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On the Boundary and Derivative of a Set!
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Summary. This is the first Mizar article in a series aiming at a complete
formalization of the textbook “General Topology” by Engelking [7]. We cover
the first part of Section 1.3, by defining such notions as a derivative of a subset
A of a topological space (usually denoted by A4, but Der A in our notation), the
derivative and the boundary of families of subsets, points of accumulation and
isolated points. We also introduce dense-in-itself, perfect and scattered topo-
logical spaces and formulate the notion of the density of a space. Some basic
properties are given as well as selected exercises from [7].

MML Identifier: TOPGEN_1.

The terminology and notation used in this paper are introduced in the following
papers: [13], [15], [1], [2], [12], [3], [5], [10], [16], [9], [14], [4], [6], [8], and [11].

1. PRELIMINARIES

Let T be a set, let A be a subset of T, and let B be a set. Then A\ B is a
subset of T.
The following three propositions are true:

(1) For every l-sorted structure 7" and for all subsets A, B of T' holds A
meets B¢ iff A\ B # 0.

(2) For every 1-sorted structure 7" holds T is countable iff Q7 is countable.

(3) For every l-sorted structure 7" holds T is countable iff Qr < No.

Let T be a finite 1-sorted structure. Note that 7 is finite.
Let us note that every 1-sorted structure which is finite is also countable.

!This work has been partially supported by the KBN grant 4 T11C 039 24 and the FP6
IST grant TYPES No. 510996.

(© 2005 University of Bialystok
139 ISSN 1426-2630



140 ADAM GRABOWSKI

Let us observe that there exists a 1-sorted structure which is countable and
non empty and there exists a topological space which is countable and non
empty.

Let T be a countable 1-sorted structure. Observe that Qp is countable.

Let us observe that there exists a topological space which is 71 and non
empty.

2. BOUNDARY OF A SUBSET

Next we state two propositions:

(4) For every topological structure T and for every subset A of T holds

AUQp = Qrp.
(5) For every topological space T" and for every subset A of T" holds Int A =
Ace,

Let T be a topological space and let F' be a family of subsets of 7. The
functor Fr F' yielding a family of subsets of T" is defined by:

(Def. 1) For every subset A of T" holds A € Fr F' iff there exists a subset B of T
such that A =Fr B and B € F.

The following propositions are true:

(6) For every topological space T and for every family F' of subsets of T
such that F' = () holds Fr F = 0.

(7) Let T be a topological space, F' be a family of subsets of T', and A be a
subset of T. If F' = {A}, then Fr F' = {Fr A}.

(8) For every topological space T' and for all families F', G of subsets of T'
such that F' C G holds Fr F C FrG.

(9) For every topological space T' and for all families F'; G of subsets of T’
holds Fr(FUG) = Fr FUFrG.

(10) For every topological structure T' and for every subset A of T holds
FrA=A\IntA.

(11) Let T be a non empty topological space, A be a subset of T, and p be a
point of T. Then p € Fr A if and only if for every subset U of T" such that
U is open and p € U holds A meets U and U \ A # 0.

(12) Let T be a non empty topological space, A be a subset of T, and p be
a point of T. Then p € Fr A if and only if for every basis B of p and for
every subset U of T such that U € B holds A meets U and U \ A # (.

(13) Let T be a non empty topological space, A be a subset of T', and p be
a point of T. Then p € Fr A if and only if there exists a basis B of p
such that for every subset U of T such that U € B holds A meets U and
U\ A#D0D.
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(14) For every topological space T' and for all subsets A, B of T holds Fr(AN
B)CANFrBUFrANB.

(15) For every topological space T and for every subset A of T holds the
carrier of "= Int AU Fr A U Int(A°).

(16) For every topological space T and for every subset A of T holds A is
open and closed iff Fr A = (.

3. ACCUMULATION POINTS AND DERIVATIVE OF A SET

Let T be a topological structure, let A be a subset of T, and let x be a set.
We say that z is an accumulation point of A if and only if:
(Def. 2) x € A\ {z}.
We now state the proposition

(17) Let T be a topological space, A be a subset of T', and x be a set. If x is
an accumulation point of A, then z is a point of T'.

Let T be a topological structure and let A be a subset of T. The functor
Der A yielding a subset of T' is defined by:

(Def. 3) For every set x such that x € the carrier of T holds = € Der A iff z is an
accumulation point of A.

Next we state four propositions:

(18) Let T be a non empty topological space, A be a subset of T', and x be a
set. Then x € Der A if and only if z is an accumulation point of A.

(19) Let T be a non empty topological space, A be a subset of T, and x be
a point of 7. Then x € Der A if and only if for every open subset U of
T such that x € U there exists a point y of T such that y € AN U and

(20) Let T be a non empty topological space, A be a subset of T, and x be
a point of T'. Then x € Der A if and only if for every basis B of x and for
every subset U of T such that U € B there exists a point y of T" such that
y€ ANU and x # y.

(21) Let T be a non empty topological space, A be a subset of T', and x be a
point of T'. Then x € Der A if and only if there exists a basis B of x such
that for every subset U of T" such that U € B there exists a point y of T'
such that y € ANU and x # y.

4. ISOLATED POINTS

Let T be a topological space, let A be a subset of T, and let = be a set. We
say that x is isolated in A if and only if:
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(Def. 4) x € A and z is not an accumulation point of A.
The following three propositions are true:

(22) Let T be a non empty topological space, A be a subset of T, and p be a
set. Then p € A\ Der A if and only if p is isolated in A.

(23) Let T be a non empty topological space, A be a subset of T, and p be a
point of T'. Then p is an accumulation point of A if and only if for every
open subset U of T such that p € U there exists a point g of T" such that
g#pand g€ Aand g€ U.

(24) Let T be a non empty topological space, A be a subset of T', and p be
a point of T. Then p is isolated in A if and only if there exists an open
subset G of T such that G N A = {p}.

Let T be a topological space and let p be a point of 7. We say that p is
isolated if and only if:
(Def. 5) p is isolated in Qrp.
Next we state the proposition

(25) For every non empty topological space T' and for every point p of 7" holds

p is isolated iff {p} is open.

5. DERIVATIVE OF A SUBSET-FAMILY

Let T be a topological space and let F' be a family of subsets of 7. The
functor Der F’ yielding a family of subsets of T" is defined by:

(Def. 6) For every subset A of T holds A € Der F iff there exists a subset B of T
such that A = Der B and B € F.

For simplicity, we follow the rules: T is a non empty topological space, A,
B are subsets of T', F', G are families of subsets of T', and x is a set.
One can prove the following propositions:

(26) If F =0, then Der F = ().

(27) If F ={A}, then Der F' = {Der A}.

(28) If F C G, then Der F' C Der G.

(29) Der(F UG) = Der F'UDerG.

(30) For every non empty topological space T and for every subset A of T
holds Der A C A.

(31) For every topological space T and for every subset A of T holds A =
AU Der A.

(32) For every non empty topological space T" and for all subsets A, B of T
such that A C B holds Der A C Der B.

(33) For every non empty topological space T and for all subsets A, B of T
holds Der(A U B) = Der AU Der B.

~— — — ~— —
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(34) For every non empty topological space T and for every subset A of T
such that T is 77 holds Der Der A C Der A.
(35) For every topological space T" and for every subset A of T" such that T’
is T} holds Der A = Der A.
Let T be a 77 non empty topological space and let A be a subset of T.
Observe that Der A is closed.
One can prove the following two propositions:
(36) For every non empty topological space T and for every family F' of
subsets of T holds |JDer F' C Der | F.
(37) If A C B and z is an accumulation point of A, then z is an accumulation
point of B.

6. DENSITY-IN-ITSELF

Let T be a topological space and let A be a subset of T'. We say that A is
dense-in-itself if and only if:

(Def. 7) A C Der A.
Let T be a non empty topological space. We say that T is dense-in-itself if
and only if:
(Def. 8) Qr is dense-in-itself.
Next we state the proposition
(38) If Tis Ty and A is dense-in-itself, then A is dense-in-itself.

Let T be a topological space and let F' be a family of subsets of T'. We say
that F' is dense-in-itself if and only if:

(Def. 9) For every subset A of T" such that A € F' holds A is dense-in-itself.
The following propositions are true:

(39) For every family F' of subsets of T such that F' is dense-in-itself holds
UF C UDerF.
(40) If F is dense-in-itself, then | J F' is dense-in-itself.
(41) Fr(0p) = 0.
Let T be a topological space and let A be an open closed subset of T'. Note
that Fr A is empty.
Let T be a non empty non discrete topological space. Note that there exists
a subset of T" which is non open and there exists a subset of T' which is non
closed.
Let T be a non empty non discrete topological space and let A be a non
open subset of T. Observe that Fr A is non empty.
Let T be a non empty non discrete topological space and let A be a non
closed subset of T. One can check that Fr A is non empty.
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7. PERFECT SETS

Let T be a topological space and let A be a subset of T'. We say that A is
perfect if and only if:

(Def. 10) A is closed and dense-in-itself.

Let T be a topological space. One can check that every subset of 1" which
is perfect is also closed and dense-in-itself and every subset of T" which is closed
and dense-in-itself is also perfect.

We now state three propositions:

(42) For every topological space T holds Der((r) = (7.

(43) For every topological space T and for every subset A of 7" holds A is
perfect iff Der A = A.

(44) For every topological space T holds (7 is perfect.

Let T be a topological space. Note that every subset of 7" which is empty is
also perfect.

Let T be a topological space. Observe that there exists a subset of T which
is perfect.

8. SCATTERED SUBSETS

Let T be a topological space and let A be a subset of T. We say that A is
scattered if and only if:

(Def. 11) It is not true that there exists a subset B of T such that B is non empty
and B C A and B is dense-in-itself.

Let T be a non empty topological space. Observe that every subset of T’
which is non empty and scattered is also non dense-in-itself and every subset of
T which is dense-in-itself and non empty is also non scattered.

The following proposition is true

(45) For every topological space T holds (7 is scattered.

Let T be a topological space. Note that every subset of 7" which is empty is
also scattered.
One can prove the following proposition

(46) Let T be a non empty topological space. Suppose T is T. Then there
exist subsets A, B of T such that AU B = Qp and A misses B and A is
perfect and B is scattered.

Let T be a discrete topological space and let A be a subset of T. Observe
that Fr A is empty.

Let T be a discrete topological space. Observe that every subset of T is
closed and open.

The following proposition is true
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(47) For every discrete topological space T and for every subset A of T holds

Der A = 0.

Let T be a discrete non empty topological space and let A be a subset of T'.

Note that Der A is empty.

One can prove the following proposition

(48) For every discrete non empty topological space T and for every subset
A of T such that A is dense holds A = Q.

9. DENSITY OF A TOPOLOGICAL SPACE AND SEPARABLE SPACES

Let T be a topological space. The functor density 7' yielding a cardinal

number is defined by:

(Def. 12) There exists a subset A of T such that A is dense and density T = A
and for every subset B of T such that B is dense holds density T' < B.

Let T be a topological space.

(Def. 13)  density T' < Ny.

We say that T is separable if and only if:

One can prove the following proposition

(49) Every countable topological space is separable.

Let us observe that every topological space which is countable is also sepa-

rable.

10. EXERCISES

The following propositions are true:
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such that A = Q holds A¢ = IQ.

such that A = IQ holds A° = Q.

such that A = Q holds Int A = (.

such that A = IQ holds Int A = 0.

such that A = Q holds A is dense.

such that A = IQ holds A is dense.

such that A = Q holds A is boundary.
such that A = IQ holds A is boundary.
such that A =R holds A is non boundary.

There exist subsets A, B of R! such that A4 is boundary and B is bound-

ary and A U B is non boundary.



146

ADAM GRABOWSKI

REFERENCES

Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
Grzegorz Bancerek. Countable sets and Hessenberg’s theorem. Formalized Mathematics,
2(1):65-69, 1991.

Jozef Bialas and Yatsuka Nakamura. Dyadic numbers and T4 topological spaces. For-
malized Mathematics, 5(3):361-366, 1996.

Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

Agata Darmochwat and Yatsuka Nakamura. Metric spaces as topological spaces — funda-
mental concepts. Formalized Mathematics, 2(4):605-608, 1991.

Ryszard Engelking. General Topology, volume 60 of Monografie Matematyczne. PWN —
Polish Scientific Publishers, Warsaw, 1977.

Adam Grabowski. On the subcontinua of a real line. Formalized Mathematics, 11(3):313—
322, 2003.

Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized
Mathematics, 3(2):143-149, 1992.

Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223-230, 1990.

Marta Pruszynska and Marek Dudzicz. On the isomorphism between finite chains. For-
malized Mathematics, 9(2):429-430, 2001.

Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.

Andrzej Trybulec. Baire spaces, Sober spaces. Formalized Mathematics, 6(2):289-294,

1997.
Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Mirostaw Wysocki and Agata Darmochwal. Subsets of topological spaces. Formalized
Mathematics, 1(1):231-237, 1990.

Received November 8, 2004



