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[26], [31], [9], [25], [37], [12], [18], [11], [10], [28], [3], [14], [36], [15], [32], [13],

[16], [20], [19], [21], [8], and [22] provide the terminology and notation for this

paper.

1. Preliminaries

For simplicity, we follow the rules: n is a natural number, i is an integer, a,

b, r are real numbers, and x is a point of En

T.

One can check the following observations:

∗ ]0, 1[ is non empty,

∗ [−1, 1] is non empty, and

∗ ]1
2
, 3

2
[ is non empty.

One can verify the following observations:

∗ the function sin is continuous,

∗ the function cos is continuous,

∗ the function arcsin is continuous, and

∗ the function arccos is continuous.

Next we state two propositions:

(1) sin(a · r + b) = ((the function sin) ·AffineMap(a, b))(r).

(2) cos(a · r + b) = ((the function cos) ·AffineMap(a, b))(r).

1The paper was written during the first author’s post-doctoral fellowship granted by the

Shinshu University, Japan.
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Let a be a non zero real number and let b be a real number. Note that

AffineMap(a, b) is onto and one-to-one.

Let a, b be real numbers. The functor IntIntervals(a, b) is defined as follows:

(Def. 1) IntIntervals(a, b) = {]a + n, b + n[ : n ranges over elements of Z}.

One can prove the following proposition

(3) For every set x holds x ∈ IntIntervals(a, b) iff there exists an element n

of Z such that x = ]a + n, b + n[.

Let a, b be real numbers. Observe that IntIntervals(a, b) is non empty.

Next we state the proposition

(4) If b − a ≤ 1, then IntIntervals(a, b) is mutually-disjoint.

Let a, b be real numbers. Then IntIntervals(a, b) is a family of subsets of

R
1.

Let a, b be real numbers. Then IntIntervals(a, b) is an open family of subsets

of R
1.

2. Correspondence between R and R
1

Let r be a real number. The functor R1r yielding a point of R
1 is defined

by:

(Def. 2) R1r = r.

Let A be a subset of R. The functor R1A yielding a subset of R
1 is defined

by:

(Def. 3) R1A = A.

Let A be a non empty subset of R. Observe that R1A is non empty.

Let A be an open subset of R. Note that R1A is open.

Let A be a closed subset of R. Observe that R1A is closed.

Let A be an open subset of R. Observe that R
1↾R1A is open.

Let A be a closed subset of R. One can verify that R
1↾R1A is closed.

Let f be a partial function from R to R. The functor R1f yielding a map

from R
1↾R1 dom f into R

1↾R1 rng f is defined as follows:

(Def. 4) R1f = f.

Let f be a partial function from R to R. One can check that R1f is onto.

Let f be an one-to-one partial function from R to R. Observe that R1f is

one-to-one.

One can prove the following four propositions:

(5) R
1↾R1(ΩR) = R

1.

(6) For every partial function f from R to R such that dom f = R holds

R
1↾R1 dom f = R

1.

(7) Every function f from R into R is a map from R
1 into R

1↾R1 rng f.
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(8) Every function from R into R is a map from R
1 into R

1.

Let f be a continuous partial function from R to R. Note that R1f is

continuous.

Let a be a non zero real number and let b be a real number. One can verify

that R1 AffineMap(a, b) is open.

3. Circles

Let S be a subspace of E2
T. We say that S satisfies conditions of simple

closed curve if and only if:

(Def. 5) The carrier of S is a simple closed curve.

Let us note that every subspace of E2
T which satisfies conditions of simple

closed curve is also non empty, arcwise connected, and compact.

Let r be a positive real number and let x be a point of E2
T. Observe that

Sphere(x, r) satisfies conditions of simple closed curve.

Let n be a natural number, let x be a point of En

T, and let r be a real number.

The functor Tcircle(x, r) yielding a subspace of En

T is defined by:

(Def. 6) Tcircle(x, r) = (En

T)↾Sphere(x, r).

Let n be a non empty natural number, let x be a point of En

T, and let r be

a non negative real number. Note that Tcircle(x, r) is strict and non empty.

One can prove the following proposition

(9) The carrier of Tcircle(x, r) = Sphere(x, r).

Let n be a natural number, let x be a point of En

T, and let r be an empty

real number. Note that Tcircle(x, r) is trivial.

Next we state the proposition

(10) Tcircle(0E2

T

, r) is a subspace of Trectangle(−r, r,−r, r).

Let x be a point of E2
T and let r be a positive real number. One can verify

that Tcircle(x, r) satisfies conditions of simple closed curve.

Let us mention that there exists a subspace of E2
T which is strict and satisfies

conditions of simple closed curve.

Next we state the proposition

(11) For all subspaces S, T of E2
T satisfying conditions of simple closed curve

holds S and T are homeomorphic.

Let n be a natural number. The functor TopUnitCirclen yields a subspace

of En

T and is defined by:

(Def. 7) TopUnitCirclen = Tcircle(0En

T
, 1).

Let n be a non empty natural number. Note that TopUnitCirclen is non

empty.

We now state several propositions:
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(12) For every non empty natural number n and for every point x of En

T such

that x is a point of TopUnitCirclen holds |x| = 1.

(13) For every point x of E2
T such that x is a point of TopUnitCircle 2 holds

−1 ≤ x1 and x1 ≤ 1 and −1 ≤ x2 and x2 ≤ 1.

(14) For every point x of E2
T such that x is a point of TopUnitCircle 2 and

x1 = 1 holds x2 = 0.

(15) For every point x of E2
T such that x is a point of TopUnitCircle 2 and

x1 = −1 holds x2 = 0.

(16) For every point x of E2
T such that x is a point of TopUnitCircle 2 and

x2 = 1 holds x1 = 0.

(17) For every point x of E2
T such that x is a point of TopUnitCircle 2 and

x2 = −1 holds x1 = 0.

The following propositions are true:

(18) TopUnitCircle 2 is a subspace of Trectangle(−1, 1,−1, 1).

(19) Let n be a non empty natural number, r be a positive real number, x

be a point of En

T, and f be a map from TopUnitCirclen into Tcircle(x, r).

Suppose that for every point a of TopUnitCirclen and for every point b of

En

T such that a = b holds f(a) = r · b + x. Then f is a homeomorphism.

Let us observe that TopUnitCircle 2 satisfies conditions of simple closed

curve.

One can prove the following proposition

(20) Let n be a non empty natural number, r, s be positive real numbers,

and x, y be points of En

T. Then Tcircle(x, r) and Tcircle(y, s) are homeo-

morphic.

Let x be a point of E2
T and let r be a non negative real number. Observe

that Tcircle(x, r) is arcwise connected.

The point c[10] of TopUnitCircle 2 is defined as follows:

(Def. 8) c[10] = [1, 0].

The point c[−10] of TopUnitCircle 2 is defined as follows:

(Def. 9) c[−10] = [−1, 0].

Next we state the proposition

(21) c[10] 6= c[−10].

Let p be a point of TopUnitCircle 2. The functor TopOpenUnitCircle p yield-

ing a strict subspace of TopUnitCircle 2 is defined by:

(Def. 10) The carrier of TopOpenUnitCircle p = (the carrier of TopUnitCircle 2) \

{p}.

Let p be a point of TopUnitCircle 2. Note that TopOpenUnitCircle p is non

empty.

We now state several propositions:
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(22) For every point p of TopUnitCircle 2 holds p is not a point of

TopOpenUnitCircle p.

(23) For every point p of TopUnitCircle 2 holds TopOpenUnitCircle p =

TopUnitCircle 2↾(ΩTopUnitCircle 2 \ {p}).

(24) For all points p, q of TopUnitCircle 2 such that p 6= q holds q is a point

of TopOpenUnitCircle p.

(25) For every point p of E2
T such that p is a point of TopOpenUnitCircle c[10]

and p2 = 0 holds p = c[−10].

(26) For every point p of E2
T such that p is a point of TopOpenUnitCircle c[−10]

and p2 = 0 holds p = c[10].

Next we state three propositions:

(27) Let p be a point of TopUnitCircle 2 and x be a point of E2
T. If x is a

point of TopOpenUnitCircle p, then −1 ≤ x1 and x1 ≤ 1 and −1 ≤ x2

and x2 ≤ 1.

(28) For every point x of E2
T such that x is a point of TopOpenUnitCircle c[10]

holds −1 ≤ x1 and x1 < 1.

(29) For every point x of E2
T such that x is a point of TopOpenUnitCircle c[−10]

holds −1 < x1 and x1 ≤ 1.

Let p be a point of TopUnitCircle 2. Note that TopOpenUnitCircle p is open.

We now state two propositions:

(30) For every point p of TopUnitCircle 2 holds TopOpenUnitCircle p and

I(01) are homeomorphic.

(31) For all points p, q of TopUnitCircle 2 holds TopOpenUnitCircle p and

TopOpenUnitCircle q are homeomorphic.

4. Correspondence between the Real Line and Circles

The map CircleMap from R
1 into TopUnitCircle 2 is defined by:

(Def. 11) For every real number x holds CircleMap(x) = [cos(2 ·π ·x), sin(2 ·π ·x)].

Next we state several propositions:

(32) CircleMap(r) = CircleMap(r + i).

(33) CircleMap(i) = c[10].

(34) CircleMap−1({c[10]}) = Z.

(35) If frac r = 1
2
, then CircleMap(r) = [−1, 0].

(36) If frac r = 1
4
, then CircleMap(r) = [0, 1].

(37) If frac r = 3
4
, then CircleMap(r) = [0,−1].

(38) For all integers i, j holds CircleMap(r) = [((the function cos)

·AffineMap(2·π, 2·π·i))(r), ((the function sin) ·AffineMap(2·π, 2·π·j))(r)].
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Let us note that CircleMap is continuous.

The following proposition is true

(39) For every subset B of R
1 and for every map f from R

1↾B into

TopUnitCircle 2 such that [0, 1[⊆ B and f = CircleMap ↾B holds f is

onto.

Let us observe that CircleMap is onto.

Let r be a real number. One can verify that CircleMap ↾[r, r + 1[ is one-to-

one.

Let r be a real number. One can verify that CircleMap ↾]r, r + 1[ is one-to-

one.

One can prove the following two propositions:

(40) If b − a ≤ 1, then for every set d such that d ∈ IntIntervals(a, b) holds

CircleMap ↾d is one-to-one.

(41) For every set d such that d ∈ IntIntervals(a, b) holds CircleMap◦ d =

CircleMap◦
⋃

IntIntervals(a, b).

Let r be a point of R
1. The functor CircleMap r yielding a map from

R
1↾R1]r, r + 1[ into TopOpenUnitCircle CircleMap(r) is defined by:

(Def. 12) CircleMap r = CircleMap ↾]r, r + 1[.

One can prove the following proposition

(42) CircleMap R1(a+i) = CircleMapR1a·(AffineMap(1,−i)↾]a+i, a+i+1[).

Let r be a point of R
1. One can check that CircleMap r is one-to-one, onto,

and continuous.

The map Circle2IntervalR from TopOpenUnitCircle c[10] into R
1↾R1]0, 1[ is

defined by the condition (Def. 13).

(Def. 13) Let p be a point of TopOpenUnitCircle c[10]. Then there exist real num-

bers x, y such that p = [x, y] and if y ≥ 0, then Circle2IntervalR(p) =
arccos x

2·π
and if y ≤ 0, then Circle2IntervalR(p) = 1 − arccos x

2·π
.

The map Circle2IntervalL from TopOpenUnitCircle c[−10] into R
1↾R1]1

2
, 3

2
[

is defined by the condition (Def. 14).

(Def. 14) Let p be a point of TopOpenUnitCircle c[−10]. Then there exist real

numbers x, y such that p = [x, y] and if y ≥ 0, then Circle2IntervalL(p) =

1 + arccos x

2·π
and if y ≤ 0, then Circle2IntervalL(p) = 1 − arccos x

2·π
.

We now state two propositions:

(43) (CircleMapR10)−1 = Circle2IntervalR .

(44) (CircleMapR1(1
2
))−1 = Circle2IntervalL .

Let us observe that Circle2IntervalR is one-to-one, onto, and continuous and

Circle2IntervalL is one-to-one, onto, and continuous.

Let i be an integer. Observe that CircleMapR1i is open and

CircleMapR1(1
2

+ i) is open.
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Let us observe that Circle2IntervalR is open and Circle2IntervalL is open.

Next we state several propositions:

(45) CircleMap R10 is a homeomorphism.

(46) CircleMap R1(1
2
) is a homeomorphism.

(47) Circle2IntervalR is a homeomorphism.

(48) Circle2IntervalL is a homeomorphism.

(49) There exists a family F of subsets of TopUnitCircle 2 such that

(i) F = {CircleMap◦]0, 1[, CircleMap◦]1
2
, 3

2
[},

(ii) F is a cover of TopUnitCircle 2 and open, and

(iii) for every subset U of TopUnitCircle 2 holds if U = CircleMap◦]0, 1[,

then
⋃

IntIntervals(0, 1) = CircleMap−1(U) and for every subset d of

R
1 such that d ∈ IntIntervals(0, 1) and for every map f from R

1↾d

into TopUnitCircle 2↾U such that f = CircleMap ↾d holds f is a home-

omorphism and if U = CircleMap◦]1
2
, 3

2
[, then

⋃
IntIntervals(1

2
, 3

2
) =

CircleMap−1(U) and for every subset d of R
1 such that d ∈

IntIntervals(1
2
, 3

2
) and for every map f from R

1↾d into TopUnitCircle 2↾U

such that f = CircleMap ↾d holds f is a homeomorphism.
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[5] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
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