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Summary. We continue Mizar formalization of General Topology accord-

ing to the book [19] by Engelking. In the article the formalization of Section 1.2

is almost completed. Namely, we formalize theorems on introduction of topolo-

gies by bases, neighborhood systems, closed sets, closure operator, and interior

operator. The Sorgenfrey line is defined by a basis. It is proved that the weight

of it is continuum. Other techniques are used to demonstrate introduction of

discrete and anti-discrete topologies.

MML Identifier: TOPGEN 3.

The terminology and notation used in this paper have been introduced in the

following articles: [39], [17], [45], [30], [18], [38], [43], [46], [47], [15], [16], [10],

[6], [7], [3], [5], [13], [20], [2], [8], [1], [14], [4], [42], [27], [44], [23], [37], [35], [11],

[25], [24], [32], [33], [34], [29], [40], [26], [31], [48], [21], [22], [36], [12], [41], [28],

and [9].

1. Introducing Topology

In this paper a is a set.

Let X be a set and let B be a family of subsets of X. We say that B is

point-filtered if and only if:

(Def. 1) For all sets x, U1, U2 such that U1 ∈ B and U2 ∈ B and x ∈ U1 ∩ U2

there exists a subset U of X such that U ∈ B and x ∈ U and U ⊆ U1∩U2.

We now state four propositions:

1This work has been partially supported by the KBN grant 4 T11C 039 24.
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(1) Let X be a set and B be a family of subsets of X. Then B is covering if

and only if for every set x such that x ∈ X there exists a subset U of X

such that U ∈ B and x ∈ U.

(2) Let X be a set and B be a family of subsets of X. Suppose B is point-

filtered and covering. Let T be a topological structure. Suppose the carrier

of T = X and the topology of T = UniCl(B). Then T is a topological space

and B is a basis of T .

(3) Let X be a set and B be a non-empty many sorted set indexed by X.

Suppose that

(i) rng B ⊆ 22X

,

(ii) for all sets x, U such that x ∈ X and U ∈ B(x) holds x ∈ U,

(iii) for all sets x, y, U such that x ∈ U and U ∈ B(y) and y ∈ X there

exists a set V such that V ∈ B(x) and V ⊆ U, and

(iv) for all sets x, U1, U2 such that x ∈ X and U1 ∈ B(x) and U2 ∈ B(x)

there exists a set U such that U ∈ B(x) and U ⊆ U1 ∩ U2.

Then there exists a family P of subsets of X such that

(v) P =
⋃

B, and

(vi) for every topological structure T such that the carrier of T = X and the

topology of T = UniCl(P ) holds T is a topological space and for every non

empty topological space T ′ such that T ′ = T holds B is a neighborhood

system of T ′.

(4) Let X be a set and F be a family of subsets of X. Suppose that

(i) ∅ ∈ F,

(ii) X ∈ F,

(iii) for all sets A, B such that A ∈ F and B ∈ F holds A ∪ B ∈ F, and

(iv) for every family G of subsets of X such that G ⊆ F holds Intersect(G) ∈

F.

Let T be a topological structure. Suppose the carrier of T = X and the

topology of T = F c. Then T is a topological space and for every subset A

of T holds A is closed iff A ∈ F.

The scheme TopDefByClosedPred deals with a set A and a unary predicate

P, and states that:

There exists a strict topological space T such that the carrier of

T = A and for every subset A of T holds A is closed iff P[A]

provided the following conditions are satisfied:

• P[∅] and P[A],

• For all sets A, B such that P[A] and P[B] holds P[A ∪ B], and

• For every family G of subsets of A such that for every set A such

that A ∈ G holds P[A] holds P[Intersect(G)].

We now state two propositions:
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(5) Let T1, T2 be topological spaces. Suppose that for every set A holds A

is an open subset of T1 iff A is an open subset of T2. Then the topological

structure of T1 = the topological structure of T2.

(6) Let T1, T2 be topological spaces. Suppose that for every set A holds A

is a closed subset of T1 iff A is a closed subset of T2. Then the topological

structure of T1 = the topological structure of T2.

Let X, Y be sets and let r be a subset of [:X, 2Y :]. Then rng r is a family

of subsets of Y .

We now state the proposition

(7) Let X be a set and c be a function from 2X into 2X . Suppose that

(i) c(∅) = ∅,

(ii) for every subset A of X holds A ⊆ c(A),

(iii) for all subsets A, B of X holds c(A ∪ B) = c(A) ∪ c(B), and

(iv) for every subset A of X holds c(c(A)) = c(A).

Let T be a topological structure. Suppose the carrier of T = X and the

topology of T = (rng c)c. Then T is a topological space and for every

subset A of T holds A = c(A).

The scheme TopDefByClosureOp deals with a set A and a unary functor F

yielding a set, and states that:

There exists a strict topological space T such that the carrier of

T = A and for every subset A of T holds A = F(A)

provided the parameters satisfy the following conditions:

• F(∅) = ∅,

• For every subset A of A holds A ⊆ F(A) and F(A) ⊆ A,

• For all subsets A, B of A holds F(A ∪ B) = F(A) ∪ F(B), and

• For every subset A of A holds F(F(A)) = F(A).

We now state two propositions:

(8) Let T1, T2 be topological spaces. Suppose that

(i) the carrier of T1 = the carrier of T2, and

(ii) for every subset A1 of T1 and for every subset A2 of T2 such that

A1 = A2 holds A1 = A2.

Then the topology of T1 = the topology of T2.

(9) Let X be a set and i be a function from 2X into 2X . Suppose that

(i) i(X) = X,

(ii) for every subset A of X holds i(A) ⊆ A,

(iii) for all subsets A, B of X holds i(A ∩ B) = i(A) ∩ i(B), and

(iv) for every subset A of X holds i(i(A)) = i(A).

Let T be a topological structure. Suppose the carrier of T = X and the

topology of T = rng i. Then T is a topological space and for every subset

A of T holds IntA = i(A).
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The scheme TopDefByInteriorOp deals with a set A and a unary functor F

yielding a set, and states that:

There exists a strict topological space T such that the carrier of

T = A and for every subset A of T holds IntA = F(A)

provided the following conditions are met:

• F(A) = A,

• For every subset A of A holds F(A) ⊆ A,

• For all subsets A, B of A holds F(A ∩ B) = F(A) ∩ F(B), and

• For every subset A of A holds F(F(A)) = F(A).

Next we state the proposition

(10) Let T1, T2 be topological spaces. Suppose that

(i) the carrier of T1 = the carrier of T2, and

(ii) for every subset A1 of T1 and for every subset A2 of T2 such that

A1 = A2 holds IntA1 = IntA2.

Then the topology of T1 = the topology of T2.

2. Sorgenfrey Line

In the sequel x, q denote elements of R.

The strict non empty topological space Sorgenfrey line is defined by the

conditions (Def. 2).

(Def. 2)(i) The carrier of Sorgenfrey line = R, and

(ii) there exists a family B of subsets of R such that the topology of Sor-

genfrey line = UniCl(B) and B = {[x, q[: x < q ∧ q is rational}.

We now state several propositions:

(11) For all real numbers x, y holds [x, y[ is an open subset of Sorgenfrey line.

(12) For all real numbers x, y holds ]x, y[ is an open subset of Sorgenfrey line.

(13) For every real number x holds ]−∞, x[ is an open subset of Sorgenfrey

line.

(14) For every real number x holds ]x,+∞[ is an open subset of Sorgenfrey

line.

(15) For every real number x holds [x,+∞[ is an open subset of Sorgenfrey

line.

(16) Z = ℵ0.

(17) Q = ℵ0.

(18) Let A be a set. Suppose A is mutually-disjoint and for every a such that

a ∈ A there exist real numbers x, y such that x < y and ]x, y[ ⊆ a. Then

A is countable.

Let X be a set and let x be a real number. We say that x is local minimum

of X if and only if:
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(Def. 3) x ∈ X and there exists a real number y such that y < x and ]y, x[ misses

X.

In the sequel x is an element of R.

One can prove the following proposition

(19) For every subset U of R holds {x : x is local minimum of U} is countable.

One can check the following observations:

∗ Z is infinite,

∗ Q is infinite, and

∗ R is infinite.

Let X be an infinite set. Note that 2X is infinite.

Let M be an aleph. Observe that 2M is infinite.

The infinite cardinal number c is defined by:

(Def. 4) c = R .

In the sequel x, q are elements of R.

One can prove the following proposition

(20) {[x, q[: x < q ∧ q is rational} = c.

Let X be an infinite set. Observe that there exists a subset of X which is

infinite.

Let X be a set and let r be a real number. The functor X-powers(r) yields

a function from N into R and is defined by:

(Def. 5) For every natural number i holds i ∈ X and (X-powers(r))(i) = ri or

i /∈ X and (X-powers(r))(i) = 0.

Next we state the proposition

(21) For every set X and for every real number r such that 0 < r and r < 1

holds X-powers(r) is summable.

In the sequel r denotes a real number, X denotes a set, and n denotes an

element of N.

The following propositions are true:

(22) If 0 < r and r < 1, then
∑

((rκ)κ∈N ↑ n) = r
n

1−r
.

(23)
∑

(((1
2
)κ)κ∈N ↑ (n + 1)) = (1

2
)n.

(24) If 0 < r and r < 1, then
∑

(X-powers(r)) ≤
∑

((rκ)κ∈N).

(25)
∑

((X-powers(1
2
)) ↑ (n + 1)) ≤ (1

2
)n.

(26) For every infinite subset X of N and for every natural number i holds

(
∑

κ

α=0(X-powers(1
2
))(α))κ∈N(i) <

∑
(X-powers(1

2
)).

(27) For all infinite subsets X, Y of N such that
∑

(X-powers(1
2
)) =

∑
(Y -powers(1

2
)) holds X = Y.

(28) If X is countable, then FinX is countable.

(29) c = 2ℵ0 .
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(30) ℵ0 < c.

(31) For every family A of subsets of R such that A < c holds

{x :
∨

U : set (U ∈ UniCl(A) ∧ x is local minimum of U)} < c.

(32) Let X be a family of subsets of R. Suppose X < c. Then there exists a

real number x and there exists a rational number q such that x < q and

[x, q[/∈ UniCl(X).

(33) weight Sorgenfrey line = c.

3. Example: closed = finite

Let X be a set. The functor ClFinTop(X) yielding a strict topological space

is defined by:

(Def. 6) The carrier of ClFinTop(X) = X and for every subset F of ClFinTop(X)

holds F is closed iff F is finite or F = X.

The following two propositions are true:

(34) For every set X and for every subset A of ClFinTop(X) holds A is open

iff A = ∅ or Ac is finite.

(35) For every infinite set X and for every subset A of X such that A is finite

holds Ac is infinite.

Let X be a non empty set. Note that ClFinTop(X) is non empty.

The following proposition is true

(36) For every infinite set X and for all non empty open subsets U , V of

ClFinTop(X) holds U meets V .

4. Example: one point closure

Let X, x0 be sets. The functor x0-PointClTop(X) yielding a strict topolog-

ical space is defined as follows:

(Def. 7) The carrier of x0-PointClTop(X) = X and for every subset A of

x0-PointClTop(X) holds A = (A = ∅ → A,A ∪ {x0} ∩ X).

Let X be a non empty set and let x0 be a set. One can check that

x0-PointClTop(X) is non empty.

We now state two propositions:

(37) For every non empty set X and for every element x0 of X and for every

non empty subset A of x0-PointClTop(X) holds A = A ∪ {x0}.

(38) Let X be a non empty set, x0 be an element of X, and A be a non empty

subset of x0-PointClTop(X). Then A is closed if and only if x0 ∈ A.
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Let X be a non empty set and let A be a proper subset of X. Observe that

Ac is non empty.

The following propositions are true:

(39) Let X be a non empty set, x0 be an element of X, and A be a proper

subset of x0-PointClTop(X). Then A is open if and only if x0 /∈ A.

(40) For all sets X, x0, x such that x0 ∈ X holds {x} is a closed subset of

x0-PointClTop(X) iff x = x0.

(41) For all sets X, x0, x such that {x0} ⊂ X holds {x} is an open subset of

x0-PointClTop(X) iff x ∈ X and x 6= x0.

5. Example: discrete on subset

Let X, X0 be sets. The functor X0-DiscreteTop(X) yielding a strict topo-

logical space is defined as follows:

(Def. 8) The carrier of X0-DiscreteTop(X) = X and for every subset A of

X0-DiscreteTop(X) holds IntA = (A = X → A,A ∩ X0).

Let X be a non empty set and let X0 be a set. One can check that

X0-DiscreteTop(X) is non empty.

We now state several propositions:

(42) For every non empty set X and for every set X0 and for every proper

subset A of X0-DiscreteTop(X) holds IntA = A ∩ X0.

(43) For every non empty set X and for every set X0 and for every proper

subset A of X0-DiscreteTop(X) holds A is open iff A ⊆ X0.

(44) For every set X and for every subset X0 of X holds the topology of

X0-DiscreteTop(X) = {X} ∪ 2X0 .

(45) For every set X holds ADTS(X) = ∅-DiscreteTop(X).

(46) For every set X holds {X}top = X-DiscreteTop(X).
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[14] Czes law Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
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