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Summary. We continue Mizar formalization of General Topology accord-

ing to the book [13] by Engelking. In the article the formalization of Section

1.1 is completed. Namely, the paper includes the formalization of theorems on

correspondence of the basis and basis in a point, definitions of the character of

a point and a topological space, a neighborhood system, and the weight of a

topological space. The formalization is tested with almost discrete topological

spaces with infinity.

MML Identifier: TOPGEN 2.

The notation and terminology used here are introduced in the following articles:

[22], [26], [21], [16], [27], [9], [28], [10], [7], [3], [18], [5], [4], [12], [24], [1], [2], [25],

[17], [29], [11], [14], [8], [19], [20], [23], [6], and [15].

1. Characteristic of Topological Spaces

One can prove the following propositions:

(1) Let T be a non empty topological space, B be a basis of T , and x be an

element of T . Then {U ; U ranges over subsets of T : x ∈ U ∧ U ∈ B} is

a basis of x.

(2) Let T be a non empty topological space and B be a many sorted set

indexed by T . Suppose that for every element x of T holds B(x) is a basis

of x. Then
⋃

B is a basis of T .

Let T be a non empty topological structure and let x be an element of T .

The functor Chi(x, T ) yielding a cardinal number is defined as follows:

1This work has been partially supported by the KBN grant 4 T11C 039 24.
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(Def. 1) There exists a basis B of x such that Chi(x, T ) = B and for every basis

B of x holds Chi(x, T ) ≤ B.

One can prove the following proposition

(3) Let X be a set. Suppose that for every set a such that a ∈ X holds a is

a cardinal number. Then
⋃

X is a cardinal number.

Let T be a non empty topological structure. The functor ChiT yields a

cardinal number and is defined by the conditions (Def. 2).

(Def. 2)(i) For every point x of T holds Chi(x, T ) ≤ ChiT, and

(ii) for every cardinal number M such that for every point x of T holds

Chi(x, T ) ≤ M holds ChiT ≤ M.

The following three propositions are true:

(4) For every non empty topological structure T holds ChiT =
⋃
{Chi(x, T ) : x ranges over points of T}.

(5) For every non empty topological structure T and for every point x of T

holds Chi(x, T ) ≤ ChiT.

(6) For every non empty topological space T holds T is first-countable iff

ChiT ≤ ℵ0.

2. Neighborhood Systems

Let T be a non empty topological space. A many sorted set indexed by T

is said to be a neighborhood system of T if:

(Def. 3) For every element x of T holds it(x) is a basis of x.

Let T be a non empty topological space and let N be a neighborhood system

of T . Then
⋃

N is a basis of T . Let x be a point of T . Then N(x) is a basis of

x.

We now state several propositions:

(7) Let T be a non empty topological space, N be a neighborhood system

of T , and x be an element of T . Then N(x) is non empty and for every

set U such that U ∈ N(x) holds x ∈ U.

(8) Let T be a non empty topological space, x, y be points of T , B1 be a

basis of x, B2 be a basis of y, and U be a set. If x ∈ U and U ∈ B2, then

there exists an open subset V of T such that V ∈ B1 and V ⊆ U.

(9) Let T be a non empty topological space, x be a point of T , B be a basis

of x, and U1, U2 be sets. If U1 ∈ B and U2 ∈ B, then there exists an open

subset V of T such that V ∈ B and V ⊆ U1 ∩ U2.

(10) Let T be a non empty topological space, A be a subset of T , and x be

an element of T . Then x ∈ A if and only if for every basis B of x and for

every set U such that U ∈ B holds U meets A.
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(11) Let T be a non empty topological space, A be a subset of T , and x be

an element of T . Then x ∈ A if and only if there exists a basis B of x

such that for every set U such that U ∈ B holds U meets A.

Let T be a topological space. Note that there exists a family of subsets of

T which is open and non empty.

3. Weights of Topological Spaces

Next we state the proposition

(12) Let T be a non empty topological space and S be an open family of

subsets of T . Then there exists an open family G of subsets of T such

that G ⊆ S and
⋃

G =
⋃

S and G ≤ weight T.

Let T be a topological structure. We say that T is finite-weight if and only

if:

(Def. 4) weightT is finite.

Let T be a topological structure. We introduce T is infinite-weight as an

antonym of T is finite-weight.

Let us mention that every topological structure which is finite is also finite-

weight and every topological structure which is infinite-weight is also infinite.

Let us note that there exists a topological space which is finite and non

empty.

The following propositions are true:

(13) For every set X holds SmallestPartition(X) = X .

(14) Let T be a discrete non empty topological structure. Then

SmallestPartition(the carrier of T ) is a basis of T and for every basis

B of T holds SmallestPartition(the carrier of T ) ⊆ B.

(15) For every discrete non empty topological structure T holds weightT =

the carrier of T .

One can verify that there exists a topological space which is infinite-weight.

Next we state several propositions:

(16) Let T be an infinite-weight topological space and B be a basis of T .

Then there exists a basis B1 of T such that B1 ⊆ B and B1 = weightT.

(17) Let T be a finite-weight non empty topological space. Then there exists

a basis B0 of T and there exists a function f from the carrier of T into

the topology of T such that B0 = rng f and for every point x of T holds

x ∈ f(x) and for every open subset U of T such that x ∈ U holds f(x) ⊆ U.

(18) Let T be a topological space, B0, B be bases of T , and f be a function

from the carrier of T into the topology of T . Suppose B0 = rng f and for

every point x of T holds x ∈ f(x) and for every open subset U of T such

that x ∈ U holds f(x) ⊆ U. Then B0 ⊆ B.
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(19) Let T be a topological space, B0 be a basis of T , and f be a function

from the carrier of T into the topology of T . Suppose B0 = rng f and for

every point x of T holds x ∈ f(x) and for every open subset U of T such

that x ∈ U holds f(x) ⊆ U. Then weightT = B0 .

(20) For every non empty topological space T and for every basis B of T

there exists a basis B1 of T such that B1 ⊆ B and B1 = weightT.

4. Example of Almost Discrete Topological Space with Infinity

Let X, x0 be sets. The functor DiscrWithInfin(X, x0) yielding a strict topo-

logical structure is defined by the conditions (Def. 5).

(Def. 5)(i) The carrier of DiscrWithInfin(X, x0) = X, and

(ii) the topology of DiscrWithInfin(X, x0) = {U ;U ranges over subsets of

X: x0 /∈ U} ∪ {F c;F ranges over subsets of X: F is finite}.

Let X, x0 be sets. Observe that DiscrWithInfin(X, x0) is topological space-

like.

Let X be a non empty set and let x0 be a set. One can verify that

DiscrWithInfin(X, x0) is non empty.

Next we state a number of propositions:

(21) For all sets X, x0 and for every subset A of DiscrWithInfin(X, x0) holds

A is open iff x0 /∈ A or Ac is finite.

(22) For all sets X, x0 and for every subset A of DiscrWithInfin(X, x0) holds

A is closed iff if x0 ∈ X, then x0 ∈ A or A is finite.

(23) For all sets X, x0, x such that x ∈ X holds {x} is a closed subset of

DiscrWithInfin(X, x0).

(24) For all sets X, x0, x such that x ∈ X and x 6= x0 holds {x} is an open

subset of DiscrWithInfin(X, x0).

(25) For all sets X, x0 such that X is infinite and for every subset U of

DiscrWithInfin(X, x0) such that U = {x0} holds U is not open.

(26) For all sets X, x0 and for every subset A of DiscrWithInfin(X, x0) such

that A is finite holds A = A.

(27) Let T be a non empty topological space and A be a subset of T . Suppose

A is not closed. Let a be a point of T . If A∪{a} is closed, then A = A∪{a}.

(28) For all sets X, x0 such that x0 ∈ X and for every subset A of

DiscrWithInfin(X, x0) such that A is infinite holds A = A ∪ {x0}.

(29) For all sets X, x0 and for every subset A of DiscrWithInfin(X, x0) such

that Ac is finite holds IntA = A.

(30) For all sets X, x0 such that x0 ∈ X and for every subset A of

DiscrWithInfin(X, x0) such that Ac is infinite holds IntA = A \ {x0}.
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(31) For all sets X, x0 there exists a basis B0 of DiscrWithInfin(X, x0) such

that B0 = (SmallestPartition(X) \ {{x0}}) ∪ {F c;F ranges over subsets

of X: F is finite}.

In the sequel Z denotes an infinite set.

The following proposition is true

(32) FinZ = Z .

In the sequel F is a subset of Z.

One can prove the following propositions:

(33) {F c : F is finite} = Z .

(34) Let X be an infinite set, x0 be a set, and B0 be a basis of

DiscrWithInfin(X, x0). If B0 = (SmallestPartition(X) \ {{x0}})∪ {F c;F

ranges over subsets of X: F is finite}, then B0 = X .

(35) For every infinite set X and for every set x0 and for every basis B of

DiscrWithInfin(X, x0) holds X ≤ B.

(36) For every infinite set X and for every set x0 holds

weight DiscrWithInfin(X, x0) = X .

(37) Let X be a non empty set and x0 be a set. Then there exists a prebasis B0

of DiscrWithInfin(X, x0) such that B0 = (SmallestPartition(X)\{{x0}})∪

{{x}c : x ranges over elements of X}.

5. Exercises

Next we state four propositions:

(38) Let T be a topological space, F be a family of subsets of T , and I be a

non empty family of subsets of F . Suppose that for every set G such that

G ∈ I holds F \ G is finite. Then
⋃

F =
⋃

clf F ∪
⋂
{
⋃

G;G ranges over

families of subsets of T : G ∈ I}.

(39) Let T be a topological space and F be a family of subsets of T . Then
⋃

F =
⋃

clf F ∪
⋂
{
⋃

G;G ranges over families of subsets of T : G ⊆

F ∧ F \ G is finite}.

(40) Let X be a set and O be a family of subsets of 2X . Suppose that for

every family o of subsets of X such that o ∈ O holds 〈X, o〉 is a topological

space. Then there exists a family B of subsets of X such that

(i) B = Intersect(O),

(ii) 〈X, B〉 is a topological space,

(iii) for every family o of subsets of X such that o ∈ O holds 〈X, o〉 is a

topological extension of 〈X, B〉, and

(iv) for every topological space T such that the carrier of T = X and for

every family o of subsets of X such that o ∈ O holds 〈X, o〉 is a topological

extension of T holds 〈X, B〉 is a topological extension of T .
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(41) Let X be a set and O be a family of subsets of 2X . Then there exists a

family B of subsets of X such that

(i) B = UniCl(FinMeetCl(
⋃

O)),

(ii) 〈X, B〉 is a topological space,

(iii) for every family o of subsets of X such that o ∈ O holds 〈X, B〉 is a

topological extension of 〈X, o〉, and

(iv) for every topological space T such that the carrier of T = X and for

every family o of subsets of X such that o ∈ O holds T is a topological

extension of 〈X, o〉 holds T is a topological extension of 〈X, B〉.
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