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Summary. In the paper we formalize some lemmas needed by the proof

of the Jordan Curve Theorem according to [23]. We show basic properties of the

upper and the lower approximations of a simple closed curve (as its compactness

and connectedness) and some facts about special points of such approximations.

MML Identifier: JORDAN22.

The notation and terminology used in this paper are introduced in the following

papers: [25], [28], [1], [24], [29], [4], [16], [15], [2], [12], [22], [7], [27], [21], [13],

[3], [5], [8], [9], [10], [18], [19], [20], [26], [6], [11], [17], and [14].

1. Properties of the Approximations

In this paper C denotes a simple closed curve and i denotes a natural number.

We now state two propositions:

(1) (UpperAppr(C))(i) ⊆ RightComp(Cage(C, 0)).

(2) (LowerAppr(C))(i) ⊆ RightComp(Cage(C, 0)).

Let C be a simple closed curve. One can verify that UpperArc(C) is con-

nected and LowerArc(C) is connected.

We now state two propositions:

(3) (UpperAppr(C))(i) is compact and connected.

(4) (LowerAppr(C))(i) is compact and connected.
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Let C be a simple closed curve. Observe that NorthArc(C) is compact and

SouthArc(C) is compact.

2. On Special Points of Approximations

One can prove the following propositions:

(5) Wmin(C) ∈ NorthArc(C).

(6) Emax(C) ∈ NorthArc(C).

(7) Wmin(C) ∈ SouthArc(C).

(8) Emax(C) ∈ SouthArc(C).

(9) UMPC ∈ NorthArc(C).

(10) LMPC ∈ SouthArc(C).

(11) NorthArc(C) ⊆ C.

(12) SouthArc(C) ⊆ C.

(13) LMPC ∈ LowerArc(C) and UMPC ∈ UpperArc(C) or UMPC ∈

LowerArc(C) and LMPC ∈ UpperArc(C).
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