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The terminology and notation used in this paper have been introduced in the

following articles: [25], [9], [28], [2], [29], [5], [30], [8], [6], [16], [3], [23], [24], [27],

[1], [4], [7], [22], [17], [21], [20], [26], [13], [10], [19], [31], [14], [12], [11], [18], and

[15].

1. Real Numbers

We adopt the following rules: i is an integer and a, b, r, s are real numbers.

The following propositions are true:

(1) frac(r + i) = frac r.

(2) If r ≤ a and a < ⌊r⌋ + 1, then ⌊a⌋ = ⌊r⌋.

(3) If r ≤ a and a < ⌊r⌋ + 1, then frac r ≤ frac a.

(4) If r < a and a < ⌊r⌋ + 1, then frac r < frac a.

(5) If a ≥ ⌊r⌋ + 1 and a ≤ r + 1, then ⌊a⌋ = ⌊r⌋ + 1.

(6) If a ≥ ⌊r⌋ + 1 and a < r + 1, then frac a < frac r.

(7) If r ≤ a and a < r + 1 and r ≤ b and b < r + 1 and frac a = frac b, then

a = b.

1The paper was written during the first author’s post-doctoral fellowship granted by the

Shinshu University, Japan.
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2. Subsets of R

Let r be a real number and let s be a positive real number. One can verify

the following observations:

∗ ]r, r + s[ is non empty,

∗ [r, r + s[ is non empty,

∗ ]r, r + s] is non empty,

∗ [r, r + s] is non empty,

∗ ]r − s, r[ is non empty,

∗ [r − s, r[ is non empty,

∗ ]r − s, r] is non empty, and

∗ [r − s, r] is non empty.

Let r be a non positive real number and let s be a positive real number.

One can verify the following observations:

∗ ]r, s[ is non empty,

∗ [r, s[ is non empty,

∗ ]r, s] is non empty, and

∗ [r, s] is non empty.

Let r be a negative real number and let s be a non negative real number.

One can check the following observations:

∗ ]r, s[ is non empty,

∗ [r, s[ is non empty,

∗ ]r, s] is non empty, and

∗ [r, s] is non empty.

We now state a number of propositions:

(8) If r ≤ a and b < s, then [a, b] ⊆ [r, s[.

(9) If r < a and b ≤ s, then [a, b] ⊆ ]r, s].

(10) If r < a and b < s, then [a, b] ⊆ ]r, s[.

(11) If r ≤ a and b ≤ s, then [a, b[⊆ [r, s].

(12) If r ≤ a and b ≤ s, then [a, b[⊆ [r, s[.

(13) If r < a and b ≤ s, then [a, b[⊆ ]r, s].

(14) If r < a and b ≤ s, then [a, b[⊆ ]r, s[.

(15) If r ≤ a and b ≤ s, then ]a, b] ⊆ [r, s].

(16) If r ≤ a and b < s, then ]a, b] ⊆ [r, s[.

(17) If r ≤ a and b ≤ s, then ]a, b] ⊆ ]r, s].

(18) If r ≤ a and b < s, then ]a, b] ⊆ ]r, s[.

(19) If r ≤ a and b ≤ s, then ]a, b[ ⊆ [r, s].
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(20) If r ≤ a and b ≤ s, then ]a, b[ ⊆ [r, s[.

(21) If r ≤ a and b ≤ s, then ]a, b[ ⊆ ]r, s].

3. Functions

The following propositions are true:

(22) For every function f and for all sets x, X such that x ∈ dom f and

f(x) ∈ f◦X and f is one-to-one holds x ∈ X.

(23) For every finite sequence f and for every natural number i such that

i + 1 ∈ dom f holds i ∈ dom f or i = 0.

(24) For all sets x, y, X, Y and for every function f such that x 6= y and

f ∈
∏

[x 7−→ X, y 7−→ Y ] holds f(x) ∈ X and f(y) ∈ Y.

(25) For all sets a, b holds 〈a, b〉 = [1 7−→ a, 2 7−→ b].

4. General Topology

Let us note that there exists a topological space which is constituted finite

sequences, non empty, and strict.

Let T be a constituted finite sequences topological space. Note that every

subspace of T is constituted finite sequences.

One can prove the following proposition

(26) Let T be a non empty topological space, Z be a non empty subspace of

T , t be a point of T , z be a point of Z, N be an open neighbourhood of

t, and M be a subset of Z. If t = z and M = N ∩ΩZ , then M is an open

neighbourhood of z.

Let us note that every topological space which is empty is also discrete and

anti-discrete.

Let X be a discrete topological space and let Y be a topological space. Note

that every map from X into Y is continuous.

The following proposition is true

(27) Let X be a topological space, Y be a topological structure, and f be a

map from X into Y . If f is empty, then f is continuous.

Let X be a topological space and let Y be a topological structure. Observe

that every map from X into Y which is empty is also continuous.

One can prove the following propositions:

(28) Let X be a topological structure, Y be a non empty topological structure,

and Z be a non empty subspace of Y . Then every map from X into Z is

a map from X into Y .
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(29) Let S, T be non empty topological spaces, X be a subset of S, Y be a

subset of T , f be a continuous map from S into T , and g be a map from

S↾X into T ↾Y. If g = f↾X, then g is continuous.

(30) Let S, T be non empty topological spaces, Z be a non empty subspace

of T , f be a map from S into T , and g be a map from S into Z. If f = g

and f is open, then g is open.

(31) Let S, T be non empty topological spaces, S1 be a subset of S, T1 be a

subset of T , f be a map from S into T , and g be a map from S↾S1 into

T ↾T1. If g = f↾S1 and g is onto and f is open and one-to-one, then g is

open.

(32) Let X, Y , Z be non empty topological spaces, f be a map from X into

Y , and g be a map from Y into Z. If f is open and g is open, then g · f

is open.

(33) Let X, Y be topological spaces, Z be an open subspace of Y , f be a

map from X into Y , and g be a map from X into Z. If f = g and g is

open, then f is open.

(34) Let S, T be non empty topological spaces and f be a map from S into

T . Suppose f is one-to-one and onto. Then f is continuous if and only if

f−1 is open.

(35) Let S, T be non empty topological spaces and f be a map from S into

T . Suppose f is one-to-one and onto. Then f is open if and only if f−1 is

continuous.

(36) Let S be a topological space and T be a non empty topological space.

Then S and T are homeomorphic if and only if the topological structure

of S and the topological structure of T are homeomorphic.

(37) Let S, T be non empty topological spaces and f be a map from S into

T . Suppose f is one-to-one, onto, continuous, and open. Then f is a

homeomorphism.

5. R
1

One can prove the following propositions:

(38) For every partial function f from R to R such that f = R 7−→ r holds f

is continuous on R.

(39) Let f , f1, f2 be partial functions from R to R. Suppose that dom f =

dom f1∪dom f2 and dom f1 is open and dom f2 is open and f1 is continuous

on dom f1 and f2 is continuous on dom f2 and for every set z such that

z ∈ dom f1 holds f(z) = f1(z) and for every set z such that z ∈ dom f2

holds f(z) = f2(z). Then f is continuous on dom f.
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(40) Let x be a point of R
1, N be a subset of R, and M be a subset of R

1.

Suppose M = N. If N is a neighbourhood of x, then M is a neighbourhood

of x.

(41) For every point x of R
1 and for every neighbourhood M of x there exists

a neighbourhood N of x such that N ⊆ M.

(42) Let f be a map from R
1 into R

1, g be a partial function from R to R,

and x be a point of R
1. If f = g and g is continuous in x, then f is

continuous at x.

(43) Let f be a map from R
1 into R

1 and g be a function from R into R. If

f = g and g is continuous on R, then f is continuous.

(44) If a ≤ r and s ≤ b, then [r, s] is a closed subset of [a, b]T.

(45) If a ≤ r and s ≤ b, then ]r, s[ is an open subset of [a, b]T.

(46) If a ≤ b and a ≤ r, then ]r, b] is an open subset of [a, b]T.

(47) If a ≤ b and r ≤ b, then [a, r[ is an open subset of [a, b]T.

(48) If a ≤ b and r ≤ s, then the carrier of [: [a, b]T, [r, s]T :] = [: [a, b], [r, s] :].

6. E2

T

Next we state four propositions:

(49) [a, b] = [1 7−→ a, 2 7−→ b].

(50) [a, b](1) = a and [a, b](2) = b.

(51) ClosedInsideOfRectangle(a, b, r, s) =
∏

[1 7−→ [a, b], 2 7−→ [r, s]].

(52) If a ≤ b and r ≤ s, then [a, r] ∈ ClosedInsideOfRectangle(a, b, r, s).

Let a, b, c, d be real numbers. The functor Trectangle(a, b, c, d) yielding a

subspace of E2

T
is defined by:

(Def. 1) Trectangle(a, b, c, d) = (E2

T
)↾ClosedInsideOfRectangle(a, b, c, d).

The following propositions are true:

(53) The carrier of Trectangle(a, b, r, s) = ClosedInsideOfRectangle(a, b, r, s).

(54) If a ≤ b and r ≤ s, then Trectangle(a, b, r, s) is non empty.

Let a, c be non positive real numbers and let b, d be non negative real

numbers. Observe that Trectangle(a, b, c, d) is non empty.

The map R2Homeo from [: R1, R
1 :] into E2

T
is defined by:

(Def. 2) For all real numbers x, y holds R2Homeo(〈〈x, y〉〉) = 〈x, y〉.

Next we state several propositions:

(55) For all subsets A, B of R holds R2Homeo◦[:A, B :] =
∏

[1 7−→ A, 2 7−→

B].

(56) R2Homeo is a homeomorphism.
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(57) If a ≤ b and r ≤ s, then R2Homeo ↾the carrier of [: [a, b]T, [r, s]T :] is a

map from [: [a, b]T, [r, s]T :] into Trectangle(a, b, r, s).

(58) Suppose a ≤ b and r ≤ s. Let h be a map from [: [a, b]T, [r, s]T :] into

Trectangle(a, b, r, s). If h = R2Homeo ↾the carrier of [: [a, b]T, [r, s]T :],

then h is a homeomorphism.

(59) If a ≤ b and r ≤ s, then [: [a, b]T, [r, s]T :] and Trectangle(a, b, r, s) are

homeomorphic.

(60) If a ≤ b and r ≤ s, then for every subset A of [a, b]T and for every subset

B of [r, s]T holds
∏

[1 7−→ A, 2 7−→ B] is a subset of Trectangle(a, b, r, s).

(61) Suppose a ≤ b and r ≤ s. Let A be an open subset of [a, b]T and B be

an open subset of [r, s]T. Then
∏

[1 7−→ A, 2 7−→ B] is an open subset of

Trectangle(a, b, r, s).

(62) Suppose a ≤ b and r ≤ s. Let A be a closed subset of [a, b]T and B be

a closed subset of [r, s]T. Then
∏

[1 7−→ A, 2 7−→ B] is a closed subset of

Trectangle(a, b, r, s).
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