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Summary. We continue the formalization of Groebner bases following the

book “Groebner Bases – A Computational Approach to Commutative Algebra”

by Becker and Weispfenning. Here we prove Buchberger’s first criterium on

avoiding S-polynomials: S-polynomials for polynomials with disjoint head terms

need not be considered when constructing Groebner bases. In the course of

formalizing this theorem we also introduced the splitting of a polynomial in an

upper and a lower polynomial containing the greater resp. smaller terms of the

original polynomial with respect to a given term order.

MML Identifier: GROEB 3.

The terminology and notation used in this paper have been introduced in the

following articles: [24], [28], [29], [31], [1], [3], [12], [2], [8], [30], [9], [10], [17],

[25], [16], [26], [11], [7], [5], [15], [13], [19], [27], [6], [4], [14], [23], [20], [22], [21],

and [18].

1. Preliminaries

One can prove the following propositions:

(1) For every set X and for all bags b1, b2 of X holds b1+b2

b2
= b1.

(2) Let n be an ordinal number, T be an admissible term order of n, and b1,

b2, b3 be bags of n. If b1 ≤T b2, then b1 + b3 ≤T b2 + b3.

(3) Let n be an ordinal number, T be a term order of n, and b1, b2, b3 be

bags of n. If b1 ≤T b2 and b2 <T b3, then b1 <T b3.
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(4) Let n be an ordinal number, T be an admissible term order of n, and b1,

b2, b3 be bags of n. If b1 <T b2, then b1 + b3 <T b2 + b3.

(5) Let n be an ordinal number, T be an admissible term order of n, and b1,

b2, b3, b4 be bags of n. If b1 <T b2 and b3 ≤T b4, then b1 + b3 <T b2 + b4.

(6) Let n be an ordinal number, T be an admissible term order of n, and b1,

b2, b3, b4 be bags of n. If b1 ≤T b2 and b3 <T b4, then b1 + b3 <T b2 + b4.

2. More on Polynomials

One can prove the following propositions:

(7) Let n be an ordinal number, L be an add-associative right comple-

mentable right zeroed unital distributive integral domain-like non trivial

double loop structure, and m1, m2 be non-zero monomials of n, L. Then

term m1 ∗ m2 = termm1 + term m2.

(8) Let n be an ordinal number, L be an add-associative right comple-

mentable right zeroed unital distributive integral domain-like non trivial

double loop structure, p be a polynomial of n, L, m be a non-zero mono-

mial of n, L, and b be a bag of n. Then b ∈ Support p if and only if

term m + b ∈ Support(m ∗ p).

(9) Let n be an ordinal number, L be an add-associative right comple-

mentable right zeroed unital distributive integral domain-like non trivial

double loop structure, p be a polynomial of n, L, and m be a non-zero

monomial of n, L. Then Support(m ∗ p) = {term m + b; b ranges over

elements of Bags n : b ∈ Support p}.

(10) Let n be an ordinal number, L be an add-associative right comple-

mentable left zeroed right zeroed unital distributive integral domain-like

non trivial double loop structure, p be a polynomial of n, L, and m be a

non-zero monomial of n, L. Then card Support p = card Support(m ∗ p).

(11) Let n be an ordinal number, T be a connected term order of n, and L

be an add-associative right complementable right zeroed non trivial loop

structure. Then Red(0nL, T ) = 0nL.

(12) Let n be an ordinal number, L be an Abelian add-associative right zeroed

right complementable commutative unital distributive non trivial double

loop structure, and p, q be polynomials of n, L. If p−q = 0nL, then p = q.

(13) Let X be a set and L be an add-associative right zeroed right comple-

mentable non empty loop structure. Then −0XL = 0XL.

(14) Let X be a set, L be an add-associative right zeroed right comple-

mentable non empty loop structure, and f be a series of X, L. Then

0XL − f = −f.
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(15) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right complementable right zeroed non trivial double loop

structure, and p be a polynomial of n, L. Then p−Red(p, T ) = HM(p, T ).

Let n be an ordinal number, let L be an add-associative right comple-

mentable right zeroed non empty loop structure, and let p be a polynomial

of n, L. Observe that Support p is finite.

Let n be an ordinal number, let L be a right zeroed add-associative right

complementable unital distributive non trivial double loop structure, and let

p, q be polynomials of n, L. Then {p, q} is a non empty finite subset of

Polynom-Ring(n, L).

3. Restriction and Splitting of Polynomials

Let X be a set, let L be a non empty zero structure, let s be a series of X,

L, and let Y be a subset of Bags X. The functor s↾Y yields a series of X, L and

is defined as follows:

(Def. 1) s↾Y = s+·(Support s \ Y 7−→ 0L).

Let n be an ordinal number, let L be a non empty zero structure, let p

be a polynomial of n, L, and let Y be a subset of Bags n. Note that p↾Y is

finite-Support.

Next we state three propositions:

(16) Let X be a set, L be a non empty zero structure, s be a series of X, L,

and Y be a subset of Bags X. Then Support(s↾Y ) = Support s ∩ Y and

for every bag b of X such that b ∈ Support(s↾Y ) holds (s↾Y )(b) = s(b).

(17) Let X be a set, L be a non empty zero structure, s be a series of X, L,

and Y be a subset of Bags X. Then Support(s↾Y ) ⊆ Support s.

(18) For every set X and for every non empty zero structure L and for every

series s of X, L holds s↾Support s = s and s↾∅Bags X = 0XL.

Let n be an ordinal number, let T be a connected term order of n, let L be

an add-associative right zeroed right complementable non empty loop structure,

let p be a polynomial of n, L, and let i be a natural number. Let us assume that

i ≤ card Support p. The functor UpperSupport(p, T, i) yielding a finite subset of

Bags n is defined by the conditions (Def. 2).

(Def. 2)(i) UpperSupport(p, T, i) ⊆ Support p,

(ii) cardUpperSupport(p, T, i) = i, and

(iii) for all bags b, b′ of n such that b ∈ UpperSupport(p, T, i) and b′ ∈

Support p and b ≤T b′ holds b′ ∈ UpperSupport(p, T, i).

Let n be an ordinal number, let T be a connected term order of n, let L be

an add-associative right zeroed right complementable non empty loop structure,

let p be a polynomial of n, L, and let i be a natural number. The functor

LowerSupport(p, T, i) yielding a finite subset of Bagsn is defined by:
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(Def. 3) LowerSupport(p, T, i) = Support p \ UpperSupport(p, T, i).

We now state several propositions:

(19) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right zeroed right complementable non empty loop

structure, p be a polynomial of n, L, and i be a natural number. If

i ≤ card Support p, then UpperSupport(p, T, i) ∪ LowerSupport(p, T, i) =

Support p and UpperSupport(p, T, i) ∩ LowerSupport(p, T, i) = ∅.

(20) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right zeroed right complementable non empty loop struc-

ture, p be a polynomial of n, L, and i be a natural number. Suppose

i ≤ card Support p. Let b, b′ be bags of n. If b ∈ UpperSupport(p, T, i)

and b′ ∈ LowerSupport(p, T, i), then b′ <T b.

(21) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right zeroed right complementable non empty loop struc-

ture, and p be a polynomial of n, L. Then UpperSupport(p, T, 0) = ∅ and

LowerSupport(p, T, 0) = Support p.

(22) Let n be an ordinal number, T be a connected term or-

der of n, L be an add-associative right zeroed right comple-

mentable non empty loop structure, and p be a polynomial of

n, L. Then UpperSupport(p, T, card Support p) = Support p and

LowerSupport(p, T, card Support p) = ∅.

(23) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right zeroed right complementable non trivial loop struc-

ture, p be a non-zero polynomial of n, L, and i be a natural number. If

1 ≤ i and i ≤ card Support p, then HT(p, T ) ∈ UpperSupport(p, T, i).

(24) Let n be an ordinal number, T be a connected term order of n, L

be an add-associative right zeroed right complementable non empty loop

structure, p be a polynomial of n, L, and i be a natural number. Sup-

pose i ≤ card Support p. Then LowerSupport(p, T, i) ⊆ Support p and

cardLowerSupport(p, T, i) = card Support p − i and for all bags b, b′ of

n such that b ∈ LowerSupport(p, T, i) and b′ ∈ Support p and b′ ≤T b

holds b′ ∈ LowerSupport(p, T, i).

Let n be an ordinal number, let T be a connected term order of n, let L be an

add-associative right zeroed right complementable non empty loop structure, let

p be a polynomial of n, L, and let i be a natural number. The functor Up(p, T, i)

yields a polynomial of n, L and is defined by:

(Def. 4) Up(p, T, i) = p↾UpperSupport(p, T, i).

The functor Low(p, T, i) yielding a polynomial of n, L is defined by:

(Def. 5) Low(p, T, i) = p↾LowerSupport(p, T, i).

One can prove the following propositions:
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(25) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right zeroed right complementable non empty loop

structure, p be a polynomial of n, L, and i be a natural number. If

i ≤ card Support p, then Support Up(p, T, i) = UpperSupport(p, T, i) and

Support Low(p, T, i) = LowerSupport(p, T, i).

(26) Let n be an ordinal number, T be a connected term order of n,

L be an add-associative right zeroed right complementable non empty

loop structure, p be a polynomial of n, L, and i be a natural num-

ber. If i ≤ card Support p, then Support Up(p, T, i) ⊆ Support p and

Support Low(p, T, i) ⊆ Support p.

(27) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right complementable right zeroed non trivial loop struc-

ture, p be a polynomial of n, L, and i be a natural number. If 1 ≤ i and

i ≤ card Support p, then Support Low(p, T, i) ⊆ SupportRed(p, T ).

(28) Let n be an ordinal number, T be a connected term order of n,

L be an add-associative right zeroed right complementable non empty

loop structure, p be a polynomial of n, L, and i be a natural num-

ber. Suppose i ≤ card Support p. Let b be a bag of n. If b ∈

Support p, then b ∈ SupportUp(p, T, i) or b ∈ Support Low(p, T, i) but

b /∈ SupportUp(p, T, i) ∩ Support Low(p, T, i).

(29) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right zeroed right complementable non empty loop struc-

ture, p be a polynomial of n, L, and i be a natural number. Suppose

i ≤ card Support p. Let b, b′ be bags of n. If b ∈ Support Low(p, T, i) and

b′ ∈ SupportUp(p, T, i), then b <T b′.

(30) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right zeroed right complementable non empty loop struc-

ture, p be a polynomial of n, L, and i be a natural number. If 1 ≤ i and

i ≤ card Support p, then HT(p, T ) ∈ SupportUp(p, T, i).

(31) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right zeroed right complementable non empty loop struc-

ture, p be a polynomial of n, L, and i be a natural number. Suppose

i ≤ card Support p. Let b be a bag of n. If b ∈ Support Low(p, T, i), then

(Low(p, T, i))(b) = p(b) and (Up(p, T, i))(b) = 0L.

(32) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right zeroed right complementable non empty loop struc-

ture, p be a polynomial of n, L, and i be a natural number. Suppose

i ≤ card Support p. Let b be a bag of n. If b ∈ SupportUp(p, T, i), then

(Up(p, T, i))(b) = p(b) and (Low(p, T, i))(b) = 0L.

(33) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right zeroed right complementable non empty loop
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structure, p be a polynomial of n, L, and i be a natural number. If

i ≤ card Support p, then Up(p, T, i) + Low(p, T, i) = p.

(34) Let n be an ordinal number, T be a connected term order of n, L

be an add-associative right zeroed right complementable non empty loop

structure, and p be a polynomial of n, L. Then Up(p, T, 0) = 0nL and

Low(p, T, 0) = p.

(35) Let n be an ordinal number, T be a connected term order of n, L

be an add-associative right zeroed right complementable Abelian non

empty double loop structure, and p be a polynomial of n, L. Then

Up(p, T, card Support p) = p and Low(p, T, card Support p) = 0nL.

(36) Let n be an ordinal number, T be a connected term order of n, L be

an add-associative right zeroed right complementable Abelian non trivial

double loop structure, and p be a non-zero polynomial of n, L. Then

Up(p, T, 1) = HM(p, T ) and Low(p, T, 1) = Red(p, T ).

Let n be an ordinal number, let T be a connected term order of n, let L

be an add-associative right zeroed right complementable non trivial loop struc-

ture, and let p be a non-zero polynomial of n, L. Observe that Up(p, T, 0) is

monomial-like.

Let n be an ordinal number, let T be a connected term order of n, let L be

an add-associative right zeroed right complementable Abelian non trivial double

loop structure, and let p be a non-zero polynomial of n, L. Note that Up(p, T, 1)

is non-zero and monomial-like and Low(p, T, card Support p) is monomial-like.

The following propositions are true:

(37) Let n be an ordinal number, T be a connected term order of n, L

be an add-associative right zeroed right complementable non trivial loop

structure, p be a polynomial of n, L, and j be a natural number. If

j = card Support p − 1, then Low(p, T, j) is a non-zero monomial of n, L.

(38) Let n be an ordinal number, T be a connected admissible term order of

n, L be an add-associative right zeroed right complementable non empty

loop structure, p be a polynomial of n, L, and i be a natural number. If

i < card Support p, then HT(Low(p, T, i + 1), T ) ≤T HT(Low(p, T, i), T ).

(39) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right zeroed right complementable non empty loop struc-

ture, p be a polynomial of n, L, and i be a natural number. If 0 < i and

i < card Support p, then HT(Low(p, T, i), T ) <T HT(p, T ).

(40) Let n be an ordinal number, T be a connected admissible term order

of n, L be an add-associative right complementable right zeroed unital

distributive integral domain-like non trivial double loop structure, p be

a polynomial of n, L, m be a non-zero monomial of n, L, and i be a

natural number. Suppose i ≤ card Support p. Let b be a bag of n. Then

term m+b ∈ Support Low(m∗p, T, i) if and only if b ∈ Support Low(p, T, i).
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(41) Let n be an ordinal number, T be a connected admissible term order of

n, L be an add-associative right zeroed right complementable non empty

loop structure, p be a polynomial of n, L, and i be a natural number. If

i < card Support p, then Support Low(p, T, i + 1) ⊆ Support Low(p, T, i).

(42) Let n be an ordinal number, T be a connected admissible term order of

n, L be an add-associative right zeroed right complementable non empty

loop structure, p be a polynomial of n, L, and i be a natural number. If

i < card Support p, then Support Low(p, T, i) \ Support Low(p, T, i + 1) =

{HT(Low(p, T, i), T )}.

(43) Let n be an ordinal number, T be a connected admissible term order of

n, L be an add-associative right zeroed right complementable non trivial

loop structure, p be a polynomial of n, L, and i be a natural number. If

i < card Support p, then Low(p, T, i + 1) = Red(Low(p, T, i), T ).

(44) Let n be an ordinal number, T be a connected admissible term order

of n, L be an add-associative right complementable right zeroed unital

distributive integral domain-like non trivial double loop structure, p be a

polynomial of n, L, m be a non-zero monomial of n, L, and i be a natural

number. If i ≤ card Support p, then Low(m ∗ p, T, i) = m ∗ Low(p, T, i).

4. More on Polynomial Reduction

Next we state several propositions:

(45) Let n be an ordinal number, T be a connected admissible term order of n,

L be an add-associative right complementable right zeroed commutative

associative left unital right unital distributive Abelian field-like non trivial

double loop structure, and f , g, p be polynomials of n, L. If f reduces to

g, p, T , then −f reduces to −g, p, T .

(46) Let n be an ordinal number, T be a connected admissible term order of n,

L be an add-associative right complementable right zeroed commutative

associative left unital right unital distributive Abelian field-like non trivial

double loop structure, and f , f1, g, p be polynomials of n, L. Suppose f

reduces to f1, {p}, T and for every bag b1 of n such that b1 ∈ Support g

holds HT(p, T ) ∤ b1. Then f + g reduces to f1 + g, {p}, T .

(47) Let n be an ordinal number, T be a connected admissible term order of n,

L be an add-associative right complementable right zeroed commutative

associative left unital right unital distributive Abelian field-like non trivial

double loop structure, and f , g be non-zero polynomials of n, L. Then

f ∗ g reduces to Red(f, T ) ∗ g, {g}, T .

(48) Let n be an ordinal number, T be a connected admissible term order of n,

L be an add-associative right complementable right zeroed commutative
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associative left unital right unital distributive Abelian field-like non trivial

double loop structure, f , g be non-zero polynomials of n, L, and p be a

polynomial of n, L. If p(HT(f ∗ g, T )) = 0L, then f ∗ g + p reduces to

Red(f, T ) ∗ g + p, {g}, T .

(49) Let n be an ordinal number, T be a connected admissible term order of

n, L be an add-associative right complementable right zeroed commuta-

tive associative left unital right unital distributive Abelian field-like non

trivial double loop structure, P be a subset of Polynom-Ring(n, L), and

f , g be polynomials of n, L. If PolyRedRel(P, T ) reduces f to g, then

PolyRedRel(P, T ) reduces −f to −g.

(50) Let n be an ordinal number, T be a connected admissible term order of n,

L be an add-associative right complementable right zeroed commutative

associative left unital right unital distributive Abelian field-like non trivial

double loop structure, and f , f1, g, p be polynomials of n, L. Suppose

PolyRedRel({p}, T ) reduces f to f1 and for every bag b1 of n such that

b1 ∈ Support g holds HT(p, T ) ∤ b1. Then PolyRedRel({p}, T ) reduces f+g

to f1 + g.

(51) Let n be an ordinal number, T be a connected admissible term order of n,

L be an add-associative right complementable right zeroed commutative

associative left unital right unital distributive Abelian field-like non trivial

double loop structure, and f , g be non-zero polynomials of n, L. Then

PolyRedRel({g}, T ) reduces f ∗ g to 0nL.

5. The Criterium

We now state several propositions:

(52) Let n be an ordinal number, T be a connected admissible term order of n,

L be an add-associative right complementable right zeroed commutative

associative left unital right unital distributive field-like non trivial double

loop structure, and p1, p2 be polynomials of n, L. Suppose HT(p1, T ),

HT(p2, T ) are disjoint. Let b1, b2 be bags of n. If b1 ∈ SupportRed(p1, T )

and b2 ∈ SupportRed(p2, T ), then HT(p1, T ) + b2 6= HT(p2, T ) + b1.

(53) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right complementable right zeroed commutative associa-

tive left unital right unital distributive Abelian field-like non trivial double

loop structure, and p1, p2 be polynomials of n, L. If HT(p1, T ), HT(p2, T )

are disjoint, then S-Poly(p1, p2, T ) = HM(p2, T )∗Red(p1, T )−HM(p1, T )∗

Red(p2, T ).

(54) Let n be an ordinal number, T be a connected term order of n, L be an

add-associative right complementable right zeroed commutative associa-

tive left unital right unital distributive Abelian field-like non trivial double
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loop structure, and p1, p2 be polynomials of n, L. If HT(p1, T ), HT(p2, T )

are disjoint, then S-Poly(p1, p2, T ) = Red(p1, T ) ∗ p2 − Red(p2, T ) ∗ p1.

(55) Let n be an ordinal number, T be a connected admissible term order

of n, L be an add-associative right complementable right zeroed com-

mutative associative left unital right unital distributive Abelian field-like

non trivial double loop structure, and p1, p2 be non-zero polynomials

of n, L. Suppose HT(p1, T ), HT(p2, T ) are disjoint and Red(p1, T ) is

non-zero and Red(p2, T ) is non-zero. Then PolyRedRel({p1}, T ) reduces

HM(p2, T ) ∗ Red(p1, T ) − HM(p1, T ) ∗ Red(p2, T ) to p2 ∗ Red(p1, T ).

(56) Let n be an ordinal number, T be a connected admissible term order

of n, L be an add-associative right complementable right zeroed com-

mutative associative left unital right unital distributive Abelian field-like

non trivial double loop structure, and p1, p2 be polynomials of n, L. If

HT(p1, T ), HT(p2, T ) are disjoint, then PolyRedRel({p1, p2}, T ) reduces

S-Poly(p1, p2, T ) to 0nL.

(57) Let n be a natural number, T be a connected admissible term order

of n, L be an add-associative right complementable right zeroed com-

mutative associative left unital right unital distributive Abelian field-like

non degenerated non empty double loop structure, and G be a subset of

Polynom-Ring(n, L). Suppose G is a Groebner basis wrt T . Let g1, g2 be

polynomials of n, L. Suppose g1 ∈ G and g2 ∈ G and HT(g1, T ), HT(g2, T )

are not disjoint. Then PolyRedRel(G, T ) reduces S-Poly(g1, g2, T ) to 0nL.

(58) Let n be a natural number, T be a connected admissible term order

of n, L be an add-associative right complementable right zeroed com-

mutative associative left unital right unital distributive Abelian field-like

non degenerated non trivial double loop structure, and G be a subset of

Polynom-Ring(n, L). Suppose 0nL /∈ G. Suppose that for all polynomials

g1, g2 of n, L such that g1 ∈ G and g2 ∈ G and HT(g1, T ), HT(g2, T )

are not disjoint holds PolyRedRel(G, T ) reduces S-Poly(g1, g2, T ) to 0nL.

Let g1, g2, h be polynomials of n, L. Suppose g1 ∈ G and g2 ∈ G

and HT(g1, T ), HT(g2, T ) are not disjoint and h is a normal form of

S-Poly(g1, g2, T ) w.r.t. PolyRedRel(G, T ). Then h = 0nL.

(59) Let n be a natural number, T be a connected admissible term order

of n, L be an add-associative right complementable right zeroed com-

mutative associative left unital right unital distributive Abelian field-like

non degenerated non empty double loop structure, and G be a subset

of Polynom-Ring(n, L). Suppose 0nL /∈ G. Suppose that for all poly-

nomials g1, g2, h of n, L such that g1 ∈ G and g2 ∈ G and HT(g1, T ),

HT(g2, T ) are not disjoint and h is a normal form of S-Poly(g1, g2, T ) w.r.t.

PolyRedRel(G, T ) holds h = 0nL. Then G is a Groebner basis wrt T .
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Mathematics, 11(3):293–301, 2003.
[21] Christoph Schwarzweller. Construction of Gröbner bases. S-polynomials and standard
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