial double loop structure, p be a polynomial of n, L, and m be a non-zero monomial of n, L. Then card Support p = card Support(m * p).
- (11) Let n be an ordinal number, T be a connected term order of n, and L be an add-associative right complementable right zeroed non trivial loop structure. Then $\operatorname{Red}(0_n L, T) = 0_n L$.
- (12) Let n be an ordinal number, L be an Abelian add-associative right zeroed right complementable commutative unital distributive non trivial double loop structure, and p, q be polynomials of n, L. If $p-q = 0_n L$, then p = q.
- (13) Let X be a set and L be an add-associative right zeroed right complementable non empty loop structure. Then $-0_X L = 0_X L$.
- (14) Let X be a set, L be an add-associative right zeroed right complementable non empty loop structure, and f be a series of X, L. Then $0_X L - f = -f$.

148

(15) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed non trivial double loop structure, and p be a polynomial of n, L. Then p - Red(p, T) = HM(p, T).

Let n be an ordinal number, let L be an add-associative right complementable right zeroed non empty loop structure, and let p be a polynomial of n, L. Observe that Support p is finite.

Let n be an ordinal number, let L be a right zeroed add-associative right complementable unital distributive non trivial double loop structure, and let p, q be polynomials of n, L. Then $\{p, q\}$ is a non empty finite subset of Polynom-Ring(n, L).

3. Restriction and Splitting of Polynomials

Let X be a set, let L be a non empty zero structure, let s be a series of X, L, and let Y be a subset of Bags X. The functor $s \upharpoonright Y$ yields a series of X, L and is defined as follows:

(Def. 1) $s \upharpoonright Y = s + \cdot (\text{Support } s \setminus Y \longmapsto 0_L).$

Let n be an ordinal number, let L be a non empty zero structure, let p be a polynomial of n, L, and let Y be a subset of Bags n. Note that $p \upharpoonright Y$ is finite-Support.

Next we state three propositions:

- (16) Let X be a set, L be a non empty zero structure, s be a series of X, L, and Y be a subset of Bags X. Then $\text{Support}(s \upharpoonright Y) = \text{Support} s \cap Y$ and for every bag b of X such that $b \in \text{Support}(s \upharpoonright Y)$ holds $(s \upharpoonright Y)(b) = s(b)$.
- (17) Let X be a set, L be a non empty zero structure, s be a series of X, L, and Y be a subset of Bags X. Then $\operatorname{Support}(s \upharpoonright Y) \subseteq \operatorname{Support} s$.
- (18) For every set X and for every non empty zero structure L and for every series s of X, L holds $s \upharpoonright \text{Support} s = s$ and $s \upharpoonright \emptyset_{\text{Bags } X} = 0_X L$.

Let n be an ordinal number, let T be a connected term order of n, let L be an add-associative right zeroed right complementable non empty loop structure, let p be a polynomial of n, L, and let i be a natural number. Let us assume that $i \leq \text{card Support } p$. The functor UpperSupport(p, T, i) yielding a finite subset of Bags n is defined by the conditions (Def. 2).

- (Def. 2)(i) UpperSupport $(p, T, i) \subseteq$ Support p,
 - (ii) card UpperSupport(p, T, i) = i, and
 - (iii) for all bags b, b' of n such that $b \in \text{UpperSupport}(p, T, i)$ and $b' \in \text{Support } p$ and $b \leq_T b'$ holds $b' \in \text{UpperSupport}(p, T, i)$.

Let n be an ordinal number, let T be a connected term order of n, let L be an add-associative right zeroed right complementable non empty loop structure, let p be a polynomial of n, L, and let i be a natural number. The functor LowerSupport(p, T, i) yielding a finite subset of Bags n is defined by:

- (Def. 3) LowerSupport(p, T, i) = Support $p \setminus$ UpperSupport(p, T, i). We now state several propositions:
 - (19) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right zeroed right complementable non empty loop structure, p be a polynomial of n, L, and i be a natural number. If $i \leq \text{card Support } p$, then $\text{UpperSupport}(p, T, i) \cup \text{LowerSupport}(p, T, i) =$ Support p and $\text{UpperSupport}(p, T, i) \cap \text{LowerSupport}(p, T, i) = \emptyset$.
 - (20) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right zeroed right complementable non empty loop structure, p be a polynomial of n, L, and i be a natural number. Suppose $i \leq \text{card Support } p$. Let b, b' be bags of n. If $b \in \text{UpperSupport}(p, T, i)$ and $b' \in \text{LowerSupport}(p, T, i)$, then $b' <_T b$.
 - (21) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right zeroed right complementable non empty loop structure, and p be a polynomial of n, L. Then $\text{UpperSupport}(p, T, 0) = \emptyset$ and LowerSupport(p, T, 0) = Support p.
 - (22) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right zeroed right complementable non empty loop structure, and p be a polynomial of n, L. Then UpperSupport(p, T, card Support p) =Support p and LowerSupport $(p, T, \text{card Support } p) = \emptyset$.
 - (23) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right zeroed right complementable non trivial loop structure, p be a non-zero polynomial of n, L, and i be a natural number. If $1 \le i$ and $i \le \operatorname{card} \operatorname{Support} p$, then $\operatorname{HT}(p,T) \in \operatorname{UpperSupport}(p,T,i)$.
 - (24) Let *n* be an ordinal number, *T* be a connected term order of *n*, *L* be an add-associative right zeroed right complementable non empty loop structure, *p* be a polynomial of *n*, *L*, and *i* be a natural number. Suppose $i \leq \text{card Support } p$. Then $\text{LowerSupport}(p, T, i) \subseteq \text{Support } p$ and card LowerSupport(p, T, i) = card Support p i and for all bags *b*, *b'* of *n* such that $b \in \text{LowerSupport}(p, T, i)$ and $b' \in \text{Support } p$ and $b' \leq_T b$ holds $b' \in \text{LowerSupport}(p, T, i)$.

Let n be an ordinal number, let T be a connected term order of n, let L be an add-associative right zeroed right complementable non empty loop structure, let p be a polynomial of n, L, and let i be a natural number. The functor Up(p, T, i) yields a polynomial of n, L and is defined by:

(Def. 4) $\operatorname{Up}(p, T, i) = p \upharpoonright \operatorname{UpperSupport}(p, T, i).$

The functor Low(p, T, i) yielding a polynomial of n, L is defined by:

(Def. 5) $\text{Low}(p, T, i) = p \upharpoonright \text{LowerSupport}(p, T, i).$

One can prove the following propositions:

150

- (25) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right zeroed right complementable non empty loop structure, p be a polynomial of n, L, and i be a natural number. If $i \leq \operatorname{card} \operatorname{Support} p$, then $\operatorname{Support} \operatorname{Up}(p, T, i) = \operatorname{UpperSupport}(p, T, i)$ and $\operatorname{Support} \operatorname{Low}(p, T, i) = \operatorname{LowerSupport}(p, T, i)$.
- (26) Let *n* be an ordinal number, *T* be a connected term order of *n*, *L* be an add-associative right zeroed right complementable non empty loop structure, *p* be a polynomial of *n*, *L*, and *i* be a natural number. If $i \leq \operatorname{card} \operatorname{Support} p$, then $\operatorname{Support} \operatorname{Up}(p, T, i) \subseteq \operatorname{Support} p$ and $\operatorname{Support} \operatorname{Low}(p, T, i) \subseteq \operatorname{Support} p$.
- (27) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed non trivial loop structure, p be a polynomial of n, L, and i be a natural number. If $1 \le i$ and $i \le \operatorname{card} \operatorname{Support} p$, then $\operatorname{Support} \operatorname{Low}(p, T, i) \subseteq \operatorname{Support} \operatorname{Red}(p, T)$.
- (28) Let *n* be an ordinal number, *T* be a connected term order of *n*, *L* be an add-associative right zeroed right complementable non empty loop structure, *p* be a polynomial of *n*, *L*, and *i* be a natural number. Suppose $i \leq \text{card Support } p$. Let *b* be a bag of *n*. If $b \in$ Support *p*, then $b \in \text{Support Up}(p, T, i)$ or $b \in \text{Support Low}(p, T, i)$ but $b \notin \text{Support Up}(p, T, i) \cap \text{Support Low}(p, T, i)$.
- (29) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right zeroed right complementable non empty loop structure, p be a polynomial of n, L, and i be a natural number. Suppose $i \leq \text{card Support } p$. Let b, b' be bags of n. If $b \in \text{Support Low}(p, T, i)$ and $b' \in \text{Support Up}(p, T, i)$, then $b <_T b'$.
- (30) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right zeroed right complementable non empty loop structure, p be a polynomial of n, L, and i be a natural number. If $1 \le i$ and $i \le \operatorname{card} \operatorname{Support} p$, then $\operatorname{HT}(p, T) \in \operatorname{Support} \operatorname{Up}(p, T, i)$.
- (31) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right zeroed right complementable non empty loop structure, p be a polynomial of n, L, and i be a natural number. Suppose $i \leq \text{card Support } p$. Let b be a bag of n. If $b \in \text{Support Low}(p, T, i)$, then (Low(p, T, i))(b) = p(b) and $(\text{Up}(p, T, i))(b) = 0_L$.
- (32) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right zeroed right complementable non empty loop structure, p be a polynomial of n, L, and i be a natural number. Suppose $i \leq \operatorname{card} \operatorname{Support} p$. Let b be a bag of n. If $b \in \operatorname{Support} \operatorname{Up}(p,T,i)$, then $(\operatorname{Up}(p,T,i))(b) = p(b)$ and $(\operatorname{Low}(p,T,i))(b) = 0_L$.
- (33) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right zeroed right complementable non empty loop

structure, p be a polynomial of n, L, and i be a natural number. If $i \leq \operatorname{card} \operatorname{Support} p$, then $\operatorname{Up}(p, T, i) + \operatorname{Low}(p, T, i) = p$.

- (34) Let *n* be an ordinal number, *T* be a connected term order of *n*, *L* be an add-associative right zeroed right complementable non empty loop structure, and *p* be a polynomial of *n*, *L*. Then $\text{Up}(p, T, 0) = 0_n L$ and Low(p, T, 0) = p.
- (35) Let *n* be an ordinal number, *T* be a connected term order of *n*, *L* be an add-associative right zeroed right complementable Abelian non empty double loop structure, and *p* be a polynomial of *n*, *L*. Then $\operatorname{Up}(p, T, \operatorname{card} \operatorname{Support} p) = p$ and $\operatorname{Low}(p, T, \operatorname{card} \operatorname{Support} p) = 0_n L$.
- (36) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right zeroed right complementable Abelian non trivial double loop structure, and p be a non-zero polynomial of n, L. Then Up(p,T,1) = HM(p,T) and Low(p,T,1) = Red(p,T).

Let n be an ordinal number, let T be a connected term order of n, let L be an add-associative right zeroed right complementable non trivial loop structure, and let p be a non-zero polynomial of n, L. Observe that Up(p,T,0) is monomial-like.

Let n be an ordinal number, let T be a connected term order of n, let L be an add-associative right zeroed right complementable Abelian non trivial double loop structure, and let p be a non-zero polynomial of n, L. Note that Up(p, T, 1)is non-zero and monomial-like and Low(p, T, card Support p) is monomial-like.

The following propositions are true:

- (37) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right zeroed right complementable non trivial loop structure, p be a polynomial of n, L, and j be a natural number. If $j = \operatorname{card} \operatorname{Support} p 1$, then $\operatorname{Low}(p, T, j)$ is a non-zero monomial of n, L.
- (38) Let n be an ordinal number, T be a connected admissible term order of n, L be an add-associative right zeroed right complementable non empty loop structure, p be a polynomial of n, L, and i be a natural number. If $i < \operatorname{card} \operatorname{Support} p$, then $\operatorname{HT}(\operatorname{Low}(p,T,i+1),T) \leq_T \operatorname{HT}(\operatorname{Low}(p,T,i),T)$.
- (39) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right zeroed right complementable non empty loop structure, p be a polynomial of n, L, and i be a natural number. If 0 < i and i < card Support p, then $\text{HT}(\text{Low}(p,T,i),T) <_T \text{HT}(p,T)$.
- (40) Let n be an ordinal number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed unital distributive integral domain-like non trivial double loop structure, p be a polynomial of n, L, m be a non-zero monomial of n, L, and i be a natural number. Suppose $i \leq \text{card Support } p$. Let b be a bag of n. Then term $m+b \in \text{Support Low}(m*p,T,i)$ if and only if $b \in \text{Support Low}(p,T,i)$.

- (41) Let n be an ordinal number, T be a connected admissible term order of n, L be an add-associative right zeroed right complementable non empty loop structure, p be a polynomial of n, L, and i be a natural number. If $i < \operatorname{card} \operatorname{Support} p$, then $\operatorname{Support} \operatorname{Low}(p, T, i + 1) \subseteq \operatorname{Support} \operatorname{Low}(p, T, i)$.
- (42) Let n be an ordinal number, T be a connected admissible term order of n, L be an add-associative right zeroed right complementable non empty loop structure, p be a polynomial of n, L, and i be a natural number. If $i < \operatorname{card} \operatorname{Support} p$, then $\operatorname{Support} \operatorname{Low}(p, T, i) \setminus \operatorname{Support} \operatorname{Low}(p, T, i+1) = \{\operatorname{HT}(\operatorname{Low}(p, T, i), T)\}.$
- (43) Let n be an ordinal number, T be a connected admissible term order of n, L be an add-associative right zeroed right complementable non trivial loop structure, p be a polynomial of n, L, and i be a natural number. If $i < \operatorname{card} \operatorname{Support} p$, then $\operatorname{Low}(p, T, i + 1) = \operatorname{Red}(\operatorname{Low}(p, T, i), T)$.
- (44) Let n be an ordinal number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed unital distributive integral domain-like non trivial double loop structure, p be a polynomial of n, L, m be a non-zero monomial of n, L, and i be a natural number. If $i \leq \text{card Support } p$, then Low(m * p, T, i) = m * Low(p, T, i).

4. More on Polynomial Reduction

Next we state several propositions:

- (45) Let n be an ordinal number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative associative left unital right unital distributive Abelian field-like non trivial double loop structure, and f, g, p be polynomials of n, L. If f reduces to g, p, T, then -f reduces to -g, p, T.
- (46) Let n be an ordinal number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative associative left unital right unital distributive Abelian field-like non trivial double loop structure, and f, f_1 , g, p be polynomials of n, L. Suppose f reduces to f_1 , $\{p\}$, T and for every bag b_1 of n such that $b_1 \in$ Support g holds $\operatorname{HT}(p,T) \nmid b_1$. Then f + g reduces to $f_1 + g$, $\{p\}$, T.
- (47) Let n be an ordinal number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative associative left unital right unital distributive Abelian field-like non trivial double loop structure, and f, g be non-zero polynomials of n, L. Then f * g reduces to $\operatorname{Red}(f, T) * g, \{g\}, T$.
- (48) Let n be an ordinal number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative

associative left unital right unital distributive Abelian field-like non trivial double loop structure, f, g be non-zero polynomials of n, L, and p be a polynomial of n, L. If $p(\text{HT}(f * g, T)) = 0_L$, then f * g + p reduces to Red(f, T) * g + p, $\{g\}$, T.

- (49) Let n be an ordinal number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative associative left unital right unital distributive Abelian field-like non trivial double loop structure, P be a subset of Polynom-Ring(n, L), and f, g be polynomials of n, L. If PolyRedRel(P, T) reduces f to g, then PolyRedRel(P, T) reduces -f to -g.
- (50) Let n be an ordinal number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative associative left unital right unital distributive Abelian field-like non trivial double loop structure, and f, f₁, g, p be polynomials of n, L. Suppose PolyRedRel($\{p\}, T$) reduces f to f₁ and for every bag b₁ of n such that $b_1 \in \text{Support } g \text{ holds } \text{HT}(p, T) \nmid b_1$. Then PolyRedRel($\{p\}, T$) reduces f+gto $f_1 + g$.
- (51) Let *n* be an ordinal number, *T* be a connected admissible term order of *n*, *L* be an add-associative right complementable right zeroed commutative associative left unital right unital distributive Abelian field-like non trivial double loop structure, and *f*, *g* be non-zero polynomials of *n*, *L*. Then PolyRedRel($\{g\}, T$) reduces f * g to $0_n L$.

5. The Criterium

We now state several propositions:

- (52) Let n be an ordinal number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative associative left unital right unital distributive field-like non trivial double loop structure, and p_1 , p_2 be polynomials of n, L. Suppose $\operatorname{HT}(p_1, T)$, $\operatorname{HT}(p_2, T)$ are disjoint. Let b_1 , b_2 be bags of n. If $b_1 \in \operatorname{Support} \operatorname{Red}(p_1, T)$ and $b_2 \in \operatorname{Support} \operatorname{Red}(p_2, T)$, then $\operatorname{HT}(p_1, T) + b_2 \neq \operatorname{HT}(p_2, T) + b_1$.
- (53) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed commutative associative left unital right unital distributive Abelian field-like non trivial double loop structure, and p_1 , p_2 be polynomials of n, L. If $HT(p_1, T)$, $HT(p_2, T)$ are disjoint, then S-Poly $(p_1, p_2, T) = HM(p_2, T) * Red(p_1, T) HM(p_1, T) * Red(p_2, T)$.
- (54) Let n be an ordinal number, T be a connected term order of n, L be an add-associative right complementable right zeroed commutative associative left unital right unital distributive Abelian field-like non trivial double

loop structure, and p_1 , p_2 be polynomials of n, L. If $HT(p_1, T)$, $HT(p_2, T)$ are disjoint, then S-Poly $(p_1, p_2, T) = Red(p_1, T) * p_2 - Red(p_2, T) * p_1$.

- (55) Let *n* be an ordinal number, *T* be a connected admissible term order of *n*, *L* be an add-associative right complementable right zeroed commutative associative left unital right unital distributive Abelian field-like non trivial double loop structure, and p_1 , p_2 be non-zero polynomials of *n*, *L*. Suppose $HT(p_1, T)$, $HT(p_2, T)$ are disjoint and $Red(p_1, T)$ is non-zero and $Red(p_2, T)$ is non-zero. Then $PolyRedRel(\{p_1\}, T)$ reduces $HM(p_2, T) * Red(p_1, T) - HM(p_1, T) * Red(p_2, T)$ to $p_2 * Red(p_1, T)$.
- (56) Let *n* be an ordinal number, *T* be a connected admissible term order of *n*, *L* be an add-associative right complementable right zeroed commutative associative left unital right unital distributive Abelian field-like non trivial double loop structure, and p_1 , p_2 be polynomials of *n*, *L*. If $HT(p_1,T)$, $HT(p_2,T)$ are disjoint, then $PolyRedRel(\{p_1,p_2\},T)$ reduces $S-Poly(p_1,p_2,T)$ to 0_nL .
- (57) Let n be a natural number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative associative left unital right unital distributive Abelian field-like non degenerated non empty double loop structure, and G be a subset of Polynom-Ring(n, L). Suppose G is a Groebner basis wrt T. Let g_1, g_2 be polynomials of n, L. Suppose $g_1 \in G$ and $g_2 \in G$ and $\operatorname{HT}(g_1, T), \operatorname{HT}(g_2, T)$ are not disjoint. Then PolyRedRel(G, T) reduces S-Poly (g_1, g_2, T) to $0_n L$.
- (58) Let n be a natural number, T be a connected admissible term order of n, L be an add-associative right complementable right zeroed commutative associative left unital right unital distributive Abelian field-like non degenerated non trivial double loop structure, and G be a subset of Polynom-Ring(n, L). Suppose $0_n L \notin G$. Suppose that for all polynomials g_1, g_2 of n, L such that $g_1 \in G$ and $g_2 \in G$ and $\operatorname{HT}(g_1, T)$, $\operatorname{HT}(g_2, T)$ are not disjoint holds PolyRedRel(G, T) reduces S-Poly (g_1, g_2, T) to $0_n L$. Let g_1, g_2, h be polynomials of n, L. Suppose $g_1 \in G$ and $g_2 \in G$ and $\operatorname{HT}(g_1, T)$, $\operatorname{HT}(g_2, T)$ are not disjoint and h is a normal form of S-Poly (g_1, g_2, T) w.r.t. PolyRedRel(G, T). Then $h = 0_n L$.
- (59) Let *n* be a natural number, *T* be a connected admissible term order of *n*, *L* be an add-associative right complementable right zeroed commutative associative left unital right unital distributive Abelian field-like non degenerated non empty double loop structure, and *G* be a subset of Polynom-Ring(n, L). Suppose $0_nL \notin G$. Suppose that for all polynomials g_1, g_2, h of *n*, *L* such that $g_1 \in G$ and $g_2 \in G$ and $\operatorname{HT}(g_1, T)$, $\operatorname{HT}(g_2, T)$ are not disjoint and *h* is a normal form of S-Poly (g_1, g_2, T) w.r.t. PolyRedRel(G, T) holds $h = 0_n L$. Then *G* is a Groebner basis wrt *T*.

CHRISTOPH SCHWARZWELLER

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41–46, 1990.
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [4] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469–478, 1996.
 [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
- sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [6] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
- [7] Józef Białas. Properties of fields. Formalized Mathematics, 1(5):807–812, 1990.
- [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [10] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [14] Gilbert Lee and Piotr Rudnicki. On ordering of bags. Formalized Mathematics, 10(1):39– 46, 2002.
- [15] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3–11, 1991.
- [16] Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups with zero. Formalized Mathematics, 1(5):833–840, 1990.
- [17] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
- [18] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95–110, 2001.
- [19] Christoph Schwarzweller. More on multivariate polynomials: Monomials and constant polynomials. Formalized Mathematics, 9(4):849–855, 2001.
- [20] Christoph Schwarzweller. Characterization and existence of Gröbner bases. Formalized Mathematics, 11(3):293–301, 2003.
- [21] Christoph Schwarzweller. Construction of Gröbner bases. S-polynomials and standard representations. *Formalized Mathematics*, 11(3):303–312, 2003.
- [22] Christoph Schwarzweller. Polynomial reduction. *Formalized Mathematics*, 11(1):113–123, 2003.
- [23] Christoph Schwarzweller. Term orders. Formalized Mathematics, 11(1):105–111, 2003.
- [24] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [25] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [26] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291– 296, 1990.
- [27] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski Zorn lemma. Formalized Mathematics, 1(2):387–393, 1990.
- [28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [30] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181–186, 1990.
- [31] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85–89, 1990.

Received December 10, 2004