FORMALIZED MATHEMATICS
Volume 13, Number 1, 2005
University of Biatlystok

The Banach Space [

Yasumasa Suzuki
Take, Yokosuka-shi
Japan

Summary. We introduce the arithmetic addition and multiplication in the
set of [P real sequences and also introduce the norm. This set has the structure
of the Banach space.

MML Identifier: LP_SPACE.

The notation and terminology used in this paper have been introduced in the
following articles: [16], [5], [19], [20], [3], [4], [1], [15], [7], [18], [2], [17], [10], [9],
[8], [12], [11], [6], [14], and [13].

1. THE REAL NORM SPACE OF [P REAL SEQUENCES

Let z be a sequence of real numbers and let p be a real number. The functor
2P yielding a sequence of real numbers is defined as follows:

(Def. 1) For every natural number n holds zP(n) = |z(n)P.

Let p be a real number. Let us assume that p > 1. The functor [P yielding a
non empty subset of the carrier of the linear space of real sequences is defined
as follows:

(Def. 2) For every set = holds = € [P iff x € the set of real sequences and
(idseq())P is summable.
In the sequel a, b, ¢ are real numbers.
We now state several propositions:
(1) Ifa>0and a<bandc>0, then a® < b°.
(2) Let p be a real number. Suppose 1 < p. Let a, b be sequences of real
numbers and n be a natural number. Then (ZZZO((a—Fb)p)(a))HGN(n)% <

(X8 _o(@)(@))nen(n)7 + (o (BP) (@) wen(n) 7
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(3) Let a, b be sequences of real numbers and p be a real number. Suppose
1 <panda”is surrllmable and blp is summablle. Then (a+ b)P is summable
and (3_((a +0)P))r < (3o(aP))» + (32(0F))7.

(4) For every real number p such that 1 < p holds [? is linearly closed.

(5) Let p be a real number. Suppose 1 < p. Then (IP,Zero_(IP,the
linear space of real sequences), Add_(I?,the linear space of real
sequences), Mult_(IP, the linear space of real sequences)) is a subspace of
the linear space of real sequences.

(6) Let p be a real number. Suppose 1 < p. Then (IP,Zero_(I",the
linear space of real sequences), Add_(I?,the linear space of real
sequences), Mult_(IP, the linear space of real sequences)) is Abelian, add-
associative, right zeroed, right complementable, and real linear space-like.

(7) Let p be a real number. Suppose 1 < p. Then (IP,Zero_(IP,the
linear space of real sequences), Add_(I”,the linear space of real
sequences), Mult_(IP, the linear space of real sequences)) is a real linear
space.

Let p be a real number. The functor P-norm yielding a function from I? into
R is defined by:

(Def. 3) For every set x such that € [P holds {P-norm(z) = (D ((idseq(z))?))?.

The following two propositions are true:

(8) Let p be a real number. Suppose 1 < p. Then (IP,Zero_(IP,the
linear space of real sequences), Add_(I?,the linear space of real
sequences), Mult_(IP, the linear space of real sequences), [P-norm) is a real
linear space.

(9) Let p be a real number. Suppose p > 1. Then (IP,Zero_(IP,the
linear space of real sequences), Add_(I?,the linear space of real

B =

sequences), Mult_(IP, the linear space of real sequences), [P-norm) is a sub-
space of the linear space of real sequences.

2. THE BANACH SPACE OF [P REAL SEQUENCES

Next we state several propositions:

(10) Let p be a real number. Suppose 1 < p. Let [ be a non empty
normed structure. Suppose I3 = (IP,Zero_(IP,the linear space of real
sequences), Add_(I?, the linear space of real sequences), Mult_(I?, the lin-
ear space of real sequences),(P-norm). Then the carrier of I; = [P and
for every set x holds x is a vector of [y iff x is a sequence of real
numbers and (idseq(z))P is summable and 0,y = Zeroseq and for ev-
ery vector x of I holds = idseq(z) and for all vectors z, y of I; holds
z +y = idseq() + idseq(y) and for every real number r and for every
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vector = of {1 holds r -z = r idseq(x) and for every vector x of I; holds
—& = —idgeq(z) and idseq(—2) = —idseq(x) and for all vectors x, y of [y
holds z—y = idseq (@) —idseq(y) and for every vector x of I1 holds (idseq(z))P
1
is summable and for every vector x of I; holds ||z|| = (D ((idseq(x))P))?.

(11) Let p be a real number. Suppose p > 1. Let r; be a sequence of real
numbers. Suppose that for every natural number n holds r1(n) = 0. Then

1
r1? is summable and (> (r1?))? = 0.
(12) Let p be a real number. Suppose 1 < p. Let r; be a sequence of real

numbers. Suppose r1” is summable and (Z(rlp))% = 0. Let n be a natural
number. Then r;(n) = 0.

(13) Let p be a real number. Suppose 1 < p. Let /3 be a non empty
normed structure. Suppose I3 = (IP,Zero_(IP,the linear space of real
sequences), Add_(I?, the linear space of real sequences), Mult_(I?, the linear
space of real sequences), [P-norm). Let x, y be points of [; and a be a real
number. Then ||z[| = 0 iff = 0,y and 0 < [|z|| and [z + y[| < [|=| + ||y
and [|a - z[| = [a] - [[z]].

(14) Let p be a real number. Suppose p > 1. Let l; be a non empty
normed structure. Suppose l; = (IP,Zero_(IP,the linear space of real
sequences), Add_(IP, the linear space of real sequences), Mult_(I?,the lin-
ear space of real sequences), P-norm). Then [; is real normed space-like.

(15) Let p be a real number. Suppose p > 1. Let l; be a non empty
normed structure. Suppose I3 = (IP,Zero_(IP,the linear space of real
sequences), Add_(I?, the linear space of real sequences), Mult_(I?, the lin-
ear space of real sequences), (P-norm). Then [; is a real normed space.

(16) Let p be a real number. Suppose 1 < p. Let l; be a real
normed space. Suppose l; = (IP,Zero_(I?,the linear space of real
sequences), Add_(I?, the linear space of real sequences), Mult_(I?, the lin-
ear space of real sequences), [P-norm). Let v; be a sequence of ;. If vy is
Cauchy sequence by norm, then vy is convergent.

Let p be a real number. Let us assume that 1 < p. The functor [P-space
yielding a real Banach space is defined by the condition (Def. 4).

(Def. 4) [P-space = (IP, Zero_(IP, the linear space of real sequences), Add_(I?, the
linear space of real sequences), Mult_(I/P,the linear space of real
sequences), [P-norm).
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