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The papers [19], [22], [1], [17], [10], [23], [4], [24], [5], [13], [20], [21], [18], [3],

[12], [11], [2], [25], [16], [6], [8], [15], [7], [14], and [9] provide the notation and

terminology for this paper.

1. Uniform Continuity of Functions on Real and Complex Normed

Linear Spaces

For simplicity, we follow the rules: X, X1 denote sets, r, s denote real

numbers, z denotes a complex number, R1 denotes a real normed space, and

C1, C2, C3 denote complex normed spaces.

Let X be a set, let C2, C3 be complex normed spaces, and let f be a partial

function from C2 to C3. We say that f is uniformly continuous on X if and only

if the conditions (Def. 1) are satisfied.

(Def. 1)(i) X ⊆ dom f, and

(ii) for every r such that 0 < r there exists s such that 0 < s and for all

points x1, x2 of C2 such that x1 ∈ X and x2 ∈ X and ‖x1 −x2‖ < s holds

‖fx1
− fx2

‖ < r.

Let X be a set, let R1 be a real normed space, let C1 be a complex normed

space, and let f be a partial function from C1 to R1. We say that f is uniformly

continuous on X if and only if the conditions (Def. 2) are satisfied.

(Def. 2)(i) X ⊆ dom f, and

(ii) for every r such that 0 < r there exists s such that 0 < s and for all

points x1, x2 of C1 such that x1 ∈ X and x2 ∈ X and ‖x1 −x2‖ < s holds

‖fx1
− fx2

‖ < r.
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Let X be a set, let R1 be a real normed space, let C1 be a complex normed

space, and let f be a partial function from R1 to C1. We say that f is uniformly

continuous on X if and only if the conditions (Def. 3) are satisfied.

(Def. 3)(i) X ⊆ dom f, and

(ii) for every r such that 0 < r there exists s such that 0 < s and for all

points x1, x2 of R1 such that x1 ∈ X and x2 ∈ X and ‖x1 −x2‖ < s holds

‖fx1
− fx2

‖ < r.

Let X be a set, let C1 be a complex normed space, and let f be a partial

function from the carrier of C1 to C. We say that f is uniformly continuous on

X if and only if the conditions (Def. 4) are satisfied.

(Def. 4)(i) X ⊆ dom f, and

(ii) for every r such that 0 < r there exists s such that 0 < s and for all

points x1, x2 of C1 such that x1 ∈ X and x2 ∈ X and ‖x1 −x2‖ < s holds

|fx1
− fx2

| < r.

Let X be a set, let C1 be a complex normed space, and let f be a partial

function from the carrier of C1 to R. We say that f is uniformly continuous on

X if and only if the conditions (Def. 5) are satisfied.

(Def. 5)(i) X ⊆ dom f, and

(ii) for every r such that 0 < r there exists s such that 0 < s and for all

points x1, x2 of C1 such that x1 ∈ X and x2 ∈ X and ‖x1 −x2‖ < s holds

|fx1
− fx2

| < r.

Let X be a set, let R1 be a real normed space, and let f be a partial function

from the carrier of R1 to C. We say that f is uniformly continuous on X if and

only if the conditions (Def. 6) are satisfied.

(Def. 6)(i) X ⊆ dom f, and

(ii) for every r such that 0 < r there exists s such that 0 < s and for all

points x1, x2 of R1 such that x1 ∈ X and x2 ∈ X and ‖x1 −x2‖ < s holds

|fx1
− fx2

| < r.

Next we state a number of propositions:

(1) Let f be a partial function from C2 to C3. Suppose f is uniformly

continuous on X and X1 ⊆ X. Then f is uniformly continuous on X1.

(2) Let f be a partial function from C1 to R1. Suppose f is uniformly

continuous on X and X1 ⊆ X. Then f is uniformly continuous on X1.

(3) Let f be a partial function from R1 to C1. Suppose f is uniformly

continuous on X and X1 ⊆ X. Then f is uniformly continuous on X1.

(4) Let f1, f2 be partial functions from C2 to C3. Suppose f1 is uniformly

continuous on X and f2 is uniformly continuous on X1. Then f1 + f2 is

uniformly continuous on X ∩ X1.

(5) Let f1, f2 be partial functions from C1 to R1. Suppose f1 is uniformly

continuous on X and f2 is uniformly continuous on X1. Then f1 + f2 is
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uniformly continuous on X ∩ X1.

(6) Let f1, f2 be partial functions from R1 to C1. Suppose f1 is uniformly

continuous on X and f2 is uniformly continuous on X1. Then f1 + f2 is

uniformly continuous on X ∩ X1.

(7) Let f1, f2 be partial functions from C2 to C3. Suppose f1 is uniformly

continuous on X and f2 is uniformly continuous on X1. Then f1 − f2 is

uniformly continuous on X ∩ X1.

(8) Let f1, f2 be partial functions from C1 to R1. Suppose f1 is uniformly

continuous on X and f2 is uniformly continuous on X1. Then f1 − f2 is

uniformly continuous on X ∩ X1.

(9) Let f1, f2 be partial functions from R1 to C1. Suppose f1 is uniformly

continuous on X and f2 is uniformly continuous on X1. Then f1 − f2 is

uniformly continuous on X ∩ X1.

(10) Let f be a partial function from C2 to C3. If f is uniformly continuous

on X, then z f is uniformly continuous on X.

(11) Let f be a partial function from C1 to R1. If f is uniformly continuous

on X, then r f is uniformly continuous on X.

(12) Let f be a partial function from R1 to C1. If f is uniformly continuous

on X, then z f is uniformly continuous on X.

(13) Let f be a partial function from C2 to C3. If f is uniformly continuous

on X, then −f is uniformly continuous on X.

(14) Let f be a partial function from C1 to R1. If f is uniformly continuous

on X, then −f is uniformly continuous on X.

(15) Let f be a partial function from R1 to C1. If f is uniformly continuous

on X, then −f is uniformly continuous on X.

(16) Let f be a partial function from C2 to C3. If f is uniformly continuous

on X, then ‖f‖ is uniformly continuous on X.

(17) Let f be a partial function from C1 to R1. If f is uniformly continuous

on X, then ‖f‖ is uniformly continuous on X.

(18) Let f be a partial function from R1 to C1. If f is uniformly continuous

on X, then ‖f‖ is uniformly continuous on X.

(19) For every partial function f from C2 to C3 such that f is uniformly

continuous on X holds f is continuous on X.

(20) For every partial function f from C1 to R1 such that f is uniformly

continuous on X holds f is continuous on X.

(21) For every partial function f from R1 to C1 such that f is uniformly

continuous on X holds f is continuous on X.

(22) Let f be a partial function from the carrier of C1 to C. If f is uniformly

continuous on X, then f is continuous on X.
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(23) Let f be a partial function from the carrier of C1 to R. If f is uniformly

continuous on X, then f is continuous on X.

(24) Let f be a partial function from the carrier of R1 to C. If f is uniformly

continuous on X, then f is continuous on X.

(25) For every partial function f from C2 to C3 such that f is Lipschitzian

on X holds f is uniformly continuous on X.

(26) For every partial function f from C1 to R1 such that f is Lipschitzian

on X holds f is uniformly continuous on X.

(27) For every partial function f from R1 to C1 such that f is Lipschitzian

on X holds f is uniformly continuous on X.

(28) Let f be a partial function from C2 to C3 and Y be a subset of C2.

Suppose Y is compact and f is continuous on Y . Then f is uniformly

continuous on Y .

(29) Let f be a partial function from C1 to R1 and Y be a subset of C1.

Suppose Y is compact and f is continuous on Y . Then f is uniformly

continuous on Y .

(30) Let f be a partial function from R1 to C1 and Y be a subset of R1.

Suppose Y is compact and f is continuous on Y . Then f is uniformly

continuous on Y .

(31) Let f be a partial function from C2 to C3 and Y be a subset of C2.

Suppose Y ⊆ dom f and Y is compact and f is uniformly continuous on

Y . Then f◦Y is compact.

(32) Let f be a partial function from C1 to R1 and Y be a subset of C1.

Suppose Y ⊆ dom f and Y is compact and f is uniformly continuous on

Y . Then f◦Y is compact.

(33) Let f be a partial function from R1 to C1 and Y be a subset of R1.

Suppose Y ⊆ dom f and Y is compact and f is uniformly continuous on

Y . Then f◦Y is compact.

(34) Let f be a partial function from the carrier of C1 to R and Y be a

subset of C1. Suppose Y 6= ∅ and Y ⊆ dom f and Y is compact and f

is uniformly continuous on Y . Then there exist points x1, x2 of C1 such

that x1 ∈ Y and x2 ∈ Y and fx1
= sup(f◦Y ) and fx2

= inf(f◦Y ).

(35) Let f be a partial function from C2 to C3. If X ⊆ dom f and f is a

constant on X, then f is uniformly continuous on X.

(36) Let f be a partial function from C1 to R1. If X ⊆ dom f and f is a

constant on X, then f is uniformly continuous on X.

(37) Let f be a partial function from R1 to C1. If X ⊆ dom f and f is a

constant on X, then f is uniformly continuous on X.
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2. Contraction Mapping Principle on Normed Complex Linear

Spaces

Let M be a complex Banach space. A function from the carrier of M into

the carrier of M is said to be a contraction of M if:

(Def. 7) There exists a real number L such that 0 < L and L < 1 and for all

points x, y of M holds ‖it(x) − it(y)‖ ≤ L · ‖x − y‖.

One can prove the following four propositions:

(38) For every complex normed space X and for all points x, y of X holds

‖x − y‖ > 0 iff x 6= y.

(39) For every complex normed space X and for all points x, y of X holds

‖x − y‖ = ‖y − x‖.

(40) Let X be a complex Banach space and f be a function from X into X.

Suppose f is a contraction of X. Then there exists a point x3 of X such

that f(x3) = x3 and for every point x of X such that f(x) = x holds

x3 = x.

(41) Let X be a complex Banach space and f be a function from X into X.

Given a natural number n0 such that fn0 is a contraction of X. Then

there exists a point x3 of X such that f(x3) = x3 and for every point x of

X such that f(x) = x holds x3 = x.
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