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The terminology and notation used in this paper are introduced in the following

articles: [20], [7], [23], [10], [15], [19], [1], [4], [24], [5], [6], [3], [13], [18], [17], [25],

[9], [16], [8], [14], [2], [21], [22], [12], and [11].

1. Preliminaries

In this paper X is a non empty RLS structure and r, s, t are real numbers.

Let us note that there exists a real number which is non zero.

We now state a number of propositions:

(2)2 Let T be a non empty topological space, X be a non empty subset of

T , and F1 be a family of subsets of T . Suppose F1 is a cover of X. Let

x be a point of T . If x ∈ X, then there exists a subset W of T such that

x ∈ W and W ∈ F1.

(4)3 Let X be a non empty loop structure, M , N be subsets of X, and F

be a family of subsets of X. If F = {x + N ;x ranges over points of X:

x ∈ M}, then M + N =
⋃

F.

(5) Let X be an add-associative right zeroed right complementable non

empty loop structure and M be a subset of X. Then 0X + M = M.

(6) Let X be an add-associative non empty loop structure, x, y be points of

X, and M be a subset of X. Then (x + y) + M = x + (y + M).

1This work has been partially supported by the KBN grant 4 T11C 039 24.
2The proposition (1) has been removed.
3The proposition (3) has been removed.
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(7) Let X be an add-associative non empty loop structure, x be a point of

X, and M , N be subsets of X. Then (x + M) + N = x + (M + N).

(8) Let X be a non empty loop structure, M , N be subsets of X, and x be

a point of X. If M ⊆ N, then x + M ⊆ x + N.

(9) Let X be a non empty real linear space, M be a subset of X, and x be

a point of X. If x ∈ M, then 0X ∈ −x + M.

(10) For every non empty loop structure X and for all subsets M , N , V of

X such that M ⊆ N holds M + V ⊆ N + V.

(11) For every non empty loop structure X and for all subsets V1, V2, W1,

W2 of X such that V1 ⊆ W1 and V2 ⊆ W2 holds V1 + V2 ⊆ W1 + W2.

(12) For every non empty real linear space X and for all subsets V1, V2 of X

such that 0X ∈ V2 holds V1 ⊆ V1 + V2.

(13) For every non empty real linear space X and for every real number r

holds r · {0X} = {0X}.

(14) Let X be a non empty real linear space, M be a subset of X, and r be

a non zero real number. If 0X ∈ r · M, then 0X ∈ M.

(15) Let X be a non empty real linear space, M , N be subsets of X, and r

be a non zero real number. Then (r · M) ∩ (r · N) = r · (M ∩ N).

(16) Let X be a non empty topological space, x be a point of X, A be a

neighbourhood of x, and B be a subset of X. If A ⊆ B, then B is a

neighbourhood of x.

Let V be a non empty real linear space and let M be a subset of V . Let us

observe that M is convex if and only if:

(Def. 1) For all points u, v of V and for every real number r such that 0 ≤ r and

r ≤ 1 and u ∈ M and v ∈ M holds r · u + (1 − r) · v ∈ M.

One can prove the following proposition

(17) Let X be a non empty real linear space, M be a convex subset of X,

and r1, r2 be real numbers. If 0 ≤ r1 and 0 ≤ r2, then r1 · M + r2 · M =

(r1 + r2) · M.

Let X be a non empty real linear space and let M be an empty subset of

X. One can check that conv M is empty.

Next we state several propositions:

(18) For every non empty real linear space X and for every convex subset M

of X holds conv M = M.

(19) For every non empty real linear space X and for every subset M of X

and for every real number r holds r · conv M = conv r · M.

(20) For every non empty real linear space X and for all subsets M1, M2 of

X such that M1 ⊆ M2 holds Convex-Family M2 ⊆ Convex-Family M1.
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(21) For every non empty real linear space X and for all subsets M1, M2 of

X such that M1 ⊆ M2 holds conv M1 ⊆ conv M2.

(22) Let X be a non empty real linear space, M be a convex subset of X,

and r be a real number. If 0 ≤ r and r ≤ 1 and 0X ∈ M, then r ·M ⊆ M.

Let X be a non empty real linear space and let v, w be points of X. The

functor L(v, w) yields a subset of X and is defined as follows:

(Def. 2) L(v, w) = {(1 − r) · v + r · w : 0 ≤ r ∧ r ≤ 1}.

Let X be a non empty real linear space and let v, w be points of X. Note

that L(v, w) is non empty and convex.

Next we state the proposition

(23) Let X be a non empty real linear space and M be a subset of X. Then

M is convex if and only if for all points u, w of X such that u ∈ M and

w ∈ M holds L(u, w) ⊆ M.

Let V be a non empty RLS structure and let P be a family of subsets of V .

We say that P is convex-membered if and only if:

(Def. 3) For every subset M of V such that M ∈ P holds M is convex.

Let V be a non empty RLS structure. One can verify that there exists a

family of subsets of V which is non empty and convex-membered.

We now state the proposition

(24) For every non empty RLS structure V and for every convex-membered

family F of subsets of V holds
⋂

F is convex.

Let X be a non empty RLS structure and let A be a subset of X. The

functor −A yielding a subset of X is defined by:

(Def. 4) −A = (−1) · A.

One can prove the following proposition

(25) Let X be a non empty real linear space, M , N be subsets of X, and v

be a point of X. Then v + M meets N if and only if v ∈ N + −M.

Let X be a non empty RLS structure and let A be a subset of X. We say

that A is symmetric if and only if:

(Def. 5) A = −A.

Let X be a non empty real linear space. Observe that there exists a subset

of X which is non empty and symmetric.

One can prove the following proposition

(26) Let X be a non empty real linear space, A be a symmetric subset of X,

and x be a point of X. If x ∈ A, then −x ∈ A.

Let X be a non empty RLS structure and let A be a subset of X. We say

that A is circled if and only if:

(Def. 6) For every real number r such that |r| ≤ 1 holds r · A ⊆ A.
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Let X be a non empty real linear space. Note that ∅X is circled.

We now state the proposition

(27) For every non empty real linear space X holds {0X} is circled.

Let X be a non empty real linear space. Observe that there exists a subset

of X which is non empty and circled.

The following proposition is true

(28) For every non empty real linear space X and for every non empty circled

subset B of X holds 0X ∈ B.

Let X be a non empty real linear space and let A, B be circled subsets of

X. One can verify that A + B is circled.

We now state the proposition

(29) Let X be a non empty real linear space, A be a circled subset of X, and

r be a real number. If |r| = 1, then r · A = A.

Let X be a non empty real linear space. One can check that every subset of

X which is circled is also symmetric.

Let X be a non empty real linear space and let M be a circled subset of X.

One can check that conv M is circled.

Let X be a non empty RLS structure and let F be a family of subsets of X.

We say that F is circled-membered if and only if:

(Def. 7) For every subset V of X such that V ∈ F holds V is circled.

Let V be a non empty real linear space. Note that there exists a family of

subsets of V which is non empty and circled-membered.

The following two propositions are true:

(30) For every non empty real linear space X and for every circled-membered

family F of subsets of X holds
⋃

F is circled.

(31) For every non empty real linear space X and for every circled-membered

family F of subsets of X holds
⋂

F is circled.

2. Real Linear Topological Space

We introduce real linear topological structures which are extensions of RLS

structure and topological structure and are systems

〈 a carrier, a zero, an addition, an external multiplication, a topology 〉,

where the carrier is a set, the zero is an element of the carrier, the addition is

a binary operation on the carrier, the external multiplication is a function from

[: R, the carrier :] into the carrier, and the topology is a family of subsets of the

carrier.

Let X be a non empty set, let O be an element of X, let F be a binary

operation on X, let G be a function from [: R, X :] into X, and let T be a family

of subsets of X. Observe that 〈X, O, F,G, T 〉 is non empty.
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Let us note that there exists a real linear topological structure which is strict

and non empty.

Let X be a non empty real linear topological structure. We say that X is

add-continuous if and only if the condition (Def. 8) is satisfied.

(Def. 8) Let x1, x2 be points of X and V be a subset of X. Suppose V is open

and x1 +x2 ∈ V. Then there exist subsets V1, V2 of X such that V1 is open

and V2 is open and x1 ∈ V1 and x2 ∈ V2 and V1 + V2 ⊆ V.

We say that X is mult-continuous if and only if the condition (Def. 9) is satisfied.

(Def. 9) Let a be a real number, x be a point of X, and V be a subset of X.

Suppose V is open and a ·x ∈ V. Then there exists a positive real number

r and there exists a subset W of X such that W is open and x ∈ W and

for every real number s such that |s − a| < r holds s · W ⊆ V.

Let us note that there exists a non empty real linear topological structure

which is non empty, strict, add-continuous, mult-continuous, topological space-

like, Abelian, add-associative, right zeroed, right complementable, and real lin-

ear space-like.

A linear topological space is an add-continuous mult-continuous topological

space-like Abelian add-associative right zeroed right complementable real linear

space-like non empty real linear topological structure.

One can prove the following two propositions:

(32) Let X be a non empty linear topological space, x1, x2 be points of X,

and V be a neighbourhood of x1 + x2. Then there exists a neighbourhood

V1 of x1 and there exists a neighbourhood V2 of x2 such that V1 +V2 ⊆ V.

(33) Let X be a non empty linear topological space, a be a real number, x

be a point of X, and V be a neighbourhood of a · x. Then there exists a

positive real number r and there exists a neighbourhood W of x such that

for every real number s if |s − a| < r, then s · W ⊆ V.

Let X be a non empty real linear topological structure and let a be a point

of X. The functor transl(a,X) yields a map from X into X and is defined by:

(Def. 10) For every point x of X holds (transl(a,X))(x) = a + x.

The following propositions are true:

(34) Let X be a non empty real linear topological structure, a be a point of

X, and V be a subset of X. Then (transl(a,X))◦V = a + V.

(35) For every non empty linear topological space X and for every point a of

X holds rng transl(a,X) = ΩX .

(36) For every non empty linear topological space X and for every point a of

X holds (transl(a,X))−1 = transl(−a,X).

Let X be a non empty linear topological space and let a be a point of X.

Note that transl(a,X) is homeomorphism.
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Let X be a non empty linear topological space, let E be an open subset of

X, and let x be a point of X. Note that x + E is open.

Let X be a non empty linear topological space, let E be an open subset of

X, and let x be a point of X. Observe that x + E is open.

Let X be a non empty linear topological space, let E be an open subset of

X, and let K be a subset of X. Observe that K + E is open.

Let X be a non empty linear topological space, let D be a closed subset of

X, and let x be a point of X. Note that x + D is closed.

We now state several propositions:

(37) For every non empty linear topological space X and for all subsets V1,

V2, V of X such that V1 + V2 ⊆ V holds IntV1 + IntV2 ⊆ IntV.

(38) For every non empty linear topological space X and for every point x of

X and for every subset V of X holds x + IntV = Int(x + V ).

(39) For every non empty linear topological space X and for every point x of

X and for every subset V of X holds x + V = x + V .

(40) Let X be a non empty linear topological space, x, v be points of X, and

V be a neighbourhood of x. Then v + V is a neighbourhood of v + x.

(41) Let X be a non empty linear topological space, x be a point of X, and

V be a neighbourhood of x. Then −x + V is a neighbourhood of 0X .

Let X be a non empty real linear topological structure. A local base of X

is a generalized basis of 0X .

Let X be a non empty real linear topological structure. We say that X is

locally-convex if and only if:

(Def. 11) There exists a local base of X which is convex-membered.

Let X be a non empty linear topological space and let E be a subset of X.

We say that E is bounded if and only if:

(Def. 12) For every neighbourhood V of 0X there exists s such that s > 0 and for

every t such that t > s holds E ⊆ t · V.

Let X be a non empty linear topological space. Note that ∅X is bounded.

Let X be a non empty linear topological space. Observe that there exists a

subset of X which is bounded.

The following propositions are true:

(42) For every non empty linear topological space X and for all bounded

subsets V1, V2 of X holds V1 ∪ V2 is bounded.

(43) Let X be a non empty linear topological space, P be a bounded subset

of X, and Q be a subset of X. If Q ⊆ P, then Q is bounded.

(44) Let X be a non empty linear topological space and F be a family of

subsets of X. Suppose F is finite and F = {P : P ranges over bounded

subsets of X}. Then
⋃

F is bounded.
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(45) Let X be a non empty linear topological space and P be a family of

subsets of X. Suppose P = {U : U ranges over neighbourhoods of 0X}.

Then P is a local base of X.

(46) Let X be a non empty linear topological space, O be a local base of X,

and P be a family of subsets of X. Suppose P = {a + U ; a ranges over

points of X, U ranges over subsets of X: U ∈ O}. Then P is a generalized

basis of X.

Let X be a non empty real linear topological structure and let r be a real

number. The functor r •X yielding a map from X into X is defined as follows:

(Def. 13) For every point x of X holds (r • X)(x) = r · x.

The following propositions are true:

(47) Let X be a non empty real linear topological structure, V be a subset

of X, and r be a non zero real number. Then (r • X)◦V = r · V.

(48) For every non empty linear topological space X and for every non zero

real number r holds rng(r • X) = ΩX .

(49) For every non empty linear topological space X and for every non zero

real number r holds (r • X)−1 = r−1 • X.

Let X be a non empty linear topological space and let r be a non zero real

number. One can check that r • X is homeomorphism.

Next we state several propositions:

(50) Let X be a non empty linear topological space, V be an open subset of

X, and r be a non zero real number. Then r · V is open.

(51) Let X be a non empty linear topological space, V be a closed subset of

X, and r be a non zero real number. Then r · V is closed.

(52) Let X be a non empty linear topological space, V be a subset of X, and

r be a non zero real number. Then r · IntV = Int(r · V ).

(53) Let X be a non empty linear topological space, A be a subset of X, and

r be a non zero real number. Then r · A = r · A.

(54) Let X be a non empty linear topological space and A be a subset of X.

If X is a T1 space, then 0 · A = 0 · A.

(55) Let X be a non empty linear topological space, x be a point of X, V be

a neighbourhood of x, and r be a non zero real number. Then r · V is a

neighbourhood of r · x.

(56) Let X be a non empty linear topological space, V be a neighbourhood

of 0X , and r be a non zero real number. Then r · V is a neighbourhood of

0X .

Let X be a non empty linear topological space, let V be a bounded subset

of X, and let r be a real number. Observe that r · V is bounded.

We now state four propositions:
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(57) Let X be a non empty linear topological space and W be a neighbour-

hood of 0X . Then there exists an open neighbourhood U of 0X such that

U is symmetric and U + U ⊆ W.

(58) Let X be a non empty linear topological space, K be a compact subset

of X, and C be a closed subset of X. Suppose K misses C. Then there

exists a neighbourhood V of 0X such that K + V misses C + V.

(59) Let X be a non empty linear topological space, B be a local base of X,

and V be a neighbourhood of 0X . Then there exists a neighbourhood W

of 0X such that W ∈ B and W ⊆ V.

(60) Let X be a non empty linear topological space and V be a neighbourhood

of 0X . Then there exists a neighbourhood W of 0X such that W ⊆ V.

Let us observe that every non empty linear topological space which is T1 is

also Hausdorff.

We now state three propositions:

(61) Let X be a non empty linear topological space and A be a subset of X.

Then A =
⋂
{A + V : V ranges over neighbourhoods of 0X}.

(62) For every non empty linear topological space X and for all subsets A, B

of X holds IntA + IntB ⊆ Int(A + B).

(63) For every non empty linear topological space X and for all subsets A, B

of X holds A + B ⊆ A + B.

Let X be a non empty linear topological space and let C be a convex subset

of X. Note that C is convex.

Let X be a non empty linear topological space and let C be a convex subset

of X. Note that IntC is convex.

Let X be a non empty linear topological space and let B be a circled subset

of X. One can check that B is circled.

One can prove the following proposition

(64) Let X be a non empty linear topological space and B be a circled subset

of X. If 0X ∈ IntB, then IntB is circled.

Let X be a non empty linear topological space and let E be a bounded

subset of X. Note that E is bounded.

The following propositions are true:

(65) Let X be a non empty linear topological space and U be a neighbourhood

of 0X . Then there exists a neighbourhood W of 0X such that W is circled

and W ⊆ U.

(66) Let X be a non empty linear topological space and U be a neighbourhood

of 0X . Suppose U is convex. Then there exists a neighbourhood W of 0X

such that W is circled and convex and W ⊆ U.

(67) For every non empty linear topological space X holds there exists a local

base of X which is circled-membered.
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(68) For every non empty linear topological space X such that X is locally-

convex holds there exists a local base of X which is convex-membered.
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